Getting Started with Seminole

Getting Started with Seminole
Copyright © 2013 GladeSoft, Inc.
This document and any software product(s) it accompanies are protected by United States and international copyright laws. All rights are hereby

reserved. Copying or reproduction of this document or any portion thereof without the express written authorization of GladeSoft, Inc. is strictly
prohibited.

Table of Contents

Fg11 oo (¥ oi [Tl H PSPPI Vii
1. THE BUITA SYSEEIM ..oeiiiiii ettt e et e et e e e et e e e e et e eeees 1
2. EMBedding SEMINOIE oo 3
Getting your application talking HTTPuuiiiiiii e 3
HEIO WOTTA! .ottt e e et e e na e 4
MUITIPIE HANIEN'S ...ttt 6

A brief primer 0N URLScooui e 6

Yet another demo NanNdIErcoooiiiiiii e 6

Code for DemOTIiMEHANAIEYiiiiiiiieei e e e 8

3L SEIVING CONLENT ...ttt ettt ettt ettt et et e et e et e et e aba e et eeb e et enaa e e eennns 11
SENVING IS ..o e et e e 11
Customizing the file handler e 12
CONENE PrEPIOCESSING ... eeetiieeeiti ettt et e et e ettt e e et et e e e e et e e e eete e e e eetaaaaeees 15

4. Authentication and @UENOMZELIONccouuuiiiiii e 17
5. INterfacing With CGlc.ouuiiiii e e e e 19
6. The TEMPIEE SYSIEM ...t et et e e e e e e e e enanns 23
A Brief Overview of using the Template SyStemcc.uviiiiiiiiiiiii e 23
SYMBOL MBS ..t ettt 29
Multiple Symbol TaDIES ... oo 31
Interfacing TemplateS With CGlcoouiiiiiiiii e 32

7. SESSIONS & COOKIESeiiitiieeeeit ettt ettt e e e et e et e e et et e e e e eba s 33
MaintaiNing Stale @CTOSS MEOUESESeevuueieitieeeetti et et e ettt e et e et e e e e e e ri e e enanns 33
MaKING SESSIONS IMOFE SECUME ... teete ettt et et e et et e et et e e e et e et et e et et e e e e et e e e eeaanes 36

8. DIAWING IMBOES ... ettt ettt e et et e e et et e et e e e e e e e e e eenaas 38
BaSIC AIrBWING .. eeeeti ettt ettt eaaas 38
Rendering NUMENTCEl DAccuuunieiiiiiieeiii et e e e e e eees 39

9. ENAPOINT DISCOVEIY .. ettt ettt ettt e ettt e e et et e et e et e e e e st s e e e enbneeeenbnaeeeens 42
FiNdiNg ENCPOINSvuiiiiii ettt e e e e e e e 42
Dynamic Data Via the DiSCOVENY SEIVENcoiuueiiiiii ettt et 43

10. Distributed AUINOITNG ettt e e et e e et e e e e ert e e eeneaeaees 45
Distributed AULNOIINGceeeiiiiii et e e e e e eeees 45
1 OO 47
ProCeSSINg XIML .o 47
XML & HT TP ittt ettt ettt ettt e e e naa e e ennens 48

12, WEIDSOCKELS ...ttt et et 49
WEDSOCKELS ...ttt ettt 49
WebSockets (Multiplexed WaIting)uieeeiiiiiiiiie e 51

IS B L o8 o 1 o R TP PUPPPTTRPPPPPTN 52
L= @ 1o [T PP UPPPT 52
(D= o 8o o] oo EEUUR PP PPTTR PPN 53

AL SITUCIUIE OF BIURL .ottt ettt ettt e e e nb e e eanans 55
B. A Brief OVerview Of HTTP ..ooue et 58
The BaSIC PIOIOCO!iiiiiii ettt et e e e e e s 58
IVIEENOOS ...ttt 59
HTTP RESPONSE COUBS ... ittt ettt ettt et e et e e et e e e naa s 60

The different versions of HTTPiiiii e 61
HT TP L0 ettt e et e e et e e e e et e e e eeba e aees 61

[I I O TSP PPPPTTRUPPIN 62

HT T PI0.9 o ettt e et e e e e e ees 64

List of Figures

3.1. Overview of Ht t pdFi | eHandl er call Chain.coiiiiiiiiii e 13

List of Tables

List of Examples

2.1. Creating an Ht t pd ODJECEcoeveeei e 3
2.2. Creating & Installing an example NandIero 4
2.3. Declaring a subclass of HE t pdHaNdl €1 4
2.4, Implementing a CuStom handleroovoiiiiiii e 4
25 Example Time & Date HaNAIerooiiiiiiiiiii e 8
5.1. Sample HTML fOIM PAOE. ... ieeitieiiiii ettt et e e e e eenans 19
5.2. Getting CGl PArAMELESuuiiiiiii ettt ettt e et e e et e e et e e e eat e e eentnaeeeees 19

Vi

Introduction

Getting started with Seminole may appear daunting; heck, it is daunting, what with a reference guide
consisting of hundreds of pages of class, function, variable and constant declarationsit's hard to get agrasp
of where one even starts in attempting to integrate Seminole into a product.

To that end, this guide has been written to help you use Seminole in your application, along with many
examples of using the various features of Seminole. All of the example programs referenced in this guide
areincluded in the Seminole source code.

It is important to understand that many of the sample programs are written without all possible error
checking in the interest of brevity. Although this guide assumes little knowledge of web technologies it
does assume C/C++ programming knowledge.

Furthermore it is assumed that a build environment that supports Seminole is aready configured and
operational. The minimum build environment is a C++ compiler and Perl interpreter on a supported
operating system. Porting Seminoleto anew target platformisout of the scope of this document, although
the required interfaces are described in the [Reference Guide].

Vii

Chapter 1. The Build System

Seminoleincludes a portable build system written in Perl. The build system can be used to build Seminole
itself and, optionally, code that uses Seminole. All of the examples in this guide can be built using the
build system.

Like make, source directories contain a file (called Bui | df i | e) that describes how to build various
targets, such asdef aul t which isthetarget that is assumed if hone is specified for building object code
or cl ean for removing built files.

Unlike make however the recipes and dependencies are expressed as Perl code with callsto helper routines
that implement the “logic” of make. For building the examples in this guide it isn't necessary to write a
Bui | df i | e; each exampleincludesaBui | dfi | e.

But a Bui | df i | e isn't the only file that is needed. Another file, called a “port” file determines the
toolchain and parameters used for a particular build. The port files are located in por t s. The port file
Seni nol e contains the most basic machinery for building Seminole regardless of platform or toolchain.
Other port filesinclude Sem nol e but override or add functionality as appropriate.

For example, building using the FreeBSD™ port file includes the POSI X port file. The POSI X port file
includes the common port file Sem nol e. More than one port file can be used during compilation. Port
files can include other port files which define default constructs and then override those constructs as
needed, similar to a C++ class hierarchy.

So let's jJump right in and build one of the examples, start-1. We start by creating a new port file called
ports/start-1:

@\PPS = path_list("exanples/start-1"); @
definitions(sanepat h($DEFI NI TION_FILE, 'FreeBSD)); ©

© The @APPS array contains the list of application specific directories that are built in addition to
Seminole. Thepat h_I i st convertsthelist of paths given to it into a portable form. Alternatively
you can use Perl'sFi | e: : Spec package to create a portable file name.

@ All of the other build parameters are inherited from the platform specific port file. In this case we
are building on FreeBSD™.

Once created we can build the default target using that configuration file:
$./buildit ports/start-1

When complete the results of building that port fileend upinbui | t/start- 1. Itispossible to build
other targets than the implicit def aul t target. Another very important target iscl ean, used to remove
the contentsof bui | t/ st art - 1. To build a specific target simply name provide the name of the target
following the port file:

$./buildit ports/start-1 clean

In addition to setting variables like @APPS which affect the build system, port files can also set build
parameters in the code. For example, to help reduce code size we can turn off support for persistent

The Build System

connections. And to reduce memory usage we can lower the maximum number of MIME entries per
request. The build system provides a procedure confi g that adjusts the defaults provided by the
Seni nol e port file;

@\PPS = path_|ist("exanples/start-1");
confi g(1 NC_PERSI STENT_CONN => 0, MAX_M ME => 12);
definitions(sanepat h($DEFI NI TI ON_FILE, 'FreeBSD));

It isimportant that the conf i g be called before the parent port file isincluded.

Before going further let us examinethe Bui | df i | e from the simplest example, start-1.

default => sub

{
my @inal deps = app_sources(); ©

die "target _binary not defined!\n"
if (!defined $target_binary);

ny $denmobin = $target binary->('shttpd); @

stal e([$dermobin], [$SEM.IB, @i nal deps]) ©
and $target _|ink->($denobin, [$SEM.I B], @i nal deps); @

© Thisline calls the build-helper function app_sour ces. This function builds the list of source
files for the application (including any automatically generated ones) and stores them in the
@i nal deps array.

® Thetarget port filedefinesthe$t ar get _bi nar y function for computing the target filename given

the provided basename, sht t pd.

The st al e build-helper determinesif the input files are newer than the output file.

If st al e indicatesthat the targets are out of date, the link step (defined as $t ar get _| i nk inthe

port file) is performed to build the requested products.

© 0o

Chapter 2. Embedding Seminole
Getting your application talking HTTP

It'sactually pretty easy to get Seminole embedded and running within your larger application. It'sasimple
meatter of initializing the operating system portability layer within Seminole, instantiating an instance of a
webserver object then starting it up so it can service requests. This only takes afew lines of code:

Example 2.1. Creating an Ht t pd object

#i ncl ude "sem nol e. h"

int rc = Htpd::lnit();
if (rc !1=0)

/1 failure to initialize the operating systemportability |ayer.
/1 This is a critical failure and Seminole will be unable to
/1 function.

}

Htt pd *server = new Httpd("ww. exanpl e.net");
if (server == NULL)

{

}

server->Start(); /1 start tal king HTTP

/I we failed to instantiate a webserver object.

/1 and in the | ocation you shutdown your application, to stop
/1 the webserver

#i f HTTPD_| NC_SHUTDOWN
server - >St op(HARD) ;
#endi f

With just those few lines of code (plus the appropriate error handling mechanisms appropriate in your
situation) your application now speaks HTTP.
Congratulations!

Y ou can how use aweb browser to make HT TP requests to your application. But if you notice, thereisn't
actually any content to serve up, all you get are dreaded 404 errors; which strictly speaking isn't al that
bad at this point, since your application now speaks HTTP.

Experiment

Compile and run the start-1 application to see the above code in action!

Next, we'll serve some content up to show the boss.

Embedding Seminole

Hello World!

Something to show the boss

The problem with just instantiating and starting Seminole like we did is that Seminole has no concept of
what to serve, nor how to serve it up. It needs “handlers’ that can generate content for a given request.
Without that, all Seminole can doisblindly say “I don't know where the content is!”

All handlers for Seminole derive from the Ht t pdHandl er class:

Example 2.2. Creating & Installing an example handler

Exanpl eHandl er *handl er = new Exanpl eHandl er("/");
if (handler == NULL) // Assunmi ng not hrow new.

{

// failure to create a handl er

}

server->|nstal |l (handl er);

Handlers are responsible for handling a portion of the request space in awebserver (which we cover inthe
next section) and serving up the appropriate content for the requests it handles. Right now, well write a
simple handler to just print “Hello World” regardless of the request made—the ubiquitous “Hello World”
program, but for Seminole.

First we declare our handler class:

Example 2.3. Declaring a subclass of Ht t pdHandl er .

cl ass DenmpHel | owor| dHandl er : public Ht pdHandl er

{

public:
DenoHel | oWor | dHandl er (const char *prefix);
~DenoHel | oWor | dHandl er () ;
virtual bool Handl e(HttpdRequest *p_req);

b

And then the code for our class:

Example 2.4. Implementing a custom handler

DenoHel | oWor | dHandl er : : DenmoHel | oWor | dHandl er (const char *prefi x)

{

mpPrefix = HitpdUtilities:: SaveString(prefix);
}
DenoHel | oWor | dHandl er : : ~DenpHel | oWor | dHandl er ()
{

Ht t pdOpSys: : Free((char *)nmpPrefix);
}

Embedding Seminole

bool DenpHel | oWor | dHandl er: : Handl e(Ht t pdRequest *p_req)

{
if (IsMe(p_req))
{

bool is_head = p_req->l sHeadRequest ();

Ht t pdDynami cQut put out put (p_req,is_head);
p_req->Respond(HTTPD_RESP_(X) ;

out put . Header (" Cont ent - Type", "text/htm");
out put . Header Conpl et e() ;

out put . Body()->Printf(
"<htm >\ n"
"<head>\ n"
<title>Hello Wrld!</title>\n"
"</ head>\ n"
"<body>\ n"
<hl>Hel | o Worl d! <h1>\n"
"</ body>\ n"
"</ htm >\ n"
"\ "

return (true);

}

return (false); // we did NOT or do NOT handle this request
}

The constructor just saves that portion of the webserver space we're serving up (more on that in the next
section—also see Appendices A and B) and the destructor just destroys the prefix. It'sin the Handl e()
method were all the action takes place. While for this example we don't really need to call | sMe, most
handlers will (or call | sMyPat h—there's a subtle distinction between the two welll get into in a later
section).

Not all requests made to awebserver will result in content generation—in some cases only the data about
the request will be sent back (see Appendix B for more information about HTTP) so we check to see if
the content (considered the “body” in HTTP) needs to be generated, or only the information about the
content (called the “header”). Once that distinction is made, based upon the type of request, we output a
positive response (HTTPD_RESP_(XK), plusthe type of content (“text/html”), plus additional information
that Seminolewill generatefor us, then (if requested) theactual content. Then anindication that we actually
handled the request.

Now granted, the only response you'll now get is a page with “Hello World” but well fix that shortly.

Experiment

Compile and run the start-2 application to see the above code in action!

Note

Remember to use the clean build rule after editing the ports file to build a new sample
application. When re-using the same ports file and changing only the application to build,
acleanisrequired.

Embedding Seminole

Multiple Handlers
A brief primer on URLS

or, Location location location

An HTTP URL describes the location of a resource retrievable via HTTP; a resource being an HTML
document, a picture, sound, or just about anything else that can be transmitted digitally. A URL, such as:
http: // ww. exanpl e. net/ about us/ ceo. ht m

has a protocol portion, “http”, a host portion, “www.example.net”, and a “URL path”—"/aboutus/
ceo.html”. Webserverstypically deal with just the URL path of the URL and the most common technique
isto map a portion of the filesystem to match the URL path of requestsis receives.

But not all requests have to map to afile, aswe saw in the previous demo. And not all requests have to be
funneled through a single handler in Seminole. The prefix parameter to the handler constructor gives the
location within the URL path that the handler is responsible for.

Yet another demo handler

So let's define and add yet another handler. Thistime, it will print out the time or the date, depending upon
an option given to its constructor:

cl ass DenoTi neHandl er : public Ht pdHandl er
{

private:
bool npTi neOr Dat e;

public:
DenoTi neHandl er (const char *prefix, bool TinmeOQrDate = fal se);
~DenoTi neHandl er () ;
virtual bool Handl e(HttpdRequest *p_req);

1
If Ti meOr Dat e isfalse, the handler will print a page with the current date, otherwise it prints the time:

int rc = Htpd::Init();

if (rc 1=0)

{
/[l failure to initialize the operating systemportability |ayer.
/! This is a critical failure and Senminole will be unable to
// function.

}

Ht tpd *server = new Httpd("ww. exanple.net");
if (server == NULL)

/1 we failed to instantiate a webserver object.

Embedding Seminole

DenoHel | oWor | dHandl er *phand = new DenoHel | oWbr | dHandl er ("/");
i f (phand == NULL)
{

}

server->Install (phand);

/Il critical failure

DenoTi meHandl er *ptdhand = new DenoTi meHandl er ("/time");
i f (ptdhand == NULL)
{

}

server->Instal |l (ptdhand);

/Il critical failure

pt dhand = new DenoTi meHandl er ("/date", true);
i f (ptdhand == NULL)
{

}

server->Instal |l (ptdhand);

/Il critical failure

server->Start(); // start talking HTTP

/1 and in the | ocation you shutdown your application, to stop
/1 the webserver

#i f HTTPD_I NC_SHUTDOWN
server - >St op(HARD) ;
#endi f

You'll notice that we installed the DenoHel | oWor | dHandl er as “/", one instance of the
DenoTi neHandl er as“/time” and another one as*“/date”. So, for all requests other than those that start
with “/time” or “/date” the DenpoHel | oWbr | dHandl er will print “Hello World”, while all requests
that start with “/time” will passthrough thefirst instance of DenoTi neHandl er (whichinthiscasewill
print out the time) and all requests that start with “/date” will pass through the second instance (which
will print out the current date).

Table 2.1.

htt p: // ww. exanpl e. net/ “Hello World”
http://ww. exanpl e. net/foo “Hello World”
http://ww. exanpl e. net/tinme current time
http://ww. exanpl e. net/ti nenow current time
htt p://ww. exanpl e. net/ dat e current date
http://ww. exanpl e. net/dat e/t hen current date

A request will go through each installed handler; each handler will then check to seeiif it is supposed to
handlethisrequest, based uponthe URL pathit wasinstalled with, viaacall to either | sMe or | sMyPat h.

Embedding Seminole

If the handler is responsible for that portion of the URL path, it handles the request and returns true,
otherwise it declines the request and returns false.

Code for DemoTimeHandler

And now the code for DenoTi neHandl er :

Example 2.5. Example Time & Date Handler

DenoTi meHandl er: : DenoTi neHandl er (const char *prefix, bool tinme_or_date)

{
npPrefi x = HtpdUtilities::SaveString(prefix);
nli meOrDate = time_or_date;
}
DenoTi meHandl er: : ~DenoTi meHandl er ()
{
Ht t pdOpSys: : Free((char *)nmpPrefix);
}
bool DenoTi meHandl er: : Handl e(Ht t pdRequest *p_req)
{
assert(p_req != NULL);
if (IsMyPath(p_req))
{
#i f HTTPD_HAVE_CLOCK
char gnt _tinme[48];
char | ocal _tinme[48];
time_t now,

struct tm *ptm
const char *title;
bool i s_head;

is_head = p_reqg->l sHeadRequest ();

Ht t pdDynami cQut put out put (p_req,is_head);
p_req->Respond(HTTPD_RESP_(X) ;

out put . Header (" Cont ent - Type", "text/htm ");
out put . Header Conpl et e() ;

now = time(NULL);
i f (mli meO Date)
{
ptm = gntine(&now);
strftinme(gnt _time, sizeof(gnt_tine),
"GMI Date: %A, 9B %, %", ptm;
ptm = | ocal ti me(&now) ;
strftine(local _tinme, sizeof(local _tine),
"Local Date: %A 9B %, %", ptm;
title = "The Date";
}

el se

{

Embedding Seminole

ptm = gntine(&now);

strftinme(gnt _time, sizeof(gnt_tine),
"GMI Tine: % 9%t ¥s', ptm;

ptm = | ocal ti me(&now) ;

strftine(local _tinme, sizeof(local _tinme),
"Local Tine: % %vt 95", ptm;

title = "The Tinme";

}

out put . Body()->Printf
(
"<htm >\ n"
"<head>\ n"
"o<title>¥Ws</title>\n"
"</ head>\ n"
"<body>\ n"
" <h1>%s</ hl>\n"
" <p>Us</p>\n"
<p>%s</ p>\n"
"</ body>\ n"
"</htm >\ n"
"“\'n",
title, title, gm _time, local _tine

)
#el se // No cl ock supported.
p_req->Respond(HTTPD_RESP_SRV_ERRCR) ;
#endi f

return (true);

}

return (false);

}

Thereisquite abit going on here, mostly dealing with formatting the time and date, but other than that, the
logic hereisn't al that much different than for DenoHel | oWbr | dHandl er —the code checks to see if
it's responsible for handing this request, and if so, generates the required output, either the current time or
date depending upon how the instance was created.

Of course, using boolean flags like this is poor object oriented programming. It was added to illustrate
per-handler data.

The code aso tests the compile time directive HTTPD_HAVE CLOCK. This constant is defined for the
benefit of Seminole but there is nothing wrong with user-written code using it as well. If the hardware
that your application is being written for doesn't have a clock, then there would be no way for this handler
to proceed.

You'l notice that if there is no clock, we set a response code of HTTPD _RESP_SRV_ERROR (which
results in Seminole returning a 500 error response to the web browser) and we return true even though
we failed to satisfy the request. Failure to satisfy the request is different than declining the request in the
first place, which is an important thing to keep in mind. The DenoTi neHandl er was responsible for
handing the given request and although it could not fulfill the request (in this case, because of the lack of
afeature) it still handled the request and thus has to return true. A handler can only return false if it is not
responsible for handling requests elsewhere in the URL path.

Embedding Seminole

Experiment

Compile and run the start-3 application to see the above code in action!

10

Chapter 3. Serving Content

Serving Files

Themost common way to handlean HT TP request is by sending the contents of afile. Seminole providesa
standard handler to do thiscalled Ht t pdFi | eHandl er . TheHt t pdFi | eHandl| er classimplements
theHt t pdHandl er interfaceto servefilesfrom an abstract filesystem interface (Ht t pdFi | eSyst em
and friends).

The major phases of file handling can be overridden by subclasses wishing to change the default behavior.
In fact thisis exactly how Chapter 6, The Template System works.

Before studying the Ht t pdFi | eHandl er class in depth, it is important to understand the way that
filesystems are abstracted. A filesystem is described by a subclass of Ht t pdFi | eSyst em This class
can be used to get file information (an instance of Ht t pdFi | el nf o) from afile name.

Once thefileinformation is obtained, afile (or directory) can be opened using the filesystem object. This
open file (or directory) object can then be used to perform 1/O on thefile.

Seminole supports a read-only filesystem designed for embedded web content that can be stored in read-
only storage, called "ROM FS'. Some Seminole ports (such as POSIX) have their native filesystem
exposed viathe Ht t pdFi | eSyst eminterface aswell.

The build system can be configured, with afew linesinthe Bui | df i | e of the application, to processthe
web content in the build tree and convert it into an initialized array for ROM FS:

default => sub

{
ny $cpack_o = app_content (synbol => 'SemAeb',
filenane => 'sitedata'); ©
ny @ppout = app_sources();
my @inal deps = ($cpack_o , @ppout); O

die "target_binary not defined!\n"
if (!defined $target_binary);

ny $dermobin = $target_binary->('shttpd');

stal e([$denmpbi n], [$SEM.I B, @i nal deps])
and $target_I|ink->($denobin, [$SEM.I B], @i nal deps); ©

© Theapp_cont ent build helper does al the work in building the content package in the specified
filename with the specified variable name.

® Theresultsof theapp_cont ent helper isadded to the @ i nal deps array.

® The@i nal deps array isused in thelink step as defined by the port.

Once the content is available it can be made into a filesystem object:

11

Serving Content

static Ht pdMenoryDat aSource builtin(SemAéb, sizeof (Seneb)); ©
Ht t pdRonFi | eSystem *p_ronfs = new Htt pdRonFi | eSystem @

int rc = p_ronfs->Munt(&uiltin); ©

The filesystem data (linked in from the build system) is wrapped up as a data source object.

An instance of Htt pdRonti | eSyst em is constructed to represent the content package in
SemWeb.

©® The Mount method is invoked to associate the filesystem object with the data source object. If
successful the filesystem object may be used.

(o)

Once a filesystem instance is ready the Ht t pdFi | eHandl er may be created and associated with an
Ht t pd instance.

/1 This associates the root of the filesystemwith the "/fs"

/1 prefix of the URL space.

Ht t pdHandl er *p_hand = new Htt pdFi | eHandl er (p_ronfs, "/", "/fs");
gpWebServer->Instal |l (p_hand);

Experiment

Compile and run the file-1 application to see the above code in action!

Customizing the file handler

TheHt t pdFi | eHandl er can be customized by subclassing and overriding methods. There are virtual
methods for each of the phases of request processing that can be customized.

12

Serving Content

Figure 3.1. Overview of Ht t pdFi | eHandl er call chain.

This method calls the other
e methods in order.
Determine if the request is HEAD,
Chesietinoel) GET, or POST and sets mMethod.
v
ValidMethod() Only allows HEAD or GET to proceed
' Compute the pathname from the
TranslateUri() request. This sets mpDecodedUri an
T mpFilePath.
ProcessUri() Fetch the l—_|ttdeiIe_>|nfo for the
pathname into mFilelnfo.
v
. Figure out how to handle the reques
DeiFTEmie] the fetched file information.

/

The appropriate headers are sent an
DoFile() file is sent as the entity body in a 2(
response.
SendIndexFile() Redirect the user to index.htm
if it exists.
v

DoDirectory() Generate a directory listing.

Cleanup() Release any allocated resource

In this example we will make a file handler that is case-insensitive. The norma mode of operation
of the ROM filesystem is case sensitivity. The approach is to aways lowercase the path hame in the
Transl at eUri method.

bool DenoFil eHandl er:: Transl at eUri (Request St at e &st at e)
{

char *p_wal k;

/1 Initialize nmpFilePath so that all failure cases are
/1 properly handl ed.
state. npFilePath = NULL; ©

/! Decode the request path.
state. npDecodedUri = HttpdUtilities::UiDecode(state.npRegPath); @
if (state.npDecodedUri == NULL)

goto fail;

13

Serving Content

/1 Lowercase the fil enane.
for(p_wal k = state. npDecodedUri; *p_walk !'="\0"; p_wal k++) ©
*p_wal k = tol ower (*p_wal k) ;

/1 Convert to a fil esystem path.
state.npFilePath = HitpdUtilities::Normalize(state.npDecodedUri, @
npRoot Pat h) ;
if (state.npFilePath == NULL)
goto fail;

return (true);

fail:

}

st at e. npRequest - >Respond(HTTPD_RESP_SRV_ERROR) ;
return (fal se);

It is critical that this method initialize both the npFi | ePat h and npDecodedUri members
of the RequestState structure. In the event the decoding fails this early initialization will
prevent returning without initializing npFi | ePat h. See the [Reference Guide] entry for
Ht t pdFi | eHandl er:: Transl at eUri for adetailed explanation

The URL must be decoded in the event there are escaped characters. In this case there is no special
processing.

Now that the path portion of the URL is decoded it can be manipulated as desired. The path islower-
cased before being appended to the root of the handler in the event the root of the handler (whichis
under programmatic control) has case significance.

Now that the path name has been altered it can be assembled with the root path and stored in the
state object.

To illustrate the difference the file-2 exampl e creates both anormal Ht t pdFi | eHand! er instance and
aDenoFi | eHandl er instance on the same objects:

static Ht pdMenoryDat aSource builtin(Sem\b, sizeof (Senb));
Ht t pdRonFi | eSystem *p_ronfs = new H t pdRonFi | eSyst em
if (p_ronfs->Munt(&uiltin) !'= 0)

failure(__FILE , LINE_, "HttpdRonFileSystem : Mount()");

/1 Mount the denmp handler to the root of the URI space.
Ht t pdHandl er *p_denb = new DenoFil eHandl er(p_ronfs, "/", "I");
gpWebServer - >l nstal | (p_deno);

/1 Mount the case-sensitive default handler to the /cs branch of
/1 URl space.

Ht t pdHandl er *p_hand = new Htt pdFi | eHandl er(p_ronfs,"/","/cs");
gpWebServer - >l nstal | (p_hand);

In this configuration the files in the filesystem can be referenced using a mixture of upper and lowercase
unless they are accessed through the/ ¢s prefix in which case they are case-sensitive.

14

Serving Content

Experiment

Compile and run the file-2 application to see the above code in action!

Content Preprocessing

Most websites try and give each page a consistent look. Typically this involves a common header and
footer for every page. Thiscan be very tediouswhen creating content. Many webservers provide asolution
called “server-side includes.” These are directives that are parsed when a page is requested that allow
other filesto beincluded, abit like the C preprocessor. Seminole allows this at runtime using the template
mechanism but also provides another alternative: compile-time preprocessing.

Content may optionally be processed by the Seminole Content Package Generator (SCPG) with no runtime
overhead. The most common use of this feature is to add common headers and footers to content. The
exampl e file-3 shows how this can be accomplished. There are several changes necessary to add compile-
time headers and footers:

1. Add the pr epr oc filter to thefilter chain list in cont ent . cf g for the MIME type of your content
files:

HTM. Preprocessing
filter text/htm - preproc htm -squish

2. Create the header and footer files that will be included at the top and bottom of every page. In file-3
these arecalled header . i nc andf oot er. i nc.

3. Add the necessary preprocessor directives to the content files.

There are quite afew preprocessing directives and they are quite powerful. The [Reference Guide] covers
these directivesin detail.

Let us study the header templatefile:

<htnm >
<head>

<title>Yeval env(TITLE)] %/title> ©
%if env(REFRESH)] % ©

<neta http-equiv="refresh"

content="% eval env(REFRESH)]% >

% endi f] %
% unset REFRESH] % ©
</ head>
<body>

Thetitle variableis set in the including file and used to set the title of the HTML document.

Here an option for the page to automatically refresh is checked. The et a tagisonly included if the
including file defines a value to the REFRESH preprocessor variable.

© Because the preprocessor variables exist outside the scope of asinglefileit isimportant to clear the
REFRESH variable so that other files including this header do not also get anet a tag.

(1]
(2]

15

Serving Content

Now that we have an understanding of how the header and footer include fileswork | et usturn our attention
to using them. Thei ndex. ht m file brackets the content with directives for the header and footer:

% set TITLE = Denp Page] % ©®
% include "header.inc"]%®
<ing src="seml ogol.jpg" align="center">
<hr >
This is content fromthe ROMfile systenl
% include "footer.inc"]%

O HeretheTl TLE preprocessing variable is set so that the header will generate the proper pagetitle.

® Theheader. i nc fileisincluded to give the page a common header. The file name given to the
include directiveisrelative to the location of the including file. Ideally arelative path should always
be provided to the include file.

In area world usage the common header include file would contain navigational links and perhaps some
CSS directives for a professional presentation.

Experiment

Compile and run the file-3 application to see the content preprocessing in action!

16

Chapter 4. Authentication and
authorization

Seminole provides an authentication framework that can be applied to a Ht t pdRequest object. The
Ht t pdAut hent i cat or classisan abstract base class. It must be subclassed with the actual password
lookup logic supplied by the user.

For demonstration purposes our authenticator will use a hard-coded list of usernames and passwords. The
realm will also be a constant. So let's implement those pure virtual methods:

bool

}

voi d DenoFi | eHandl er: : Aut henti cat or: : Real m(Ht t pdRequest

{

}

const char *p_password;

if (strcnp(p_user, "sam') == 0)
p_password = "i_anmB6";
else if (strcnp(p_user,
p_password = "inbed";
else if (strcnp(p_user, "bob") == 0)
p_password = "4appl es";
else if (strcnp(p_user, "david') == 0)
p_password = "nobgen";
else if (strcnp(p_user,
p_password = "boker";
else if (strcnp(p_user,
p_password = "aqua";
else if (strcnp(p_user,
p_password = "yumyunt;
el se
return (false);

"fred") == 0)

"nmoshe") == 0)
“sally") == 0)

"patty”) == 0)

if (strlen(p_password) >= HTTPD MAX PASSWD LENGTH)
return (fal se);

strcpy(p_buf,
return (true);

p_password);

char

strncpy(p_real m
"Yoyodyne El ectric Banjo 2000",
HTTPD_MAX_REALM LENGTH - 1);

p_real nf HTTPD_MAX_REALM LENGTH - 1] = '\0';

DenoFi | eHandl er: : Aut henti cat or: : Get Passwor d(const char
Ht t pdRequest
char

*p_user,

*p_buf)

*p_request,
*p_realm

17

*p_request,

Authentication and authorization

As you can see the two methods simply provide data when needed by the authenticator. Now that the
authenticator is complete it can be used during the Pr ocessUr i phaseof aHt t pdFi | eHandl er:

voi d DenoFi | eHandl er:: ProcessUri (Request St ate &st at e)

{
if (HtpdUtilities::IsUiPathPrefix(state.npFilePath, "/secure")) ©

{
i f (mAut henti cator. Authenti cat e(state. npRequest)) ©®
Ht t pdFi | eHandl er:: ProcessUri (state); ©
}
el se

Ht t pdFi | eHandl er: : ProcessUri (state);

© Here we check for either the directory listing itself (/ secur e), or anything beginning with /
secure.

If either of the conditions are true the authenticator is applied to the request object.

If authentication was successful, then norma processing is performed. Otherwise, the
Ht t pdAut hent i cat or has answered the request and no further processing is performed.

()

Experiment

Compile and run the auth-1 application to see the above code in action!

18

Chapter 5. Interfacing with CGI

A Note on Security

One mistake many novice web programmers make is not validating parameters from the browser
properly. It is especially tempting to avoid validation if the validation is done with JavaScript on
the client. Thisis of course not true because a malicious user can disable JavaScript or create their
own form without it.

Malicious attempts to confuse a web application are not the only problem. Normal users can also
change the expected state of a web application with the use of the browser's back and forward
buttons. This additional hazard means that CGI code should never assume that a request will be
issued only when it is expected.

Interfacing with CGI in Seminole is quite simple, although there are three different ways that CGI data
can be sent to Seminole; two using the POST method, and one with the GET method. All three methods
will be discussed with the following sample HTML.:

Example5.1. Sample HTML form page.

<FORM ACTI ON="/ sanpl e. cgi ">
<P>Name: <INPUT NAME="nanme" TYPE="t ext"></P>
<P>Title: <INPUT NAME="title" TYPE="text"></P>
<P>Age: <INPUT NAME="age" TYPE="text"></P>
<P><I NPUT TYPE="submit" VALUE="Subnmit"></P>

</ FORW>

The first method is perhaps the most common method, POST:

<FORM ACTI ON="/ sanpl e. cgi " met hod="POST" >

</ FORV>

Thebrowser will default to sending the datawith a content type of “appli cation/x-www-form-urlencoded”.
To extract the data from the client request, a call to Ht t pdCgi Par anet er : : Par sePost Dat a is
made in your handler, with the appropriate checks:

Example 5.2. Getting CGI parameters

Ht t pdCgi Par ameter *1ist;

if (p_reg->lsPostRequest())

{
list = HttpdCgi Paramnet er: : Par sePost Dat a(p_req) ;

19

Interfacing with CGI

if (list == NULL)
{
p_req->Respond(HTTPD_RESP_CLI ENT_ERROR) ;
return(true);
}
}
el se

{
p_reqg- >Respond(HTTPD_REP_METHCD NOT_ALLOWED) ;
return(true);

}

const char *nane
const char *title
const char *age

[ist->Find("nanme");
list->Find("title");
list->Find("age");

/Il ... rest of handler

Experiment

Compile and run the cgi-1 application to see the above code in action!

The second type of POST method, using the encoding type of “multipart/form-data’, is usually used to
upload files to the server, but is equally easy to use:

<FORM ACTI ON="/ sanpl e. cgi " net hod="POST" enctype="multipart/formdata">

</ FORMW>

Ht t pdCgi Par amater *1ist;
if (p_reqg->lsPost Request())

Ht t pdMul ti part Cgi Parser parser(p_req);
if (parser.Parse() != 0)

{
p_reg- >Respond(HTTPD_RESP_METHCD _NOT_ALLOWED) ;
return(true);

}

list = parser. TakeList();
if (list == NULL)
{
p_req->Respond(HTTPD_RESP_CLI ENT_ERROR) ;
return(true);
}
}

el se

20

Interfacing with CGI

{
p_reqg- >Respond(HTTPD_REP_METHCD NOT_ALLOWED) ;
return(true);

}

const char *nane
const char *title
const char *age

[ist->Find("nanme");
list->Find("title");
list->Find("age");

/Il ... rest of handler

The final method uses GET:

<FORM ACTI ON="/ sanpl e. cgi " met hod="CGET" >

</ FORMW>

and should only be used when the data being passed in will not change the state of the server (or the device
if the form isused for configuration); if the form is being used to check the status of something, or return
results from a query (and the same results will always be returned for a given set of input) the GET can
be used safely. And again, it's easy enough to get the data:

Ht t pdCgi Parameter *Iist;
i f (p_reqg->IsGetRequest())

list = HtpdCgi Paraneter:: ParseUri String(p_req->Qery());
if (list == NULL)
{
p_reqg- >Respond(HTTPD_RESP_CLI ENT_ERROR) ;
return(true);
}
}

const char *nane
const char *title
const char *age

list->Find("name");
list->Find("title");
list->Find("age");

/1 ... rest of handler

The demo code present for this chapter has examples of not only the various ways of obtaining CGI
parameters, but also the location of various bits of information that may be of interest when processing a
CGlI request, such as the server name, the port ithat the server is running on, and the |P address that the
request is coming in from, among other such pieces of information:

21

Interfacing with CGI

out put . Body()->Printf("Server: %:%\r\n"
"Met hod: 9%s\r\n"
"Version: %l. %\ r\n"

" Pat h: %s\r\n"
"Query: %s\r\n"
"URI: s\ r\n",

p_reqg->Server ()->ServerHost (),
p_reqg->Server()->Port (),
p_req->Met hod(),

(p_reg->Protocol () >> 8) & OxFF,

(p_reqg->Protocol ()) & OxFF,
p_reg->Pat h(),
p_reg->Query() ? p_req->Query() o,

p_reqg->ConmpleteUri() ? p_req->Conpletelri()
)

out put . Body()->Printf(
"Client: %. %. %l. %\r\n"
"Headers:\r\n",
(p_reg->CientAddr() >> 24) & OxFF,
(p_reg->ClientAddr() >> 16) & OxFF,
(p_reg->ClientAddr() >> 8) & OxFF,
(p_reg->Cient Addr ()) & OXFF

Experiment

Compile and run the cgi-2 application to see these additional types of CGI processing in action.

22

Chapter 6. The Template System

A Brief Overview of using the Template System

Although dynamic content can be generated programmatically using the Ht t pdDynani cQut put class
this approach is cumbersome. In most cases the dynamic content being generated is HTML Using
Ht t pdDynami cQut put this would require that lots of the HTML for the user interface would be
embedded in your source code.

Thisisbad for several reasons. Changesto the layout and style of the user interface requires code changes.
Additionally this prevents the use of standard Web authoring tools.

Templates allow the HTML to be kept in files with embedded directives that refer to elements in your
application. Although templates can be used in a custom handler the easiest approach is to subclass a
Ht t pdFi | eHandl er object.

cl ass DempHandl er : public HttpdFil eHandl er

{
private:
int nHts;
pr ot ect ed:
bool TranslatelWri (RequestState &state);
voi d DoFile (Request State &state);
public:
DenpHandl er (HttpdFil eSystem *p_fil esys,
const char *p_root,
const char *p_prefix);
b
N LR
DenoHandl er: : DenpHandl er (Ht t pdFi | eSystem *p_fil esys,
const char *p_root,
const char *p_prefix)
Ht t pdFi | eHandl er (p_fil esys, p_root, p_prefix),

nHi t s(0)
{}

In our example for the template system, we need to keep track of the number of hits we've received. We
override Tr ansl at eUri to map all the requests to the single template file, and DoFi | e which will
actually instantiate the template code and run through it.

bool DenpHandl er:: Transl ateUri (Request State &state)

{
L
/1 everything is going to be fed through default.thtm but
/1 decode the URI since it will be used |later
L

23

The Template System

st at e. npDecodedUr i
st at e. npFi | ePat h

HtpdUtilities:: Ui Decode(state. mpReqPat h);
HitpdUtilities::SaveString("/default.thtnt);

return ((state.npDecodedUri != NULL) && (state.npFilePath != NULL));
}

The template file is default.thtm The reason we create a copy of it using
HttpdUtilties:: SaveStri ng isthat the destructor will call Ht t pdOpSys: : Fr ee, and thus

state.npFilePath = "/default.thtni;
will fail and cause problems.

voi d DermoHandl er: : DoFi | e(Request St at e &st at e)
{

/1 this should always be true, but just in case ...
L LT T

if (strcnp(state.nFilelnfo.MmeType(),"x-server-internal/tenplate") == 0)

{
DenoSynbol Tabl e synbol s(++nHits);

(voi d) Ht t pdFSTenpl at eShel | : : Execut e(st at e, &ynbol s) ;
}

el se
st at e. npRequest - >Respond(HTTPD_RESP_SRV_ERROR) ;

If the MIME type is x-server-internal /tenpl ate (and for this example it should be) we
instantiate a Deno Sy nbol Tabl e object, and call Ht t pdFSTenpl at eShel | : : Execut e over the
file, thus executing the template and generating the output.

@ Note
Theabove examplehasno synchronization for the global variablesnHi t s withinthehandler
object. In area world usage these variables must be properly synchronized if the platform
on which Seminole isrunning is multi-threaded.

Before we get into the details of that, let's take alook at the template file:

<htm >
<head>
<title>Tenpl ate Denonstration</title>
</ head>

<body>

24

The Template System

<h1>Tenpl at e Denopnstrati on</ hi>
<h2>EVAL exanpl e</ h2>

<p>% eval : eval t est } %/ p>
<h2>LOOP exanpl e</ h2>

%1 oop: | oopt est } %
%eval :1ooptest}u/Ili>
% endl oop} %
</ ol >

<h2>| FELSE exanpl e</ h2>

<p>You have requested an
9% if:even}%
even
% el se} %
odd
% endi f}%
nunber of tines.</p>

<h2>| FELSE chai n exanpl e</ h2>

<p>
Wif:first}%
This is the first request.
% el sei f:two} %
This request is a multiple of two.
% elseif:three}%
This request is a multiple of three.
% elseif:five}%
This request is a multiple of five.
% el se} %
You have made nultiple hits.
% endi f}%
</ p>

<h2>END OF LI NE</ h2>

</ body>
</htnl >

A fairly straightforward HTML file, with the exception of stuff like

<p>% eval : eval t est } %/ p>

25

The Template System

and

%1 oop: | oopt est} %
%eval :1ooptest}u/Ili>
% endl oop} %
</ ol >

The template processor looks for template directives between pairs of % and } % There are several
directives, but they all fall into one of three catagories:

Execution % eval : nane} %
Looping % | oop: nane} %... %4 endl oop} %
Conditional % i f:name}%... % endi f} %

o%{i f:name}%... % el se}%... % endi f} %

% i f:name}%... % el sif:nanme}%... % endif}%
Wif:name}% ... %Yelsif:name}% ... Yelsel%
% endi f}%

Inverted conditional % i fnot: nane}%... % endi f} %
nanme specifies aparticular instance of code to run (or loop or tests of a condition) whichis handled in the

symbol table, in this case, DenbSynbol Tabl e, whichis subclassed from Ht t pdSynbol Tabl e:

cl ass Htt pdSynbol Tabl e

{

publi c:
virtual int Handl eEval (Htt pdEval Command *p_eval);
virtual int Handl eLoop(HttpdLoopConmrand *p_l oop) ;

virtual int Handl eCond(HttpdConditional Cormand *p_cond) ;
static int ReturnBool (bool value);

virtual ~HtpdSynbol Tabl e();
b

The derived Ht t pdSynbol Tabl e needs to define at least one of Handl eEval , Handl eLoop or
Handl eCond, if not al (depending upon your needs). The demo code will handle al three, plus keep
track of some information used during the processing:

cl ass DenoSynbol Table : public HtpdSynbol Tabl e
{

private:

size_t mLoopCount;
i nt nHits;

26

The Template System

publi c:
DenoSynbol Tabl e (int hits)
nm_LoopCount (0) , nmHits(hits) { }

virtual int Handl eEval (Htt pdEval Command *peval) ;
virtual int Handl eLoop(HttpdLoopConmrand *pl oop) ;
virtual int Handl eCond(HttpdConditional Cormand *pcond);

b

We initialize the symbol table with the number of hits so far. The ssimplest directive, evaluation is
implemented in the Handl eEval method. In our case it just generates a bit of output to replace the
directive call in the template:

i nt DenmoSynbol Tabl e: : Handl eEval (H t pdEval Command *peval)

{
assert (peval != NULL);

const char *nane
Ht t pdWit abl e *out put

peval - >Nane() ;
peval - >Qut put () ;

if (strcnp(nane, "evaltest”) == 0)
return (output->Printf("% at % (% hits)",
__DATE _,
_TIME__,
nHits));
else if (strcnp(name, "l ooptest”) == 0)
return (output->Printf("%", mLoopText[nLoopCount]));
el se
return (HTTPD_TEMPLATE_UNKNOWN_NAME) ;

Here we get the nane being evaluated by the eval directive, and the output stream. If the template is
evaluating the eval t est , it just prints out the date and time the program was compiled, along with the
current number of hits. Otherwise, for | oopt est it just prints out the textual representation of the loop
count—we'll get into more detail about that later. Just note that thel oopt est under theeval directive
references a different portion of code thanthel oopt est under thel oop directive.

Thenext easiest arethe conditional tests. Theeven conditional testsif thehit countiseven.fi r st returns
if thisisthefirst request, andt wo, t hr ee and f i ve return if the number of hits are evenly divisible by
two, three and five respectively.

i nt DenmobSynbol Tabl e: : Handl eCond(Ht t pdCondi t i onal Conmmand * pcond)

{
assert (pcond != NULL);

const char *name = pcond->Nane();

if (strcnp(nane, "even") == 0)
return (ReturnBool ((mHits %2) == 0));
else if (strcnmp(name,"first”) == 0)

return (ReturnBool (mHits == 1));

27

The Template System

else if (strcnp(nane, "two") == 0)
return (ReturnBool ((mHits %2) == 0));
else if (strcnmp(name,"three") == 0)
return (ReturnBool ((mHits % 3) == 0));
else if (strcnp(nane,"five") == 0)
return (ReturnBool ((mHits %5) == 0));
el se

return (HTTPD_TEMPLATE_UNKNOAN_NAME) ;

The call to Ret ur nBool will turn true into HTTPD _TEMPLATE _TRUE_CASE and f al se into
HTTPD TEMPLATE FALSE CASE.

Warning
Do NOT returnt r ue or f al se from Handl eCond.

And finally we come to the loop directive. And again, it's similar to the other handlers:

i nt DenpSynbol Tabl e: : Handl eLoop(H t pdLoopCommand * pl oop)

{
assert(ploop != NULL);

if (strcnp(ploop->Nane(),"looptest”) == 0)
{
for
(
mLoopCount = O;
nm_LoopCount < HTTPD NUMELEM nlLoopText);
nm_LoopCount ++

int rc;

rc = ploop->lterate();
if (rc !1=0)
return (rc);

}
return (0);
}

el se
return (HTTPD _TEMPLATE UNKNOAN NAME) ;

The demo codejust loops for every element in mLoopText :

static const char *const mLoopText[] =

{

one" , "two" , "three" , "four" , "five" ,
"Si Xn , "Seven" , "ei ght n , "ni nen , "t enn

}s

28

The Template System

HTTPD_NUMELEM is a macro to return the number of elementsin an arbitrary array. In this case, we
simply loop through each item in mLoopText , calling | t er at e, which runs through the text between
% | oop: nane} %and % endl oop} % which in this case, consists of:

%eval :looptest}¥u%/Ii>

which ends up calling Handl eEval each time, which (if you go back up and look) will cause the
appropriate element of mLoopText to be printed.

Note

This example performs template processing by overriding the Transl ateUri and
DoFi | e methods of the Ht t pdFi | eHandl er . This is meant for expositional purposes
only; to show what is possible.

In most scenarios template processing is usualy carried out by overriding the SendFi | e
method. We will see an example of the latter approach in the next section.

Experiment

Compile and run the template-1 application to see the above code in action!

Symbol Maps

Most symbol tables don't need to do anything tricky with the name or keep much state. For these cases
thereisahelper class, Ht t pdSynbol Map that can be used to add symbolsin atable-driven fashion.

Let's assume the following structure is something that we would like to expose via atemplate:

struct User Account

{
char nser Nane[32] ;
const char *npRol e;
| ong nfai | edLogi ns;
unsi gned | ong nni quel d;
bool nLoggedl n;

1

Instead of subclassing Ht t pdSynbol Tabl e and using a string of if-else statements to decide which
fieldsare displayed we can use asymbol map. The symbol mapisan array of HttpdSymbol Entry structures
describing each valid symbol and some callbacks to handle them. The structure is defined as follows:

struct HtpdSynbol Entry
{
const char *npNane;
si ze_t nx f set ;
i nt (*npEval Conmand) (Ht t pdEval Command *p_cnd,

29

The Template System

const void *p_dat a) ;
i nt (*npLoopConmand) (Ht t pdLoopConmmand *p_cnd,

const void *p_dat a) ;
i nt (*npCondConmand) (Ht t pdCondi ti onal Cormand *p_cnd,

const void *p_dat a) ;

The three callback routines of the HttpdSymbol Entry are all optional and can be NULL if no functionis
provided. The callbacks are given a pointer to their associated data (computed using the offset) and the
command object. Fortunately, several default callbacks are implemented for some primitive types. Using
these built-in callbacks the symbol map for the UserAccount object looks like this;

const HttpdSynbol Entry user_account _map[] =

{
{
"id", /1 Synmbol name
of f set of (User Account, mni quel d), /I Ofset of field
Ht t pdSynbol Map: : Eval HexU ong, /1 Eval call back
NULL, /1 Loop call back
NULL /1 Conditional callback
b
{
"login-fail", /1 Synmbol name
of f set of (User Account, nfail edLogins), // Ofset of field
Ht t pdSynbol Map: : Eval Long, /1 Eval call back
NULL, /1 Loop call back
NULL /1 Conditional callback
b
{
"name", /1 Synmbol name
of f set of (User Account, mJser Nane), /I Ofset of field
Ht t pdSynbol Map: : Eval Stri ngBuf f er, /1 Eval call back
NULL, /1 Loop call back
NULL /1 Conditional callback
b
{
"online", /1 Synmbol name
of f set of (User Account, mlLoggedl n), /I Ofset of field
NULL, /1 Eval call back
NULL, /1 Loop call back
Ht t pdSynbol Map: : CondBool /1 Conditional call back
b
{
"role", /1 Synmbol nane
of f set of (User Account, npRol e), /I Ofset of field
Ht t pdSynbol Map: : Eval Stri ng, /1 Eval call back
NULL, /1 Loop call back
NULL /1 Conditional callback

30

The Template System

@ I mportant
The names of the symbolsin the symbol map must always be in aphabetical order.

Now it is just a matter of making an instance of of the Ht t pdSynbol Map associated with that table
and the object:

User Account *p_some_account = Get Account ();

Ht t pdSynbol Map sym nmap(user _account _nap,
HTTPD_NUMELEM user _account _map),
p_some_account);

Experiment

Compile and run the template-2 application to see the above code in action!

Multiple Symbol Tables

For large and complex applications it's unwieldy to have a single scope of symbols when evauating
templates. Scopes can come and go in a last-in first-out order. A good example of this is during the
Handl eLoop method. For each iteration of atemplate loop, additional symbols specific to that iteration
can be pushed onto the symbol tablelist.

A small helper class, Ht t pdTenpl at eScope alowsthe scoping of the templates to mimic the scope of
your C++ code. The Ht t pdScopedSynbol Map combines a symbol map with a template scope. Let's
see how that isused in an example.

i nt DenmoSynbol Tabl e: : Handl eLoop(Ht t pdLoopComand *p_I oop)

if (strcnmp(p_l oop->Name(), "accounts") == 0)
{
for(size_t i = 0; i < HITPD_NUVELEM gAccounts); i ++)
{
/1 Allocate a new scope and populate it with the synbol map
/1 of this account. Further |oops can create nore nested scopes
/1 if desired.
Ht t pdScopedSynbol Map ssmap(p_| oop- >Processor (),
user _account _map,
HTTPD_NUMELEM user _account _map),
gAccounts + i);

if (p_loop->lterate() !'= 0)
br eak;

31

The Template System

return (0);

}

return (HTTPD_TEMPLATE_NOT_HANDLED)
}

This will loop over all of the records in the gAccounts array. When the scope containing the
Ht t pdScopedSynbol Map exitsthe symbolsit wasproviding are removed from thetemplate processor.
Loops can nest in this fashion as necessary.

Experiment

Compile and run the template-3 application to see the above code in action!

Interfacing Templates with CGl

There are a few classes provided for making CGI parameters exposed as a template symbol table. This
behavior can be very useful when filling out web forms, for example. This symbol table can be easily
installed once a parameter list is obtained.

if (strcnp(state.nFilelnfo.MmeType(),"x-server-internal/tenplate”) == 0)

{
Ht t pdCgi Par anet er *p_par ans;

p_params = Htt pdCgi Paraneter:: ParseUri String(state. npRequest->Query()); ©
Ht t pdCgi Li st Synbol s synbol s(p_parans); ©

(voi d) Ht t pdFSTenpl at eShel | : : Execut e(st at e, &ynbol s) ; ©
Ht t pdCgi Par anet er: : FreelLi st (p_par ans) ;

}

el se
st at e. npRequest - >Respond(HTTPD_RESP_SRV_ERROR) ;

O Aswith other CGI examples a parameter list is generated. In this case the GET method of form
posting is used.

The bridge object, of classHt t pdCgi Li st Synbol s isconstructed over the parameter list.

The symbol table is passed to the execution environment. All of the handling is performed by the
pre-canned symbol table.

®0

Thiswill allow the intelligent processing of the form within the template.

Experiment

Compile and run the template-4 application to see the above code in action!

32

Chapter 7. Sessions & Cookies

Maintaining state across requests

Because HTTP is a stateless protocol it is the responsibility of the server to manage the per-client state.
Seminole provides two mechanisms to help with this task. The first mechanism, the session manager
maintains state objects with a small tag that is efficient to send across the network. The session manager
handles the expiration of defunct sessions, aswell as the error checking.

The second mechanism is the Ht t pdCooki e class. This class provides an interface over the cookie
protocol. Cookies are aclient-side option offered by some browsers that minimize the overhead in tracking
clients. The session manager can use cookies to identify which client goes with which session.

The use of cookies is not required with the session manager however. Instead, CGl parameters can be
used. Let's begin by examining the cookie approach.

L et's examine some code. To find the session key using cookiesthe Ht t pdCooki es isused like this:

bool DenpSessi onHandl er: : Handl e(Ht t pdRequest *p_req)

{
assert(p_req !'= NULL);

if (IsMe(p_req))
{
Ht t pdCooki es cookie_jar(p_reg->Headers());

whi l e (cooki e_jar. Next Cookie())

{
if (strcnp(cookie_jar.Key(), "session") == 0) ©
{
Exi stingSessi on(p_req, cookie jar.Value());
return (true);
}
}

NewSessi on(p_req); @
return (true);

}

return(fal se);

}

© If the cookie with the session identifier is present then (assuming the session is valid) this visitor
has a previous state.
® Thisvisitor has no existing state. A new state object must be created.

The session objects are subclasses of Ht t pdSessi onCbj ect and can contain whatever user data is
needed. To start with let us simply count the number of visits this browser has performed.

33

Sessions & Cookies

cl ass DenpSessi onObj ect : public HttpdSessi on(hj ect

{
publi c:

unsi gned int nVisitCount;
b

voi d DenpSessi onHandl er: : NewSessi on(Ht t pdRequest *p_req)
{
void *p_buffer = H tpdOpSys:: Mal | oc(si zeof (DenbSessi onCbj ect)); @
if (p_buffer == NULL)
{
p_req->Respond(HTTPD_RESP_SRV_ERRCR) ;
return;

}
DenpSessi onoj ect *p_obj = new(p_buffer) DenpSessi onObj ect;

p_obj->nVisitCount = 1; @

if (nmBessions.lnsert(p_obj) !'=0) ©

{
del ete p_obj;
p_req->Respond(HTTPD_RESP_SRV_ERRCR) ;
return;

}

/1 Send the first page.

char ses i d[HTTPD SESSI ON KEY LEN]; ©

p_obj - >Sessi onl d(ses_i d);

mSessi ons. Unl ock(p_obj); ©

Qutput(p_req, "Welcone new visitor! I'll count your visits.", ses_id);

—

Allocate memory for the session object on the heap. When the session is expired the session manager
will automatically free the object.

Initialize the session and insert it into the manager. Only the user defined fields need initialization.
Insert the session object into the session manager. If this fails destroy the session and handle the
failure. Once the object isinserted the session identifier will be valid.

Now the session key can be sent as a cookie back to the visitor along with the response content.
Once inserted the session manager will lock the object to avoid it being immediately removed while
further processing isin progress.

6 o0 ©

Examining the Cut put routine shows that the Ht t pdCooki es class is how the session identifier is
stored on the client:

voi d DenpSessi onHandl er: : Cut put

(
Ht t pdRequest *p_req,
const char *p_text,
const char *p_ses_id
)
{

bool is_head = p_req->l sHeadRequest ();

34

Sessions & Cookies

Ht t pdDynami cQut put out put (p_req, is_head);
p_req->Respond(HTTPD_RESP_(X) ;
out put . Header (" Cont ent - Type", "text/htm");

if (p_ses_id != NULL) ©
Ht t pdCooki es: : SendCooki e(&out put
"session",
p_ses_id,
"pat h",
Prefix(),
(const char *)0);
out put . Header Conpl et e() ;
out put . Body()->Printf (" <htm ><head>\n"
"<titl e>Session &np; Cookie Denp"
"</titl e></head>\n"
"<body>%s</ body></htnm >\ n",
p_text);

©® Thesession key iswritten as a cookie with the pat h attribute set to reflect the path of the handler.

If the session key isprovided by the client ismust be validated by the session manager beforeit can be used:

voi d DenoSessi onHandl er: : Exi sti ngSessi on
(
Ht t pdRequest *p_req,
const char *p_id

/! Find the session.
Ht t pdSessi onObj ect *p_so;
if (nmbessions.Find(p_id, p_so) !'=0) ©
{
NewSessi on(p_req);
return;

}

DenpSessi on(hj ect *p_session = (DenpSessi onCbj ect *)p_so;

char buffer[128];

sprintf(buffer,
"Wl comre back. You have visited % times so far.",
p_sessi on->nVi si t Count ++) ;

nSessi ons. Unl ock(p_so); ©

Qut put (p_req, buffer);

©® Thesession identifier is passed to the Fi nd method of the session manager. This will validate that
the session exists and if it does provide a pointer to the session object.

® To prevent the session manager from deleting the session while it is being used Fi nd keeps a
reference count. The Unl ock method rel eases that reference count.

35

Sessions & Cookies

Experiment

Compile and run the session-1 application to see the above code in action!

Making sessions more secure

The session-1 example has adlight security flaw. While the session identifiers are difficult to guessif they
are compromised (say through packet sniffing) a session can be hijacked. A few additional lines of code
will verify that the requesting | P address matches the address of the creator of the session.

Thisis not done by default because there are some network configurations that can cause problems with
this verification (multi-homed clients). However in many cases this additional security is justified. The
verification of the IP address requires the addition of the mClientAddr:

When creating the session the | P address of the client should be assigned to the session object.

cl ass DenpSessi onChj ect : public HtpdSessi onChj ect
{
publi c:

unsi gned int nVi si t Count ;

unsi gned int nVi si t Count ;

Ht t pdl pAddress nCl i ent Addr; ©

b

Thisfield will store the | P address of the creator.

voi d DenpSessi onHandl er: : NewSessi on(Ht t pdRequest *p_req)

{

void *p buffer = Ht pdOpSys: : Mal | oc(si zeof (DenpSessi onChj ect)) ;

if (p_buffer == NULL)

{
p_req->Respond(HTTPD_RESP_SRV_ERRCR) ;
return;

}

DenpSessi onoj ect *p_obj = new(p_buffer) DenpSessi onObj ect;

p_obj ->nVi si t Count = 1;
p_obj->nClientAddr = p_reg->ClientAddr(); ©
if (nmBessions.lnsert(p_obj) = 0)

{
del ete p_obj;
p_req->Respond(HTTPD_RESP_SRV_ERRCR) ;
return;

}

/1 Send the first page.

char ses_i d[HTTPD_SESSI ON_KEY_LEN];
p_obj - >Sessi onl d(ses_i d);

nSessi ons. Unl ock(p_obj);

Qut put (p_req, "Welcone new visitor! I'll count your visits.",

ses_id);

36

Sessions & Cookies

O Theclient addressis stored in the session object.

The only remaining step isto verify the |P address:

voi d DenpSessi onHandl er: : Exi sti ngSessi on
(
Ht t pdRequest *p_req,
const char *pid

/!l Find the session.
Ht t pdSessi onObj ect *p_so;
if (mBessions.Find(p_id, p_so) !=0)
{
NewSessi on(p_req);
return;
}

DenpSessi on(hj ect *p_session = (DenbSessi onChj ect *)p_so;

if (p_session->nClientAddr !'= p req->ClientAddr()) ©

{
NewSessi on(p_req);

return;

}

char buffer[128];

sprintf(buffer,
"Wl cone back. You have visited % tinmes so far."
p_sessi on->nVi si t Count ++) ;

nSessi ons. Unl ock(p_so);

Qut put (p_req, buffer);

© If theaddressisinvalid then consider the session invalid.

Experiment

Compile and run the session-2 application to see the above code in action!

37

Chapter 8. Drawing Images

Basic drawing

Handlers may return any kind of data. Theimaging library isasupport package for handlerswhich allows
them to return dynamically created graphical images. This can be especially useful for displaying numeric
data graphically.

Most of thework to generate adynamicimageisdoneby theHt t pdG f 87aRender er class. Thisclass
represents a drawing canvas. Once drawing is complete a single method call will handle rendering the
canvastothe Ht t pdRequest object.

Building a demo with the following handler isall that is necessary to get a dynamic image handler.

bool Denol nageHandl er:: Handl e(Ht t pdRequest *p_req)

{
assert(p_req != NULL);

if (IsMe(p_req))
{
Ht t pdG f 87aRender er rend;
Ht t pdCol or red, blue;

if (rend. Create(320, 200, 8) !'= 0)
goto failure;

if (rend.Color(255, 0, 0, 0, red) !=0)
goto failure;

if (rend.Color(0, 0, 255, 0, blue) !'= 0)
goto failure;

Ht t pdRect r;
rend. Si ze(r);

bool ean flip = fal se;
for(unsigned int i = 0; i < 4; i++4)

r.Defl ate(20, 20);

/1 Draw t he background.
rend. Pen(flip ? red : blue);
flip=1flip;

rend. Box(r);

}

/1 Render the output.
rend. Render (p_req);
return (true);

}

return (false);

38

Drawing Images

failure:
p_req->Respond(HTTPD_RESP_SRV_ERRCR) ;
return (true);

}

The above example produces the following image:

Experiment

Compile and run the image-1 application to see the above code in action!

Rendering Numerical Data

Embedded devices are often sampling analog signals. Seminole makes it easy to display those analog
signals graphically. The following example will graph a sine wave and an overlapping cosine waveform
of differing amplitudes dynamically.

bool Denol nageHandl er:: Handl e(Ht t pdRequest *p_req)

{
assert(p_req != NULL);

if (IsMyPath(p_req))

{
Ht t pdG f 87aRender er rend;
Ht t pdCol or [tgrn, dkgrn;
Ht t pdCol or pur pl e;

| ong signal _data[180];

if (rend.Create(450, 225, 8) !=0)
goto failure;
if (rend.Color(0, 255, 0, 0, Itgrn) I=0)

39

Drawing Images

goto failure;

if (rend.Color(0, 128, 0, 0, dkgrn) I= 0)
goto failure;

if (rend.Color (255, 0, 255, 0, purple) !'=0)
goto failure;

Ht t pdRect r;
rend. Si ze(r);

/1 Draw t he background.
rend. Pen(dkgrn);

rend. Box(r);

rend. Gid(r, 30, 8);

/1 Calculate a sine wave.
for(size_t i = 0; i < HITPD _NUMELEM si gnal _data); i++)
signal _data[i] = (long)(100 * sin(i / (3.1415 * 4)));

/1 Graph the data.
rend. Pen(ltgrn);
rend. Li neG aph(r,
si gnal _dat a,
HTTPD_NUMELEM si gnal _dat a) ,
-102,
102,
0);

/1 Calculate a cosine wave.
for(size_t i = 0; i < HITPD _NUMELEM si gnal _data); i++)
signal _data[i] = (long)(75 * cos(i / (3.1415 * 4)));

/1 Graph the data.
rend. Pen(purpl e);
rend. Li neG aph(r,
si gnal _dat a,
HTTPD_NUMELEM si gnal _dat a) ,
-102,
102,
0);

/1 Render the output.
rend. Render (p_req);
return (true);

}

return (false);

failure:
p_req->Respond(HTTPD_RESP_SRV_ERRCR) ;
return (true);

}

The above example produces the following image:

40

Drawing Images

Experiment

Compile and run the image-2 application to see the above code in action!

41

Chapter 9. Endpoint Discovery

Finding Endpoints

The most amazing web interface for your product is uselessiif finding the URL is very difficult. To solve
thisproblemthe Ht t pdDi scover ySer ver comes to the rescue. When combined with the Java-based
discovery client, only awell-known URL (such as a public website) is necessary to find all the available
web interfaces on your network.

As with most components in Seminole, the Ht t pdDi scover ySer ver isfairly self contained. It does
require a configuration structure that describes the information that is to be presented. Below is the
configuration structure used in the discovery-1 application:

static const char *const dev_class[] =

{

}s

"denmos", ©
NULL

static const HttpdPair parans[] =

{

s

{ "descr", "A conputer running the Sem nol e discovery deno." },

2}
{ "os", HTTPD_OS_NANME } e

static const HttpdDi scoveryServer::Config disc _config =

{

b

©6 o ©o

&Ht t pdDi scoveryServer: : mDef aul t Network, @
dev_cl ass, ©
HTTPD _NUMELEM par ans), parans O

The discovery client can be configured to only display certain classes of device. This list defines
the classes that this device falls under. For the demo we simply use the string denos. Y ou should
either name them uniquely (i.e. prefixed with your company name) or contact GladeSoft about the
appropriate values for your product.

The discovery server may transmit an open-ended list of name/value pairs to the client for display.
Asageneral convention descr isadescription of the endpoint.

Here we add our own attribute, os that has a value of HTTPD_OS_NAME which is set by the build
system.

In most cases the default network parameter structure can be used.

The attribute table and itslength (computed here using the HTTPD_NUMELEM macro) are pointed
to by the configuration structure.

Once the configuration structures are in place and you have an instance of Ht t pd running you can start
the discovery server:

Ht t pdDi scoveryServer ds(p_webserv, &disc_config); ©

42

Endpoint Discovery

rc = ds.Create(); ©
if (rc 1=0)

rc = ds.Start(); ©
if (rc !1=0)

O Herethe discovery server is created and given the address of the webserver, p_webser v and the
address of the configuration structure, di sc_confi g.

® Before the discovery server object can be started it must be created. This method should only be
invoked once. If it returns an error (non-zero) the object should not be used.

© All thatisleft isto start the server. It can be started and stopped dynamically as necessary.

Experiment

Compile and run the discovery-1 application and run it on one machine on your network.
Then build the di scovery_client target (you will need the JDK installed for this).
Take the bui | t/ PORT/ | i b/ Di scovery. jar fileand src/ exanpl es/ di scovery- 1/
vi ewapp. ht m to another machine on your network and open vi ewapp. ht m .

The discovery client should locate the other machine running discovery-1 automatically.

Dynamic Data via the Discovery Server

The discovery-1 application is a good example of sending static data, such as the value of
HTTPD_OS_NAME, to the discovery client. But what if you wanted to send something more dynamic, like
the status of the system?

The discovery-2 sends the current time to discovery clients. Y ou can see this change dynamically aslong
asthe discovery client is left open.

Sending dynamic data involves subclassing HttpdDi scoveryServer. Overriding the
Bui | dResponse it iseasy to add any kind of dynamic data that can be computed programatically.

@ Note
Remember that Bui | dResponse isexecuted onitsown thread. Thereforeit isnecessary to
ensure that any code in this method properly synchronizes with other threads when accessing
shared data.

Hereisthe Bui | dResponse implementation in our subclass, DenoDi scover ySer ver:

i nt DenoDi scoveryServer::Buil dResponse(Htt pdCgi Witer *p writer)

{ .
i nt rc;
tinme_t now,
struct tm *p It;
char buf[72];
ti me(&ow) ;

43

Endpoint Discovery

(2]

p_lt = localtime(&ow;
strftinme(buf, sizeof(buf), "%", p_It);

rc = pwiter->Wite("now', buf); ©
if (rc !'=0)
return (rc);

/1 Don't forget to call the superclass inplenentation
/1 so that the remaining paraneters can be witten.
return (HttpdDi scoveryServer:: Buil dResponse(p_ witer)); @

We canwriteany string datawe likeinto therequest. Here the time was formatted into abuffer (buf)
and it iswritten to the response with a name of now.

The last thing isto call the Ht t pdDi scover ySer ver implementation. This should aways be
called if successisreturned from Bui | dResponse.

But the Bui | dResponse method isreally only part of the story. In order to avoid constantly rebuilding
the beacon packets the Pr epar eResponse avoids rebuilding the packet if nothing has changed.

So we need to override Pr epar eResponse and tell it that it needs to rebuild the outbound packet. The
criteria used can be more complex than the example below. Any complex logic can decide if the beacon
packet needs rebuilding. But the simplest logic (and the logic we will use for our example) is to always
rebuild the packet, like this:

i nt DenoDi scoveryServer: : PrepareResponse()

{

nRebui | dResponse = true; ©
return (HttpdD scoveryServer:: PrepareResponse()); ©

}
O Weset thevalue of the protected data member, mRebui | dResponse which will cause the packet
to be rebuilt. Each time the packet is rebuilt this variable is set back to f al se.
® Acdltotheorigina Prepar eResponse takescareof all the details. The original implementation
checksthe nRebui | dResponse and will eventually result in acall to Bui | dResponse.
Experiment

Compile and run the discovery-2 application and run it on one machine on your network.
Then build the di scovery client target (you will need the JDK installed for this).
Takethebui | t/ PORT/ |'i b/ Di scovery. jar fileand src/ exanpl es/ di scovery- 2/
Vi ewapp. ht m to another machine on your network and open vi ewapp. ht m .

The discovery client should locate the other machine running discovery-2 automatically. The time
should update ever few seconds (the refresh rate is configurable in the client).

Chapter 10. Distributed Authoring
Distributed Authoring

HTTP is no longer aread only protocol. With the advent of WebDAV HTTP can be used as a network
filesystem. Many computersand devices are capabl e of accessing storage exposed viaWebDAV . Seminole
contains a complete WebDAV implementation including locking.

Making a WebDAV enabled server isjust a matter of creating an instance of Ht t pdWebDAVHandl er
and installing it in an instance of Ht t pd. But before we can make a Ht t pdWebDAVHandI er we need
to configureit. Thisis done with a structure that we pass to the handler's constructor.

The configuration structure specifies some limits to prevent valid but impractical client requests from
making an excessive impact on the system. Here is an example configuration:

static const HttpdWebDAVConfi gurati on gDAVConfig =

{
HTTPD_WEBDAV_READ V\RI TE | /1 Al owed operations.
HTTPD_WEBDAV_ALLOW I NFI NI TE_LOCK, /1 Infinite |l ock tineout all owed.
64, /1 Max infinite depth.
HTTPD_Cd _TI MEQUT /1 Put tinmeout.

#i f HTTPD_|I NC_VEBDAV_LOCKI NG
, 128 /1 Max | ocks.
, 14400 /1 WMax | ock duration.

#endi f

b

Animportant point to noteisthat some features add additional fieldsto the configuration structure. So the
preprocessor directive alows this declaration to work in any configuration.

With the configuration structure ready, the next step is to create the handler object like so:

Ht t pdWebDAVHandl er *p_hand =
new Htt pdWebDAVHandl er

(

&gDAVConfi g, /1 Configuration structure.

Ht t pdOpSys: : Nati veFi |l eSystem(), // The fil esystem we are exposing.
"“/tmp", /1l The root in the filesystem

"/ dav" /1 The prefix in URL space.

)

We are creating the handler with new but there is no reason it can't be allocated somewhere else. The
Ht t pdWebDAVHandl er requires an additional initialization step before it can be used:

int rc = p_hand->Create();
if (rc 1=0)
failure();

45

Distributed Authoring

Assuming that r ¢ is 0 the handler can be installed in a webserver:

gpWebSer ver - >l nstal | (phand) ;

Experiment

Compile and run the webdav-1 application to see the above code in action!

46

Chapter 11. XML
Processing XML

Seminoleincludesacomprehensivetoolkit for dealing with datain XML format. Thetoolit islayered from
low-level (i.e. streaming) interfaces to high-level DOM tree management. Parsing, querying, changing,
and seridizing datain XML format is very easy when using the DOM API.

The XML toolkit does not even require aweb server instance. XML documents can simply be written into
an instance of the parser:

Ht t pdXm Host host ;
Ht t pdXm DonBui | der documnent (host);
i nt rc,

/1 Step 1: Initialize the XM. parser.
rc = docunent. Create();
if (rc 1=0)

failure();

/1l Step 2: Punp in the XM. documnent.
rc = docunment. WiteString("<document><node>t ext </ node></ docunent >");
if (rc 1=0)

failure();

/1 Step 3: Conplete parsing.
rc = docunent. Finish();
if (rc 1=0)

failure();

Once the document has been parsed into a DOM data structure values can be queried out of the document
using a"path-like" syntax:

const char *p_node_val ue = documnent. Lookup("docunent/ node");
if (p_node_value !'= NULL)

printf("The value of the node is: %\n");
el se

printf("The node was not found.");

Using the document parsed in the initial code sample the code fragment above would print:

The val ue of the node is: text

47

XML

Experiment

Compile and run the xml-1 application to see the above codein action!

XML & HTTP

While the Seminole XML toolkit can be used as a standal one component it al so features methods designed
for easy integration into aHt t pdHandl er implementation.

When processing a POST request the ReadBody method can process an XML request body in a single

step:
Ht t pdXm Host host ;
Ht t pdXm DonBui | der documnent (host) ;
i nt rc;

/1 Step 1: Initialize the XM. parser.
rc = docunent. Create();
if (rc !=0)

failure();

/1l Step 2: Process the request body.
rc = docurent . ReadBody(p_request);
if (rc !=0)

failure();

The single call to ReadBody handles all the mechanics of arequest body in XML format.

Experiment

Compile and run the xml-2 application for a comprehensive example of XML processing.

48

Chapter 12. WebSockets
WebSockets

WebSockets are an extension to HT TP that allow bidirectional message oriented communication between
aclient and Seminole. This allows both the client and server to push data to each other without polling.
This can save on power consumption and CPU utilization.

WebSocket connection requests are negotiated over HTTP. Once connected the socket that was used for
HTTP becomes the transport mechanism for WebSocket messages.

To establish aWebSocket connection requires some additional codeinyour Ht t pdHandl er : : Handl e
overridden method. The following sample performs a WebSockets connection:

voi d MyHandl er: : Handl e(Ht t pdRequest *p_request)

{

/1 First ensure this request is for this handler.
const char *p_suffix = IsMe(p_request);
if (p_suffix == NULL)

return (false);

/1 1t is -- attenpt to force a WbSockets connection. The request is
/1 failed if it is not a WebSockets connecti on request.
/1
/1 Note that if the HttpdWebSocket: : Setup
/1 method fails this nmethod returns true since
/1 a proper error response is sent by that nethod.
Ht t pdWebSocket sock;
if (!'HtpdwWebSocket:: Setup(p_req, sock))
return (true);

...l Use the socket.
/1 Conplete the request when processing is conplete.

sock. d ose();
return (true);

Of courseitisnot mandatory that aHt t pdHandl er subclassbe dedicated to WebSockets. An alternative
approach to handling arequest involves testing if the request desires a WebSockets connection:

voi d MyHandl er: : Handl e(Ht t pdRequest *p_request)

{

/1l First ensure this request is for this handler.
const char *p_suffix = IsMe(p_request);
if (p_suffix == NULL)

return (false);

/1 1t is -- if it is not a WebSockets request then we handl e
/1 this request “normally.”

49

WebSockets

if (!HtpdwWebSocket: :1sRequest(p_request))
{
.../l Handl e as a normal HTTP request.
return (true);

}

/1 1t must be a WebSockets request. Attenpt to performa connection.
/1 Note that if Connect returns failure then a proper
/'l error response has been sent and true is returned.
Ht t pdWebSocket sock;
if (!HttpdwWebSocket: : Connect (p_req, sock))
return (true);

.../l Use the socket.
/1 Conplete the request when processing is conplete.

sock. d ose();
return (true);

Once connect aHt t pdWebSocket object can be used to send messages back and forth:

for(;;)

{

/1 Get the nessage to send.
Ht t pdWebSocket : : Message updat e;
..l Fill in update with a nmessage to send.

/1l Send a status update.
i f (sock.Send(update) !'= 0)
return (true);

/1 To handl e PINGs and check the state of the connection bl ock waiting
/1 for a message fromthe client.
Ht t pdWebSocket : : Message rx_mnessage;
swi tch (sock. Received(rx_nessage, 1)) // Receive with a 1 second tinmeout.
{
case 0O:
.../l Process a nessage fromthe client.
sock. Fi ni sh(rx_message);
/1 Fallthrough:

case Htt pdOpSys: : ERR_NOTREADY:
...// Handl e a tineout.
conti nue;

defaul t:
.../l Handl e other errors.
sock. d ose();
return (true);

50

WebSockets

Experiment

Compile and run the websockets-1 application to see the above code in action!

WebSockets (Multiplexed Waiting)

Each WebSocket connection is serviced by a Seminole worker thread. The intention being that these
threads spend most of their time blocked waiting for a message from the WebSocket client in
Ht t pdWebSocket : : Recei ved waiting for an incoming message. However this precludes the ability
for the handler to perform other tasks without polling.

If the underlying operating system supportswaiting for socket 1/0 al ongside some other object then polling
may be avoided. Thisis especially important for limited power applications. Limited power applications
areideal for the push model of WebSockets when combined with multiplexed /0.

Experiment

If you have a supported target operating system compile and run the websockets-2 application to
see multiplexing in action!

51

Chapter 13. Debugging

Debugging softwareis hard. Debugging softwarein an embedded environment is harder. Network-enabled
embedded systems are even harder still. To simplify debugging, Seminoleincludes abasic tracing facility
that highlights the activity of the server. These traces provide an overview of the workings of Seminole
without requiring breakpoints or much knowledge of the internals of the webserver.

Tracing

It is important to understand the difference between tracing and logging. Tracing is meant only as a
debugging tool and should not be activated except in the event of discovering aproblem. Itiscommonplace
to enable tracing when integrating Seminole with your application. However, once operational it should
be turned off completely to reduce overhead.

Tracing is enabled by the INC_TRACING build option. Therefore adding the following line to the port
file (beforethedef i ni ti ons statement) will enable tracing:

config(I NC_TRACING => 1);

By default al tracing output is sent to standard out using the pr i nt f family of standard I/O routines. The
format of the trace output depends on the value of the HTTPD_HAVE_CLOCK preprocessor macro. This
macro is normally defined by the portability layer if the platform has a real-time clock capability. If this
capability is enabled the trace entries will include timestamps.

Below isan exampletrace of the possible output from the file-1 example. The first column of the output is
thetimestamp (or sequence number). The second column isthe source file nameissuing thetrace, followed
by the line number. The 3-digit character string following the line number indicates the kind of the trace
entry, followed by the actual data of the trace entry.

Trace entries can nest just as subroutine calls nest. In fact, atrace entry is made by constructing a "trace
object" on the stack of the functionsthat perform tracing. The construction and destruction of these objects
are recorded as entry and exit eventsin the trace log.

[00: 21: 26] sem httpd.cpp 366 >>> Enter ©

[00: 21: 26] sem httpd.cpp 367 *** Installing handler @

[00: 21: 26] sem httpd. cpp 368 ### p_handler->Prefix() =/ ©
[00: 21: 26] sem httpd.cpp 366 <<< Exit O

Server started on host |ocal host port 8080 ©

[00: 21: 26] sem httpd.cpp 276 >>> Enter

[00: 21: 26] sem httpd.cpp 290 *** Calling HttpdSocket::Initialize
[00: 21: 26] sem httpd.cpp 294 *** Creating |istening socket

[00: 21: 26] sem httpd.cpp 125 >>> Enter

[00: 21: 26] sem httpd.cpp 155 *** Putting socket in |listen node
[00: 21: 26] sem httpd.cpp 125 <<< Exit

[00: 21: 26] sem httpd.cpp 298 *** Starting acceptor task

[00: 21: 26] sem httpd.cpp 403 >>> Enter

[00: 21: 26] sem httpd.cpp 404 *** Starting acceptor thread

[00: 21: 26] sem httpd.cpp 405 ### p_server: 00263F80 O

52

Debugging

[00: 21: 26] sem httpd.cpp 307 *** Server started
[00: 21: 26] sem httpd.cpp 276 <<< Exit

© Thisisafunction entry trace event. All further trace entries until the next entry or exit refer to the
routine that initiated the trace.

® This is a note explicitly in the code for debugging purposes. Often times it is indicative of an
operational decision or status value.

® Thisis avalue within the code that is being logged for debugging purposes. In this case it is the
result of the Ht t pdHandl er : : Pr ef i x method. The value returned in this case is for the root
of the URI space.

O Thisindicates that the matching trace entry event is now closed. The routine that created the trace
entry is exiting.

O Noticethat trace output isintermixed with other datato standard out. If it is desired that trace output
be sent somewhere else the codein conmon/ sem t r aci ng. cpp must be modified accordingly.

O Tracing will sometimes yield the address of important data structures. This is useful when setting
breakpoints. For example, knowing the request object address, the entire request object can be
displayed while at a breakpoint in gdb with this command:

(gdb) print *(HttpdRequest *)0x263F80

Debugging

Tracing is useful when your handler isn't getting called or if the server can't initialize. There are, of
course, the harder problems that require more sophisticated debugging techniques. Often times this means
producing a debug build of Seminole. Thisis accomplished by adding the following line to the port file;

$DEBUG=1;

Setting the $DEBUG build variable causes the compiler to build debug code (if supported by the target
platform) and enablestheassert calsin Seminole.

Having a good starting strategy for debugging is very important, especially in a complex mutli-threaded
software package like Seminole. If the problem is reproduceable then the best approach is to set a
breakpoint in the appropriate Ht t pdHandl er : : Handl e method and step through the operation at a
high level until the problem can be pinpointed.

Another common area of difficulty isin the various system calls made by the portability layers. Seminole
istested on a variety of embedded platforms and real time operating systems. However, with other third
party code and tasks running it may expose previously dormant problemsin the way an operating system
interacts with Seminole. Worse, when a new CPU is being used often times subtle bugs can even exist
in the compiler and linker.

The important thing to remember when solving these kinds of problemsisto locate the problem realizing
that it may be in what was thought to be well-tested and correct hardware or software. It iseasier to locate
the problem if there isless complexity in the system. To that end turning off various Seminole featuresvia
build options may provide a clue as to the nature of a problem. Of course, just because turning off a build
option makes a problem go away does not mean the problem is fixed.

53

Debugging

Fixing symptoms instead of problems will only cause more problems later on down the road. It is
important that during the integration of Seminole (and other third party packages) in your embedded
system, problems be understood and solved as early as possible.

Appendix A. Structure of a URL

Instead of going over the general format for a URL this appendix instead will cover the format of URLS
used by HTTP requests, namely the HTTP URL. It's primarily composed of three portions, the scheme,
the host and the path.

"http:"
"/1" <host> [":" <port>]
/" <path> ["?" <query>] ["#" <fragnent>]

The scheme portion of the URL consists of the letters "http" and a colon. This portion is case insensitive,
but istypically written in lower case.

htt p:

The host portion consists of two forward slashes, the hostname or | P address of the server followed by an
optional colon and port number. The hostname is case insensitive and can only contain letters, numbers
and the dash (thisbeing aDNS restriction) and the port number is an unsigned val ue between 0 and 65,535.
If the port number is not given, then port 80 is assumed. The use of a username and password preceding
the hostname is not allowed for HTTP URLSs, even though other net based schemes such as FTP allow
such use.

/I www, exanpl e. net

/1 WAV Exanpl e. NET

/I www. exanpl e. net : 8080
/ 1 Wwv. EXAMPLE. NeT: 8080
//192.168. 10. 10
//192.168. 10. 10: 8080

Thelast portion, the path, isitself made up of three portions, the path segment, the query and the fragment
and is case * sensitive*. Using a BNF-like grammar, where rules are separated by their definition with a
"=", indentation is used to continue a rule over multiple lines, parentheses are used to group elements,
optional elements are enclosed in square brackets, and items marked with an asterisk can repeat zero or
more times, this portion of the URL looks like:

pat h ="/" *path_segnents ["?" query | ["#" fragment]
pat h_segnent = segment *("/" segnent)

segnent = *pchar *(";" param)

par am = *pchar

query = pair ["& pair]

pair = token "=" *token

t oken = *unreserved

fragment = reserved | unreserved | escape

pchar = unreserved | escaped |

N I N I

55

Structure of aURL

reserved

"
N)
Q
Ro
I
+

unr eserved al phanum | mark

escaped = "% hex hex

hex =digit | "A"| "B | "C | "D | "E'"[| "F"
“a" | "b" | "c" | "d" | "e" | "f"

mer k SR B PR e S Bl B |
1"

al pha = | owal pha | upal pha

| owal pha ="a" | "b" | "c" | "d" | "e" | “f" | "g" | "h" | "i
S0 L L I A A Al B B
S S U B B e S B G I 4

upal pha ="A"| "B" | "C | "D | "E"| “F" | "G | "H | "I
"IN UK UL | MO UNT] tO] P Q| TR
S N N I A VA 2 D G I N A

digit ="o" | "1" | "2" | "3" | "4" | "“5" | "6" | "7" |
II8II | Ilgll

The path segments are used to organize the resources (web pages, graphics, documents, sounds and any
other digital format to be served) and while it has a superficial syntax to that of modern hierarchical file
systems, that doesn't mean it has to map one-to-one to files on a filesystem; in many cases a URL doesn't
even map to afile but instead to a series of modules or components that generate the requested resource
on the fly at the time that the request is made.

Some examples of URLS:

http://ww. exanpl e. net/
http://WNV Exanpl e. NET: 80/

These two refer to the same resource and are equivalent. Remember, the host portion is case insensitive,
and the default port for HTTP is 80.

htt p: // ww. exanpl e. net/ cor p/ about us/ CEQ. ht m

A typical example of a URL. Because the path portion of the URL is case sensitive the following two
URLs are technically different:

http: //ww. exanpl e. net/ cor p/ about us/ CEQ. ht m
htt p: // ww. exanpl e. net/ cor p/ about us/ ceo. ht m

Remember—the host portion is case sensitive while the path portion is case insensitive. Some web servers
(notably the one that runs the AOL webserver) treat the path portion as case insensitive; that technically
is breaking the standard.

56

Structure of aURL

htt p: // www. exanpl e. net/ cor p; ver si on3/ about us; current/ CEQ ht m

Here we see the parameter values in the path segment; in this example, it is assumed that the webserver
uses the parameter portion to denote a particular version of each path segment, so you have “version 3" of
the “corp” path segment, and the “current” version of the “aboutus’ path segment.

In reality, the parameter portion of path segments are rarely, if ever, used. They're defined though, and
could be used in this manner; the actual use of a parameter in a path segment isimplementation dependent.

htt p: / / ww. exanpl e. net/ cor p/ about us/ CFO. ht m #pi cture

Herethe URL includes afragment, pointing to anamed location in the page. The fragment portion is never
(or should never) be sent to the webserver; the client uses it to position the page in the browser such that
the named location is visible to the user.

http://s.exanple.org/prod/toy/list?s=yes&c=no
This example includes a query, which is comprised to two name/value pairs.

http://s. Exmapl e. ORG 8080/ pr od%24; 3/ t oy; ki ds%20t hi ngs/ | i st; 3. 2?st ocked=yes&col or
This is an example that contains all possible portions of a URL hosthame, port number, path segments

with parameters, a query and a fragment specifier, plus afew escaped characters.

See Appendix B for information on how HTTP URLSs are used to request pages from aweb server.

57

Appendix B. A Brief Overview of HTTP

This appendix is just a brief overview of HTTP—for a more indepth look at the protocol, you are
encouraged to read O'Reilly's The Essential Guideto HTTP and for thefinal say inthings, IETF RFC-2616.

HTTP is atext-based protocol, meaning that the actual messages exchanged between the client (typically
aweb browser) and the server (Apache, or in this case, Seminole) are in human readable lines of text.
The underlying protocols (TCP/IP) provide the actual transport of areliable byte (octet) oriented stream
between the client and server.

Thereare currently three versions of HTTP in existence—0.9, 1.0 and 1.1. Thisoverview primarily covers
versions 1.0 and above as version 0.9 is deprecated and should not be used any more (although Seminole
does include support for it for legacy clients). The differences between 0.9 and later versions will be
covered at the end of this appendix.

The Basic Protocol

The best way to explain the protocol is to show how arequest is made by a client (a web browser) to the
server. Given the following URL:

htt p: // ww. exanpl e. net : 8080/ cor p/ about us/ CEQ. ht m

abrowser will typically pick it apart as:

host: www, exanpl e. net
port: 8080
path: / cor p/ about us/ CEQ. ht m

The client will then establish a TCP/IP connection on the given port (in this example, port 8080). Once
the connection has been established, the client will then send the request (and since HTTP is a text-based
protocoal, it's human readable):

CGET /corp/aboutus/CEQ html HTTP/1.0\r\n
Host: www. exanpl e. net:8080\r\n
Accept: text/htm, text/xm, text/*; g=0.5,\r\n
i mage/ j peg, inmage/png; gq=0.8, inmage/gif; q=0\r\n
[; g=0.2\r\n
Accept - Encodi ng: gzip; g=1.0, identity; g=0.5, *;g=0\r\n
Referer: http://ww. exanpl e.org/other/links.htm\r\n
User-Agent: X-zilla/8.0 (a new experience in browsing)\r\n
\r\n

The first line is the method being used to retrieve the resource, the path of the resource and the protocol
version being used. Therest of thelines, called “headers,” are additional information given by the client to
the server and most are optional (there are some that are mandatory in HTTP/ 1. 1, likethe Host : line,
but most clientsthat speak HTTP/ 1. 0 include thisline). In thisinstance, the lines are:

58

A Brief Overview of HTTP

Host Which website (or domain) we are obtaining the
resource from. With this, it is possible to serve
multiple websites from asingle | P address.

Accept Media types that the client supports, and the
preferences. In the example above, media types of
text/ntml and text/xml are the most preferred text
types, although any text type (if available) will be
accepted. Of image types, the preferred type are
JPEGs, then PNGs; images of type GIF are not to be
served. All other types of media are accepted.

Accept-Encoding Formats the client prefers the data in. If at all
possible, compress using the gzip format, otherwise,
just send the data as is. Other encoding formats are
not supported or wanted.

Referer The client followed a link from the given resource
to make this request.
User-Agent Thisis how the client identifies itself. Don't expect

much truth to thisfield, nor any real format.

Therequest isterminated with ablank line (signified by thelone “\r\n"). Once the request is made, the web
server, using the information given, will find (or generate) the requested resource and return a response:

HTTP/ 1.1 200 Okay\r\n

Content-Type: text/htm\r\n

Content-Length: 3306\r\n

Date: Tue, 22 Feb 2004 06:21:17 GMVIN\r\n

Server: Seminole\r\n

Last-Modified: Fri, 16 May 2003 07:50:43 GMI\r\n
\r\n

<htm >..nore content from page

Theresponse from the server startswith aresponse code (in this case, areturn code of 200, which indicates
success), then additional data about the request, a blank line indicating the end of the header section of the
response, then the actual data of the resource being requested.

Content-Type The type of data being returned, in this case, an
HTML document.

Content-Length The number of bytes being sent in the response
body.

Date The current date

Server The server software

Last-Modified The last time the resource was changed.

Methods

In the example exchange above, the client program sent

59

A Brief Overview of HTTP

CGET /corp/aboutus/CEQ html HTTP/1.0\r\n

Thisisthe most common request type made—the GET method. The intent of the GET method isto simply
retrieve the resource in question and is intended to be a* safe”—i.e. not change the status of the resource
on the server. There are other methods defined in HTTP, such as HEAD, which differsfrom GET (or should
only differ) in that only the headers of the request should be returned and not the resource itself. This
method is typically used to check if a resource has changed since it was last requested. But other than
the lack of the resource not being sent, there should not be any difference between a GET request and a
HEAD request.

Another common method is POST, which is used when a user fills out an HTML form and submits the
data to the server. The use of POST typically means additional processing on the part of the server and
some side effect (aresource generated, email sent off, an order being saved to a database) has occurred.
Thisisalso one of two commands (currently) were datais sent to the server from the client, and is almost
always directed towards a CGI script running on the server. A typical POST request usualy looks like:

POST /cgi -bin/search HITP/ 1. 1\r\n
Host: search. exanpl e.net\r\n
Cont ent - Type: application/ x-wwwform url encoded\r\n
Content-Length: 54\r\n
Accept: text/htm, text/xm, text/*; g=0.5,\r\n
i mage/j peg, image/png; q=0.8, inmage/gif; q=0\r\n
[; g=0.2\r\n
Accept - Encodi ng: gzip; g=1.0, identity; g=0.5, *;g=0\r\n
Referer: http://ww. exanpl e.org/other/links.htm\r\n
User-Agent: X-zilla/8.0 (a new experience in browsing)\r\n
\r\n
guer y=%2Semi nol e+sal es+pri ce¥22+%2BW ndows& ang=en- US

Note that the client is sending data (which starts after the blank ling), and that the headers include the
content type and length.

There are other methods, described in the sections that follow.

HTTP Response codes

The response codes for HTTP are three digits long and are divided into five major categories:

Ixx—Informational based codes, and only applicable to HTTP/1.1 and above (see Appendix B, section
4.2).

2xx—Success, the request can be fulfilled. The most common response codeis “200”.

3xx—Redirection. The resource requested is not currently available at the given location, but instead is
located elsewhere, the location given by the server in the Location: header (which is an absolute URL
to the new location). There are distinctions between a temporary move in location (302) and permanent
changein location (301).

4xx—Client error. The request could not be fulfilled for some reason. The second most common response
code is the dreaded 404—the resource requested could not be found.

5xx—Server error. The webserver itself had problems fulfilling the request.

60

A Brief Overview of HTTP

The actual response codes are defined in the sections below.

The different versions of HTTP

Beginning with version 1.0, HTTP requests are both backward and forward compatible—any headers
either the client or the server don't understand are simply ignored and behavior will fall back towards the
earlier version of the protocol. Response codes are three digits, and are grouped such that similar responses
always start with the same digit (such that successful responses will always start with “2” and that client
errors will always start with “4") so that while an older browser might not understand the exact meaning
of say, “444” (which isn't currently defined) but it will understand that a request was not successful and
that it was the request itself that wasin error.

HTTP/1.0

All headers are optional, and the minimum request required is

<nmet hod> <pat h> HTTP/1.0\r\n
\r\n

The only methods defined for HTTP/1.0 are GET, HEAD and POST.

Also, each request made requires a separate connection to the webserver, so a page that consists of HTML
plus three graphics requires four separate TCP/IP connections (although the client can certainly do four
parallel connections at the same time).

The response codes defined for HTTP/1.0 are:

200 The resource was found and is being returned
201 The resource was created
202 The request has been accepted for processing,

but the processing has not been completed. See
RFC-2616 section 10.2.3 for more information.

204 The server has fulfilled the request, but there is no
resource to return.

301 The resource has been moved to a new location
permanently, and any further request should be
made to the new location.

302 The resource has been moved temporarily to a new
location, and further requests should be made at the
original location.

304 The resource has not been modified since the last
reguest, so the previous copy, if cached, can be used.

400 The client made a syntax error in making a request.
This is typically the case when a new browser is
being written, or a human is attempting to make a
reguest by hand.

401 The client did not include the proper
Aut hori zat i on: header to make the request.

61

A Brief Overview of HTTP

On most browsers, thiswill pop up auser/password
message box for the user to fill out and retry the
request.

403 The request is to avalid resource, but the server is
not servingitupandan Aut hori zat i on: header
will not help; usually the permissionsto theresource
have been revoked in someway from thewebserver.

404 The resource requested could not be found on the
Server.
500 The server encountered some internal condition that

is preventing it from continuing, such as an out-of-
memory condition.

501 The server has not implemented the method being
used to request the resource.
502 Bad Gateway, see RFC-2616 section 10.5.3 for

more information.

503 The server is currently out of service, due to
being overloaded or maintenance. This should be
a temporary situation so the request should be
attempted at alater time.

HTTP/1.1

All headers with the exception of Host : are optional, so the minimum request required is:

<met hod> <path> HTTP/ 1. 1\r\n
Host: www. exanpl e. net\r\n
\r\n

There are several new methods defined for HTTP 1.1 which allow one to create new resources, delete
existing resources and a trace mechanism for troubleshooting proxy problems; these methods are beyond
the scope of this document and those curious can check out RFC-2616 or O'Reilly's Definitive Guide to
HTTP for more information on these methods.

HTTP 1.1 aso alows multiple requests to be made over a single TCP/IP connection, so that a page that
containsthree graphics can be transferred over a single connection; each request being made over the same
TCP/1P connection once the previous one has finished.

There are also mechanismswithin HTTP 1.1 to resume transfers, or to send the requested range (in bytes)
of aresource.

HTTP 1.1 also defines several more response codes:

100 The client can continue with sending a response
body to the given request. See RFC-2616 section
8.2.3 for more information.

101 The server is able to switch to a different protocol
as requested by the client. See RFC-2616 section
10.1.2.

62

A Brief Overview of HTTP

203 Used by web proxies to inform the client that the
information about the resource is not the definitive
copy fromtheoriginal server, but wasgathered from
other sources.

205 The server has fulfilled the request and the client
should reset the document (say, clear out any form
elements) that is being displayed to the user.

206 The server is sending back a partial response as
regquested.

300 The requested resource is stored in multiple
locations, possibly in different formats; the client is
reguested to select an appropriate one.

303 Theresource can befound inadifferent location and
should beretrieved at the new location using GET.
Thisis the preferred response if aresult of a POST
isaredirection to anew resource that must use GET.

305 The requested resource must be obtained through a
proxy at the given location.

402 Reserved for future use (payment is required)

405 The method used to request the resource is not
allowed.

406 The resource cannot be fulfilled because the
resource is not in aformat acceptable to the client.

407 The client did not provide sufficient credentials to
use the proxy server.

408 The client timed out making the request.

409 The resource could not be fulfilled due to a conflict
(see RFC-2616 section 10.4.10)

410 The resource regquested used to exist, but is now
permanently gone.

411 The server can't complete the request unless the
length of the request (for instance, a POST method)
isgiven.

412 The constraints (preconditions) for the resource
cannot be met by the server.

413 Therequest istoo large to handle by the server. This
may be a permanent or temporary condition.

414 The URL given by the client is too long for the
server to handle.

415 The client made a request in a format that is not
supported for that method by the server.

416 The requested range made by the client isinvalid.

417 The expectation given by the Expect request-header

field could not be met by the server.

63

A Brief Overview of HTTP

504 The server, acting as a proxy, received a timeout
from an upstream server.

505 The server does not support the HTTP protocol
version that was made in the request.

HTTP/0.9

HTTP 0.9 was the original protocol developed by Tim Berners-Lee and did not have any support for
protocol version, content negotiation or any form of metadata about the requested resource. This protocol
version is very simple and not robust at all. A request is made:

GET /corp/aboutus/CEQ. htm\r\n

Note: there is no blank line following the request, nor a protocol version nor any other information about
the request. Then the server responds immediately with the resource:

<htm >..nore content from page

No response code, no additional information about the request, and it's up to the client to figure out the
mediatype of theresponse (if areguest for an image was made and no such image existed, the server could
send back HTML to describe the result when the client was not expecting HTML).

Seminole includes support for HTTP 0.9 only for legacy clients; new clients should not use this version
for requests.

	Getting Started with Seminole
	Table of Contents
	Introduction
	Chapter 1. The Build System
	Chapter 2. Embedding Seminole
	Getting your application talking HTTP
	Hello World!
	Multiple Handlers
	A brief primer on URLs
	Yet another demo handler
	Code for DemoTimeHandler

	Chapter 3. Serving Content
	Serving Files
	Customizing the file handler
	Content Preprocessing

	Chapter 4. Authentication and authorization
	Chapter 5. Interfacing with CGI
	Chapter 6. The Template System
	A Brief Overview of using the Template System
	Symbol Maps
	Multiple Symbol Tables
	Interfacing Templates with CGI

	Chapter 7. Sessions & Cookies
	Maintaining state across requests
	Making sessions more secure

	Chapter 8. Drawing Images
	Basic drawing
	Rendering Numerical Data

	Chapter 9. Endpoint Discovery
	Finding Endpoints
	Dynamic Data via the Discovery Server

	Chapter 10. Distributed Authoring
	Distributed Authoring

	Chapter 11. XML
	Processing XML
	XML & HTTP

	Chapter 12. WebSockets
	WebSockets
	WebSockets (Multiplexed Waiting)

	Chapter 13. Debugging
	Tracing
	Debugging

	Appendix A. Structure of a URL
	Appendix B. A Brief Overview of HTTP
	The Basic Protocol
	Methods
	HTTP Response codes
	The different versions of HTTP
	HTTP/1.0
	HTTP/1.1
	HTTP/0.9

