
Seminole Developer's Guide

Seminole Developer's Guide
Copyright © 2014 GladeSoft, Inc.

This document and any software product(s) it accompanies are protected by United States and international copyright laws. All rights are hereby
reserved. Copying or reproduction of this document or any portion thereof without the express written authorization of GladeSoft, Inc. is strictly
prohibited.

iii

Table of Contents
Introduction ... xviii
1. Overview ... 1

About Seminole .. 1
Performance ... 2

2. Core API Reference ... 3
Using the API ... 3
Seminole Constants, Macros, and Types ... 3

Introduction .. 3
Constants ... 3
Types .. 4
Macros .. 7

HttpdUtilities Reference .. 8
Introduction .. 8
Public Methods ... 8
Public Data .. 19

HttpdMD5 Reference .. 20
Introduction .. 20
Thread Safety ... 20
Public Methods ... 20

HttpdMimeParser Reference .. 21
Introduction .. 21
Thread Safety ... 21
Public Methods ... 21

HttpdTimeStamp Reference .. 24
Introduction .. 24
Thread Safety ... 24
Public Methods ... 24
Public Data .. 26

HttpdWritable Reference .. 26
Introduction .. 26
Public Methods ... 27

Httpd Reference .. 28
Introduction .. 28
Public Methods ... 28
Protected Methods ... 31

HttpdRequest Reference .. 33
Introduction .. 33
Public Methods ... 34
Public Data .. 38

HttpdHandler Reference .. 39
Introduction .. 39
Protected Data .. 39
Protected Methods ... 39
Public Methods ... 40

HttpdResponseMsg Reference .. 40
Introduction .. 40
Thread Safety ... 40
Public Methods ... 40
Public Data .. 41

HttpdRedirector Reference .. 41
Introduction .. 41

Seminole Developer's Guide

iv

Thread Safety ... 42
Public Methods ... 42
Public Data .. 42

HttpdFileHandler Reference .. 42
Introduction .. 42
Directory Processing .. 44
Character sets & Encodings ... 44
Public Methods ... 44
Protected Methods ... 45

HttpdRequestForwarder Reference .. 49
Introduction .. 49
Public Methods ... 49

HttpdUrl Reference .. 49
Introduction .. 49
Thread Safety ... 50
Public Methods ... 50

HttpdCgiParameter Reference .. 52
Introduction .. 52
Thread Safety ... 52
Public Methods ... 53
Public Data .. 55

HttpdCgiHash Reference .. 55
Introduction .. 55
Thread Safety ... 55
Public Methods ... 55

HttpdMultipartCgiParser Reference .. 56
Introduction .. 56
Subclassing Using a Push Model .. 57
Subclassing Using a Pull Model ... 58
Thread Safety ... 59
Public Methods ... 59

HttpdCgiWriter Reference .. 62
Introduction .. 62
Thread Safety ... 62
Public Methods ... 62

HttpdAttributeParser Reference .. 63
Introduction .. 63
Thread Safety ... 63
Public Methods ... 63
Public Data .. 63

HttpdCookies Reference .. 64
Introduction .. 64
Thread Safety ... 64
Public Methods ... 64

HttpdAuthenticator Reference .. 66
Introduction .. 66
Public Methods ... 66
Protected Methods ... 67

HttpdSessionManager Reference .. 69
Introduction .. 69
Thread Safety ... 70
Public Methods ... 70

HttpdSessionObject Reference .. 72
Introduction .. 72

Seminole Developer's Guide

v

Public Methods ... 73
HttpdDynamicOutput Reference .. 73

Introduction .. 73
Thread Safety ... 74
Public Methods ... 74

HttpdInboundTransfer Reference .. 75
Introduction .. 75
Thread Safety ... 75
Public Methods ... 75

HttpdOutboundTransfer Reference .. 76
Introduction .. 76
Thread Safety ... 76
Public Methods ... 76

HttpdTracer Reference .. 76
Introduction .. 76
Using the Tracing Macros ... 76

3. Support Classes ... 79
HttpdFileSystem Reference .. 79

Introduction .. 79
Thread Safety ... 79
Public Methods ... 79
SupportsQuota .. 83
Protected Methods ... 83
Public Data .. 84

HttpdFileInfo Reference .. 84
Introduction .. 84
Thread Safety ... 84
Public Methods ... 84
Public Data .. 87

HttpdFile Reference .. 87
Introduction .. 87
Thread Safety ... 87
Public Methods ... 87
Public Data .. 89

HttpdDirectory Reference .. 89
Introduction .. 89
Thread Safety ... 90
Public Methods ... 90
Public Data .. 90

HttpdReadOnlyMemoryFile Reference .. 90
Introduction .. 90
Public Methods ... 90

HttpdMemoryFile Reference .. 91
Introduction .. 91
Public Methods ... 91

HttpdRedirectResponse Reference .. 91
Introduction .. 91
Thread Safety ... 91
Public Methods ... 91

HttpdSocket Reference .. 92
Introduction .. 92
Public Methods ... 92
Public Data .. 98

HttpdSocketInterface Reference .. 98

Seminole Developer's Guide

vi

Introduction .. 98
Public Methods ... 99

HttpdSocketFoundation Reference .. 100
Introduction .. 100
Public Methods ... 100

HttpdUdpServerSocket Reference .. 102
Introduction .. 102
Public Methods ... 102

HttpdIpAddressBase Reference .. 104
HttpdMemoryAllocator Reference .. 104

Introduction .. 104
Public Methods ... 105
Public Data ... 105

HttpdAllocatorCache Reference .. 105
Introduction .. 105
Thread Safety .. 106
Public Methods ... 106

HttpdList and HttpdListNode Reference ... 107
Introduction .. 107
Public Methods (HttpdListNode) .. 108
Public Methods (HttpdList) .. 109
Iterating over lists .. 110

HttpdBitSet Reference .. 111
Introduction .. 111
Thread Safety .. 111
Public Methods ... 112

HttpdMacroProcessor Reference .. 112
Introduction .. 112
Thread Safety .. 113
Public Methods ... 113
Protected Methods ... 113

HttpdCgiMacroProcessor Reference .. 114
Introduction .. 114
Public Methods ... 114

HttpdHtmlQuoter Reference .. 115
Introduction .. 115

HttpdDataSource Reference .. 115
Introduction .. 115
Public Methods ... 115

HttpdMemoryDataSource Reference .. 117
Introduction .. 117
Public Methods ... 117

HttpdFileDataSource Reference .. 117
Introduction .. 117
Thread Safety .. 118
Caching .. 118
Public Methods ... 118

HttpdContentSink Reference .. 119
Introduction .. 119
Thread Safety .. 119
Public Methods ... 119

HttpdBatchWriter Reference .. 120
Introduction .. 120
Thread Safety .. 120

Seminole Developer's Guide

vii

Public Methods ... 120
HttpdNullSink Reference .. 121

Introduction .. 121
Thread Safety .. 121
Public Methods ... 121

HttpdStringSink Reference .. 121
Introduction .. 121
Thread Safety .. 121
Public Methods ... 122

HttpdBufferWriter Reference .. 123
Introduction .. 123
Thread Safety .. 123
Public Methods ... 123

HttpdFifo Reference .. 124
Introduction .. 124
Thread Safety .. 124
Public Methods ... 124

HttpdCountingSink Reference .. 126
Introduction .. 126
Thread Safety .. 126
Public Methods ... 126

HttpdChunkedSink Reference .. 127
Introduction .. 127
Thread Safety .. 127
Public Methods ... 127

HttpdRomFileSystem Reference .. 128
Introduction .. 128
Thread Safety .. 128
Public Methods ... 128

HttpdReceiver Reference .. 129
Introduction .. 129
Public Methods ... 129

HttpdBoundaryReader Reference .. 130
Introduction .. 130
Public Methods ... 131

HttpdMuxFileSystem Reference .. 132
Introduction .. 132
Thread Safety .. 132
Public Methods ... 132

4. Portability Layer Reference .. 133
Platform Specific Definitions ... 133
HttpdOpSys Reference .. 133

Introduction .. 133
Public Methods ... 134
Public Data ... 138

HttpdTcpSocket Reference .. 138
Introduction .. 138

HttpdSslSocket Reference .. 138
Introduction .. 138

HttpdMutex Reference .. 139
Introduction .. 139
Public Methods ... 140

HttpdEventSemaphore Reference .. 140
Introduction .. 140

Seminole Developer's Guide

viii

Public Methods ... 141
5. Generating Dynamic Content with Templates .. 143

Understanding the Template Engine .. 143
Why Templates? .. 143
Compiled Templates ... 143
Template Syntax .. 143
Programming Template Interfaces ... 145

HttpdSymbolTable Reference .. 147
Introduction .. 147
Public Methods ... 147

HttpdPrefixSymbolTable Reference .. 148
Introduction .. 148
Public Methods ... 149

HttpdTemplateCommand Reference .. 149
Introduction .. 149
Public Methods ... 149

HttpdEvalCommand Reference .. 151
Introduction .. 151
Public Methods ... 151
Common Formatting Attributes .. 153

HttpdLoopCommand Reference .. 153
Introduction .. 153
Public Methods ... 154

HttpdConditionalCommand Reference .. 154
Introduction .. 154
Public Methods ... 154

HttpdTemplateScope Reference .. 156
Introduction .. 156
Public Methods ... 157

HttpdTemplateProcessor Reference .. 157
Introduction .. 157
HttpdTemplateProcessor Internals .. 157
Public Methods ... 158

HttpdFSTemplateShell Reference .. 158
Introduction .. 158
Public Methods ... 159

HttpdFSTemplateRequest Reference .. 160
Introduction .. 160
Public Methods ... 160

HttpdConstantSymbolTable Reference .. 161
Introduction .. 161
Public Methods ... 161

HttpdSymbolMap Reference .. 161
Introduction .. 161
Public Methods ... 164

HttpdScopedSymbolMap Reference .. 164
Introduction .. 164
Public Methods ... 165

CGI-template Interfacing ... 165
Introduction .. 165
Public Methods ... 166
Protected Methods ... 166

HttpdLoopCounterSymbols Reference .. 166
Introduction .. 166

Seminole Developer's Guide

ix

Public Methods ... 167
Public Data ... 167

6. Processing XML .. 169
“Streamy” Processing of XML ... 169
HttpdXmlAttribute Reference .. 169

Introduction .. 169
Public Methods ... 169
Public Data ... 170

HttpdXmlHost Reference .. 171
Introduction .. 171

HttpdXmlTokenizer Reference .. 171
Introduction .. 171
Public Methods ... 171
Protected Methods ... 172

HttpdXmlParser Reference .. 174
Introduction .. 174
Public Methods ... 174
Protected Methods ... 175

HttpdXmlNode Reference .. 177
Introduction .. 177
Public Methods ... 177
Protected Methods ... 178

HttpdXmlDomBuilder Reference .. 179
Introduction .. 179
Public Methods ... 179

HttpdXmlDomNode Reference .. 181
Introduction .. 181
Public Methods ... 181

HttpdXmlDomWriter Reference .. 184
Introduction .. 184
Public Methods ... 184

7. Processing JSON .. 187
“Streamy” Processing of JSON .. 187
HttpdJsonTokenizer Reference .. 187

Introduction .. 187
Public Methods ... 187
Protected Methods ... 188

HttpdJsonParser Reference .. 189
Introduction .. 189
Public Methods ... 189
Protected Methods ... 190

HttpdJsonBuilder Reference .. 191
Introduction .. 191
Public Methods ... 191

HttpdJsonDatum Reference .. 192
Introduction .. 192
Public Methods ... 192

HttpdJsonUndefined Reference .. 195
Introduction .. 195
Public Methods ... 195

HttpdJsonNull Reference .. 196
Introduction .. 196
Public Methods ... 196

HttpdJsonTrue Reference .. 196

Seminole Developer's Guide

x

Introduction .. 196
Public Methods ... 196

HttpdJsonFalse Reference .. 196
Introduction .. 196
Public Methods ... 196

HttpdJsonString Reference .. 196
Introduction .. 196
Public Methods ... 197

HttpdJsonLong Reference .. 197
Introduction .. 197
Public Methods ... 197

HttpdJsonDouble Reference .. 198
Introduction .. 198
Public Methods ... 198

HttpdJsonArray Reference .. 198
Introduction .. 198
Public Methods ... 199

HttpdJsonObject Reference .. 199
Introduction .. 199
Public Methods ... 200

HttpdAbstractJson Reference .. 201
Introduction .. 201
Public Methods ... 201

8. WebDAV Extensions .. 202
WebDAV ... 202
HttpdWebDAVHandler Reference .. 202

Introduction .. 202
Public Methods ... 202
Protected Methods ... 203

HttpdWebDAVConfiguration Reference .. 204
Introduction .. 204
Public Data ... 204

9. Error Logging and Reporting ... 206
Introduction .. 206
HttpdConsoleLog Reference .. 206

Introduction .. 206
Thread Safety .. 206
Public Methods ... 206
Public Data ... 207

HttpdConsoleHandler Reference .. 207
Introduction .. 207
Public Methods ... 207
Protected Methods ... 207
Public Data ... 208

10. The Application Framework ... 209
Introduction .. 209
Overview .. 209
HttpdStringProvider Reference .. 210

Introduction .. 210
Public Methods ... 210

HttpdStringBundle Reference .. 211
Introduction .. 211
Public Methods ... 211

HttpdStringTable Reference .. 211

Seminole Developer's Guide

xi

Introduction .. 211
Public Methods ... 212

HttpdWidgetConfig Reference .. 212
Introduction .. 212
Public Methods ... 212
Protected Methods ... 213

HttpdResourceMap Reference .. 213
Introduction .. 213
Public Types ... 214
Public Methods ... 214

HttpdAppTemplateEnvironment Reference .. 214
Introduction .. 214
Template Directives ... 214
Public Methods ... 215

HttpdAppTemplateProcessor Reference .. 215
Introduction .. 215
Public Methods ... 216

HttpdAppStringConstants Reference .. 217
Introduction .. 217
Public Methods ... 217
Public Data ... 217

HttpdWidget Reference .. 218
Introduction .. 218
Public Methods ... 218
Protected Methods ... 221

HttpdWidgetContainer Reference .. 222
Introduction .. 222
Template Directives ... 222
Public Methods ... 222
Protected Methods ... 223

HttpdAppEvent Reference .. 223
Introduction .. 223
Public Data Members ... 223

HttpdAppPainter Reference .. 225
Introduction .. 225
Public Data Members ... 225

HttpdAppEventHandler Reference .. 226
Introduction .. 226
Public Methods ... 226

HttpdAppEventDispatcher Reference .. 227
Introduction .. 227
Public Methods ... 227

HttpdAppSession Reference .. 228
Introduction .. 228
Public Methods ... 228

HttpdAppHandler Reference .. 230
Introduction .. 230
Protected Methods ... 230

HttpdSingleSessionApplication Reference .. 230
Introduction .. 230
Public Methods ... 231
Writing Single-Session Application Specifications ... 231

HttpdSessionApplication Reference .. 232
Introduction .. 232

Seminole Developer's Guide

xii

Public Methods ... 232
The Config Structure .. 233
The Logon Procedure ... 234
Writing Multi-Session Application Specifications .. 235

Menus .. 236
Introduction .. 236
HttpdMenu Reference .. 237
HttpdMenuItem Reference .. 238
HttpdMenuSymbols Reference .. 238
Writing Menu Specifications .. 239

HttpdWidgetDesktop Reference .. 240
Introduction .. 240
Template Directives ... 241
Public Methods ... 241

HttpdAppModal Reference .. 242
Introduction .. 242
Public Methods ... 243

Dialogs .. 243
Introduction .. 243
Data Types ... 243
HttpdWidgetDialog Reference .. 248
HttpdWidgetField Reference .. 251
HttpdWidgetScalar Reference .. 253
HttpdWidgetOption Reference .. 254
HttpdWidgetBoolean Reference .. 255
HttpdWidgetMulti Reference .. 256
HttpdFieldManagers Reference .. 258
Dialog Specifications .. 263

Collections .. 265
Introduction .. 265
HttpdCollectionData Reference .. 265
HttpdCollectionObjectRenderer Reference .. 266
HttpdCollectionWidget Reference .. 267
HttpdCollectionListAdaptor Reference .. 269
HttpdCollectionArrayAdaptor Reference .. 269

HttpdWidgetBackBlocker Reference .. 269
Introduction .. 269
Public Methods ... 269

11. Imaging Library ... 271
What is the Imaging Library? .. 271

Introduction .. 271
Using the Imaging Library .. 271

HttpdRect Reference .. 272
Introduction .. 272
Thread Safety .. 272
Public Data ... 272
Public Methods ... 273

HttpdCanvas Reference .. 274
Introduction .. 274
Public Methods ... 274

HttpdSquareBrush Reference .. 277
Introduction .. 277
Public Methods ... 277

HttpdFont Reference .. 277

Seminole Developer's Guide

xiii

Introduction .. 277
Public Methods ... 277

HttpdGif87aRenderer Reference .. 278
Introduction .. 278
Thread Safety .. 278
Public Methods ... 278

12. Web Sockets .. 280
Introduction .. 280
HttpdWebSocket Reference .. 280

Introduction .. 280
Public Methods ... 280
Protected Methods ... 282

13. Endpoint Discovery .. 284
Introduction .. 284

Endpoint Location .. 284
The Discovery Server ... 284
The Discovery Client .. 284

The Java Discovery Client .. 284
Compiling ... 284
Instructional HTML ... 285
Attributes ... 290
Formatting Attributes .. 290
Sorting Endpoints .. 292
Endpoint Icons .. 293
Class Filters .. 294
Change Highlighting .. 294

HttpdDiscoveryServer Reference .. 294
Introduction .. 294
Configuration Structures ... 295
Public Methods ... 296
Protected Methods ... 297
Protected Data ... 298

HttpdDiscoveryClient Reference .. 298
Introduction .. 298
Configuration Structures ... 299
Public Methods ... 299
Protected Methods ... 300

HttpdDiscoveredEndpoint Reference .. 301
Introduction .. 301
Protected Methods ... 302
Protected Data Members ... 302

The Win32 Discovery Client ... 303
Compiling ... 303
Configuring the Client .. 303

14. The Other Direction: An HTTP Client ... 305
The HTTP Client ... 305

Introduction .. 305
Performing HTTP Transactions .. 305

HttpdClient Reference .. 305
Introduction .. 305
Public Methods ... 306

HttpdClientFetch Reference .. 307
Introduction .. 307
Public Methods ... 307

Seminole Developer's Guide

xiv

Protected Methods ... 309
HttpdClientRequestBodySource Reference .. 309

Introduction .. 309
Public Methods ... 309

HttpdClientBufferRequestBody Reference .. 310
Introduction .. 310
Public Methods ... 311

HttpdClientKeyRing Reference .. 311
Introduction .. 311
Public Methods ... 311
Protected Methods ... 312

15. Integrating Seminole With An Application .. 314
Porting and Integrating Seminole .. 314

Introduction .. 314
Seminole compile-time parameters and options ... 314
The Seminole Build System .. 324
Operating Environment Abstraction Layers .. 331

Extending Seminole ... 335
Introduction .. 335
Adding Handlers .. 336

Dynamic Memory Allocation ... 339
Introduction .. 339
Creating Objects .. 339

16. Host Tools .. 341
Introduction .. 341
Host Tool Input Format .. 341
Using the SCPG Tool ... 344

Introduction .. 344
Usage ... 344
Input Configuration File Format ... 345
Filters .. 347
Encoding Types ... 349
Alignment ... 350
Listing File Format .. 351
Standalone Templates ... 352
Content Preprocessing .. 353

Using the bin2c Tool .. 354
Introduction .. 354
Usage ... 354

Using the makecert Tool ... 355
Introduction .. 355
Usage ... 355

Using the msgcmp Tool .. 356
Introduction .. 356
Usage ... 357
Input File Format ... 357

Using the specgen Tool .. 358
Introduction .. 358
Usage ... 358
Input format .. 358
Included Packages .. 360

A. Obtaining Support ... 363
Glossary ... 364

xv

List of Figures
15.1. Toolchain for Combining Content in the System Image .. 329
15.2. Toolchain for Building a Web Application ... 329

xvi

List of Tables
2.1. Predefined HttpdProtocolVersion Constants ... 6
2.2. Supported Time Format Specifications .. 24
2.3. Supported Print Format Specifications ... 27
2.4. HttpdFileHandler Request Processing Phases .. 43
4.1. OS Abstraction Layer Error Codes ... 133
4.2. Fork() Priority Hints .. 136
4.3. OpenSSL Socket Options .. 138
5.1. Template Directives ... 143
5.2. HttpdSymbolMap Default Handlers ... 161
10.1. Evaluation Directives .. 215
10.2. Conditional Directives .. 215
10.3. Widget Flags ... 219
10.4. Evaluation Directives .. 222
10.5. Conditional Directives .. 222
10.6. Loop Directives ... 222
10.7. Directives available during menu-items .. 238
10.8. Evaluation Directives .. 241
10.9. Conditional Directives .. 241
10.10. Dialog Template Flags .. 246
10.11. Field Manager Procedure Events ... 247
10.12. HttpdWidgetField Template Directives ... 251
10.13. HttpdWidgetScalar Template Directives ... 253
10.14. HttpdWidgetOption Template Directives ... 254
10.15. HttpdWidgetBoolean Template Directives ... 256
10.16. HttpdWidgetMulti Template Directives ... 257
10.17. Components of a dialog body ... 263
13.1. Discovery Client Parameters .. 286
13.2. Attribute Formatting Parameters ... 290
15.1. Standard Ports Files .. 325
16.1. SCPG Escape Sequences ... 341
16.2. SCPG Command Line Options ... 344
16.3. SCPG Configuration File Directives .. 345
16.4. SCPG Configuration File Options ... 347
16.5. SCPG Filter Types ... 347
16.6. SCPG Perl Filter Hashref Contents ... 349
16.7. SCPG Encoder Symbols .. 349
16.8. SCPG Content Preprocessing Commands ... 354
16.9. bin2c Command Line Options .. 354
16.10. msgcmp Command Line Options .. 357
16.11. specgen Command Line Options ... 358
16.12. specgen Default Directives ... 359
16.13. symmap predefined types ... 362

xvii

List of Examples
1.1. Handler Mapping Precedence .. 1
15.1. Using Inherited Definitions in a Ports File .. 326
15.2. A Skeletal Handler ... 337
15.3. Parsing CGI Parameters .. 338

xviii

Introduction
This manual is intended for anyone who will be including Seminole in another system, porting Seminole to
a new platform or RTOS, or extending Seminole in some way. This guide is intended as a detailed reference
rather than a tutorial. Beginners are encouraged to read the Getting Started Guide and work through the
examples before taking on more complex projects.

Once familiar with the basics this reference guide should be used when writing code that uses the Seminole
API to its fullest. Each class is documented with a general summary followed by its public interfaces in
excruciating detail. This document is the best way to understand the Seminole API when there is no desire
to "look under the hood."

Should this document prove insufficient our support department will be happy to help you with further
questions. Also, comments and corrections concerning this documentation are welcome, and may be sent
via Internet mail to <support@gladesoft.com>.

1

Chapter 1. Overview
About Seminole

Seminole is an embedded webserver toolkit. It is not designed to run as a standalone webserver although
it is capable of doing so. Instead, Seminole is designed to be embedded into other software. Such software
is typically the firmware of an embedded system although application software can embed Seminole as
well. It is written using a subset of C++ with an eye towards portability as well as modularity. The services
of the underlying operating system are abstracted with a few simple functions and typedefs.

Because Seminole is designed to be embedded in other software it has a small code footprint (especially
for embedded systems) and a small heap appetite. Another difference between traditional webservers and
Seminole is the interface to external code. Seminole allows application code to execute within Seminole
rather than an external process. This is especially important since many real-time operating systems have
no concept of a process. This also allows easier application programming with high-level C++ interfaces
rather than traditional “gateway” applications.

Most emebedded webservers are not used for serving static content. Although embedded devices can have
on-line user manuals via HTTP the primary purpose of web-enabling a device is to provide a user interface.
To that end, unlike a traditional web server, Seminole does not require a file system and the core server is
not “file centric”. Instead, objects derived from the HttpdHandler class lay claim to various portions
of the URL space. When a request comes in Seminole finds the appropriate handler and dispatches the
request to it. A default handler class, HttpdFileHandler, is provided for serving up files from a
filesystem abstraction. In addition, both a native ROM filesystem and an interface to a POSIX file system
are included for more traditional web serving tasks. This default framework is suitable for testing and
development purposes on POSIX-oriented systems such as UNIX® or for production use on embedded
operating systems providing such a file system interface.

When Seminole is started, an instance of the class Httpd is created for each configured port. For each
possible URL prefix, a derivative of the abstract base class HttpdHandler is inserted into a list within
the Httpd instance. Therefore, Httpd is a container for one or more HttpdHandler instances.

When an incoming request is made, the Seminole instance will create a new thread (depending on the
services provided by the host platform, “task” or “job” may be the appropriate concept) to process the
request. The request handler will then create a new instance of HttpdRequest.

HttpdRequest will read in the HTTP request and MIME headers and perform some basic parsing. Most
of the request processing centers around calling methods provided by the HttpdRequest class.

The handler code in Httpd will then call each of the registered HttpdHandlers in series giving them
the URL and checking to see if they want it. They can either accept the request -- in which case the
request object is destroyed after the selected HttpdHandler processes the request; or they can reject
the request, in which case, the next handler in the chain is called. If no more handlers are present default
error processing is performed.

Each HttpdHandler is associated with a “prefix string”. This string represents the first N characters
that a URI must begin with for that handler to be considered “responsible” for that request. The Httpd
class maintains a linked list sorted by order of prefix length.

Example 1.1. Handler Mapping Precedence

/web/dynamic/ Handler 1

Overview

2

/cgi-bin/ Handler 2

/web/ Handler 3

/ Handler 4

Requests will always try the most specific URL prefix first. So a request for /web/dynamic/
foo.html would be passed to handler 1 in this example, whereas a request for /web/foo.html would
be passed to handler 3.

Performance
Seminole is designed to scale well. On one end of the performance spectrum it can be configured to
consume few resources with adequate performance. On the other end of the spectrum Seminole can be
configured to handle a very high volume of requests. Getting the best performance from Seminole does
require tuning parameters in both Seminole and the target platform.

Seminole requires few amenities from the target platform. In fact even threads are not required — requests
will simply be processed serially. However this configuration should only be used for targets with the
most limited resources where performance is not an issue. This is because without threads the persistent
connection feature of HTTP can't be used.

When Seminole is using threads it is agnostic to how those threads are managed. On some platforms
creating a thread is a very efficient operation. On other platforms thread creation is an expensive and time-
consuming process. For these platforms a pool of worker threads can be created in advance and wait for
requests. Most of the provided portability layers offer thread pooling as an option.

Regardless of how threads are managed (pooling or on-the-fly creation) the portability layer also needs
to limit the maximum number of threads Seminole uses. When the number of active threads exceeds the
maximum the portability layer can either return immediate failure or block waiting for a period of time
for a thread to free up. The former approach is best for small systems that have at most a handful of users
performing requests. The latter approach is more appropriate if heavy activity is expected.

The semantics of sleeping when the thread pool is empty helps keep load managable because the acceptor
thread will be blocked while the worker threads finish up their processing. The acceptor thread is
responsible for handing off new requests to worker threads. If a free thread is not available after blocking
then the portability layer can return failure and the new request will be discarded.

This works well when worker threads are quickly completing their work and exiting (or returning to the free
thread pool). Persistent connections can cause idle threads to wait rather than perform useful work. This
effect is amplified if the timeout value for persistent connections is greatly increased. Seminole includes an
optional feature called “overload protection” that attempts to release threads occupied with idle persistent
connections.

Overload protection is invoked when the portability layer returns failure when spawning a thread. In this
case the oldest thread is signaled to abort its wait for a request. The thread waiting for the request will be
in the HttpdSocket::Gets method. Overload protection calls the HttpdSocket::AbortGets
method on the socket. This method will cause Gets to return immediately rather than wait for the timeout.
If AbortGets returns failure the next oldest thread is selected for reclaimation. This process is repeated
a finite number of times until the thread can be spawned.

3

Chapter 2. Core API Reference

Using the API
The Seminole API is defined in several header files. The main header file, seminole.h, defines almost
all of the “core” API. Advanced features are contained in their own header files which should be included
after seminole.h.

The Seminole source tree contains some header files that are not public and should not be included by
applications. The Seminole build system knows which header files are public and which are not. The public
header files are copied to the built/PORT/include directory. This is the location where Seminole
applications should include their header files from.

All of the Seminole names begin with some permutation of Httpd. This is to avoid clashes with
application code. This may be confusing when examining the Seminole API because many of the
supporting classes can be used without any dependencies on the HTTP protocol. In fact, the API was
designed so that some of the tools can be used without the webserver class (Httpd) at all.

The API is heavily object-oriented. It is important that programmers understand the basic concepts of
object oriented programming: encapsulation (abstraction), inheritance, and polymorphism. Each of the
classes has a particular useage model. Sometimes this model is different from other classes in the API This
inconsistency is typically due to some efficiency constraint (e.g. code size). However every attempt has
been made to keep the API as consistent and easy to program to.

Seminole Constants, Macros, and Types

Introduction

Seminole defines a small number of custom data types for internal purposes. Most of these are used in
public interfaces, and thus implementors should be aware of them. This chapter documents such types.

All definitions are portable (i.e. identical across target abstraction layer implementations) unless otherwise
noted.

Constants

HTTPD_U8_BYTES

This constant is the number of bytes required to hold an 8-bit unsigned integer.

HTTPD_U16_BYTES

This constant is the number of bytes required to hold a 16-bit unsigned integer. It is almost universally 1
except for very specialized environments.

HTTPD_U32_BYTES

This constant is the number of bytes required to hold a 32-bit unsigned integer.

Core API Reference

4

HTTPD_SESSION_KEY_LEN

The length (in characters) of a session identifier. This locally unique identifier is used to identify sessions
with incoming requests. This value is a function of the SESSION_NONCE_LEN build parameter. In
general it is sufficiently small that buffers of this size can be allocated as local variables.

Types

HttpdUint16

typedef unsigned short HttpdUint16;

This type is normally defined by the portability layer. It should be a 16-bit unsigned integer on the target
platform. Shown above is a typical definition for most architectures.

HttpdUint32

typedef unsigned long HttpdUint32;

This type is normally defined by the portability layer. It should be a 32-bit unsigned integer on the target
platform. Shown above is a typical definition for most architectures.

HttpdBitWord

typedef unsigned int HttpdBitWord;

This type represents the unit of access by the HttpdBitSet. It is typically defined as an unsigned int.
This is the most efficient word size for the machine to access.

HttpdPair

struct HttpdPair
{
 const char *mpKey;
 const char *mpValue;
};

This struct is used to store name/value pairs, such as HTTP or MIME headers. HttpdUtilities::Lookup
provides a method to search a sorted series of HttpdPairs.

HttpdIpv4Address

typedef HttpdUint32 HttpdIpv4Address;

Provides a binary representation of an Internet Protocol (IP) V4 address. This type definition may vary
from one target platform to another. The POSIX abstraction layer definition is shown here. If the definition
were of a more complex type, such as a structure then appropriate copy and comparison operators must
be provided by the portability layer.

HttpdIpAddress

typedef HttpdIpv4Address HttpdIpAddress;

Core API Reference

5

Provides a binary representation of an Internet Protocol (IP) address.

Note

This type definition may vary from one target platform to another. The POSIX abstraction
layer definition is shown here when INC_IPV6_SUPPORT is disabled. If the definition
were of a more complex type, such as a structure then the portability layer should define
the preprocessor symbol HTTPD_HAVE_BULKY_SOCKET_ADDRESSES to a non-zero
value and instead define a class named HttpdIpAddressObject derived from the
provided HttpdIpAddressBase.

HttpdIpPort

typedef HttpdUint16 HttpdIpPort;

Provides a binary representation of a TCP/IP port number.

Note

This type definition may vary from one target platform to another. The POSIX abstraction
layer definition is shown here.

HttpdSocketWaitHandle

typedef … HttpdSocketWaitHandle;

This type is defined by the portability layer. It abstracts an optional object that may be waited for alongside
socket events. This capability is only used if the portability layer defines HAVE_SOCK_WAIT to 1.

Code that uses this type other than simply passing it along is inherently nonportable. Different systems
may use wildly different definitions to define this type. For example POSIX systems use a file descriptor
here while Win32 uses a WSAEVENT handle.

HttpdTransport

 struct HttpdTransport
 {
 const char *mpTransportName;
 HttpdSocketInterface *(*mpFactory)();
 int (*mpInitialize)();
 const char *mpUriScheme;
 HttpdIpPort mPort;
 };

This type describes a particular transport associated with a HttpdSocket object. This type is only
defined if the INC_MULTIPLE_TRANSPORTS option is enabled.

HttpdProtocolVersion

typedef HttpdUint16 HttpdProtocolVersion;

Core API Reference

6

Used to encode HTTP version specifications, for purposes of comparison and matching appropriate
responses to requests made via a particular version. Predefined constants exist for the HTTP versions in
use at the time of this writing, as described in Table 2.1, “Predefined HttpdProtocolVersion Constants”.
Version comparisons can be made through use of the standard numerical comparison operators.
HttpdUtilities::ParseHttpVersion can be used to generate a HttpdProtocolVersion representation of an
ASCII version string.

Table 2.1. Predefined HttpdProtocolVersion Constants

Constant Name HTTP Version

HTTPvUnknown Unknown

HTTPv09 HTTP/0.9

HTTPv10 HTTP/1.0

HTTPv11 HTTP/1.1

HttpdAuthSchemes

 typedef enum
 {
 Basic,
 Digest, // Only present if HTTPD_INC_DIGEST_AUTH is non-zero.

 End
 } HttpdAuthSchemes;

This type identifies one of the supported authentication schemes. The enumeration End is used to terminate
lists of authentication schemes.

HttpdUnicodeCharacter

typedef HttpdUint32 HttpdUnicodeCharacter;

Used to represent a Unicode character. Unicode is a 21-bit character coding scheme. As such characters
are represented natively by a 32-bit unsigned value. Normally Unicode characters are encoded using a
more compact scheme. For example UTF-8 is a variable length scheme that encodes Unicode characters
that is optimized for compactly representing ASCII characters.

HttpdMD5Digest

typedef HttpdUint8 HttpdMD5Digest[16];

This type holds an MD5 digest. It is always 16 unsigned octets in size.

HttpdSHA1Digest

typedef HttpdUint8 HttpdSHA1Digest[20];

This type holds a SHA-1 digest. It is always 20 unsigned octets in size.

Core API Reference

7

HttpdClientCounter

typedef unsigned char HttpdClientCounter;

This type is used as an event counter by the HTTP client component. Variables of this type are used to
keep retry counters and limits during fetch operations.

Macros
Seminole uses the C++ preprocessor when it makes the code clearer and easier to maintain. In some cases
there are some ugly preprocessor tricks used to optimize core routines but these are always kept localized
to the area being optimized and are never visible in the Seminole API in any way.

HTTPD_NUMELEM

#define HTTPD_NUMELEM(a) …

This macro computes the number of elements in an array a.

Caution

The value of this macro is only correct if the compiler knows the size of the array before the
macro is invoked. For example declarations such as:

extern int array[]; // Unknown size.

will not work.

HTTPD_BASED_PTR

#define HTTPD_BASED_PTR(p, t, o) …

This macro will bias a pointer p by the the offset o bytes and return a pointer to type t. This macro is
a convenience macro when adding a byte offset to a pointer. Using this macro helps avoid errors where
the type is not properly casted to a byte pointer. Furthermore this macro also helps document the intent
of code better than a pile of casts.

httpd_often

#define httpd_often(x) …

Some compilers, notably GCC can be given hints about conditionals to produce better code. Specifically
a compiler can produce more optimal code if it knows that the body of an if-statement is only executed
in the event of an error, for example.

For compilers that support these hints this macro indicates that the conditional branch is frequently taken.
The entire condition of the if-statement should be substituted for x.

Seminole uses this macro (and httpd_rarely) extensively to help improve code generation. There is nothing
preventing code written against Seminole's API from using these macros as well.

httpd_rarely

#define httpd_rarely(x) …

Core API Reference

8

This macro, like its counterpart httpd_often is used to give conditional hints to the compiler during code
generation. This macro indicates that a condition is infrequently true. This is especially common for error
handling code.

HttpdUtilities Reference
Introduction

HttpdUtilities is a static class that is used to hold various helper routines that the Seminole core
depends on. All of the methods and data members of this class are static; there is no need to ever instantiate
this class.

Most of these routines may be called by your handlers as well, so it is important that they be well
understood.

Public Methods

StrLimitCopy

bool HttpdUtilities::StrLimitCopy (char *p_dest, const char *p_src,
size_t maxlen);

This routine copies the string pointed to by p_src to the buffer pointed to by p_dest. If the source
string plus the zero-termination byte exceed the length specified by maxlen then the copy is a properly
null-terminated truncation of the original.

This routine returns true if the copy did not perform any truncation or false if there was truncation.

This routine is similar to the standard library routine strncpy with the exception that it always properly
null-terminates the resulting string and returns an indication of truncation.

StrVCat

char *HttpdUtilities::StrVCat (const char *p_first, …);

This routine will concatenate a NULL terminated list of strings and return a pointer to the resultant string
in storage obtained from HttpdOpSys::Malloc.

It is important to terminate the list with (char char *)0, not NULL, because some CPU architectures
have different NULL pointer representations for different types and the compiler does not know the type
of the pointer because it is a variable argument list.

SaveString

char *HttpdUtilities::SaveString (const char *p_original);

This method makes a copy of a string (p_original). It is identical in effect to:

 StrVCat(p_original, (char *)0)

It is designed to save code space where StrVCat would require that two arguments be passed.

SaveString returns a pointer to a copy of the string in storage obtained from HttpdOpSys::Malloc. On
error, NULL is returned.

Core API Reference

9

StrChop

char *HttpdUtilities::StrChop (char *&p_string);

This routine will tokenize a white-space delimited string. A pointer to the next token (within p_string)
is returned by the function. In addition, p_string is updated to point to the next token so that successive
calls to StrChop will tokenize an entire input string. An empty string is returned when no more tokens
are available.

MatchPattern

bool HttpdUtilities::MatchPattern (const char *p_pattern, const char
*p_string, unsigned short depth = HTTPD_PMATCH_MAX_RECURSION);

This function determines if p_string matches a generic pattern, p_pattern. If the string matches
then true is returned if the pattern does not match then false is returned.

Patterns consist of the ? and * meta-characters. A ? matches any single character and a * matches zero
or more characters. For example the string “Seminole Webserver” is matched by the pattern “Sem*ver”.
Characters that are not one of the special meta-characters or are quoted are called non-meta characters and
must match themselves in the string.

If the INC_CHARCLASS_PATTERN_MATCH option is enabled then character classes are supported.
For example [abc] would match any of those three characters. Additionally a range of characters can be
provided, such as [a-c] which is identical to the [abc] character class.

To match metacharacters any character can be escaped using a backslash (\).

The depth controls the available recursion depth. In some cases this method may need to recursively
call itself. To prevent stack overflows the depth parameter is decremented before each call to
MatchPattern. If it reaches 0 then the match is considered a failure and false is returned.

The depth has a default value of HTTPD_PMATCH_MAX_RECURSION so it does not have to be specified
in calls to this method unless some specific limit is desired for a particular call site.

StringIsEmpty

bool HttpdUtilities::StringIsEmpty (const char *p_string);

This routine determines if the string p_string is composed of only whitespace chatacters.

StrCmp

int HttpdUtilities::StrCmp (const char *p_a, const char *p_b);

Carry out a case-sensitive lexicographic comparison between p_a and p_b. Returns 0 if they are equal,
less than 0 if p_a is lexicographically less than p_b, or greater than 0 if p_a is lexicographically greater
than p_b.

Note

This method is identical to the strcmp method and is used to prevent using the address
of strcmp directly. In some environments (due to calling convention) this can perturb
the runtime library or compiler. In general a pointer to strcmp is only needed for the
HttpdUtilities::Lookup method.

Core API Reference

10

StrCmpi

int HttpdUtilities::StrCmpi (const char *p_a, const char *p_b);

Carry out a case-insensitive lexicographic comparison between p_a and p_b. Returns 0 if they are equal,
less than 0 if p_a is lexicographically less than p_b, or greater than 0 if p_a is lexicographically greater
than p_b.

StrnCmpi

int HttpdUtilities::StrnCmpi (const char *p_a, const char *p_b, size_t
len);

Carry out a case-insensitive lexicographic comparison between p_a and p_b. A maximum of len
characters are compared. Returns 0 if they are equal, less than 0 if p_a is lexicographically less than p_b,
or greater than 0 if p_a is lexicographically greater than p_b.

UriStringCompare

int HttpdUtilities::UriStringCompare (const char *p_encoded, const char
*p_string);

Carry out a case-sensitive lexicographic comparison between p_encoded and p_string. Characters
that are URL-escaped in p_encoded match against their unencoded counterparts in p_string. This
method returns 0 if they are equal, less than 0 if p_encoded is lexicographically less than p_string,
or greater than 0 if p_encoded is lexicographically greater than p_string.

If the escapes are malformed in p_encoded then INT_MIN is returned.

SkipWhitespace

char *HttpdUtilities::SkipWhitespace (char *p_string);

This routine skips leading whitespace and returns a pointer to either the end of string (pointing at the null
terminator byte) or the first non-whitespace character.

There is also an identical version of this method that works on constant strings.

SkipNonWhitespace

char *HttpdUtilities::SkipNonWhitespace (char *p_string);

This routine skips leading non-whitespace characters and returns a pointer to either the end of string
(pointing at the null terminator byte) or the first whitespace character in the string.

There is also an identical version of this method that works on constant strings.

UrlPrefixMatches

char *HttpdUtilities::UrlPrefixMatches (char *p_string, const char
*p_prefix);

This routine determines if p_prefix is present in the URL p_string. Percent-escaped characters in
p_string match against their unescaped versions in p_prefix. This routine returns a pointer to the
suffix where the match ended or NULL if the prefix was not present.

Core API Reference

11

There is also an identical version of this method that works on constant strings.

UrlPathPrefixMatches

char *HttpdUtilities::UrlPathPrefixMatches (char *p_string, const char
*p_prefix);

This routine determines if p_prefix is present in the URL p_string. The match is only considered
successful if the match terminates on a path separator or the end of p_string. Percent-escaped characters
in p_string match against their unescaped versions in p_prefix. This routine returns a pointer to the
suffix where the match ended or NULL if the prefix was not present.

There is also an identical version of this method that works on constant strings.

RemoveChars

void HttpdUtilities::RemoveChars (char *p_string, const char *p_set);

This function removes any characters from p_string that are in p_set.

FilterChars

void HttpdUtilities::FilterChars (char *p_string, const char *p_set);

This function removes any characters from p_string that are not in p_set.

GetLcExtension

char *HttpdUtilities::GetLcExtension (char *p_file_name);

Get the extension of a file name (in lower case).

The input string is modified in place and the return value points into that string. You should make a copy
of the string for this routine if you need it after the extension is obtained.

GetComponentPath

char *HttpdUtilities::GetComponentPath (const char *p_uri, const char
*p_filename);

Given a URI or root path concatenate the p_filename to the p_uri path to produce a new path. Trailing
forward slashes are adjusted so as to avoid duplicates.

Upon success a pointer to the newly formed path string is returned. It is the caller's responsibility to free
it (using HttpdOpSys::Free). Upon failure NULL is returned.

Normalize

char *HttpdUtilities::Normalize (const char *p_path, const char
*p_prefix);

Prepends the string p_prefix to the string p_path and removes any . or .. references. It returns a pointer
to the resultant string in storage obtained from Malloc(). It is the caller's responsibility to free it (using
HttpdOpSys::Free).

Core API Reference

12

Because this method is typically used to convert URL paths into filesystem paths .. can not be used to
access any path above p_path.

NormalizeUrl

char *HttpdUtilities::NormalizeUrl (const char *p_uri, const char
*p_prefix);

This method is similar to the non-URL method HttpdUtilities::Normalize. One difference is that escaped
characters in p_uri are interpreted for their actual value. For example if a path were /example/path/
%2e%2e/file this would be normalized to /example/file. Another difference is that .. can be used
to generate a URL that is the parent of p_prefix.

Hash

size_t HttpdUtilities::Hash (const char *p_key);

This method computes the hash index of p_key that can be used to speed up searches for that particular
key. The returned value is a (non-unique) function of p_key.

HasTrailingSlash

bool HttpdUtilities::HasTrailingSlash (const char *p_path);

This function returns true if p_path ends in a forward slash.

HasPrefix

const char *HttpdUtilities::HasPrefix (const char *p_str, const char
*p_prefix);

Determine if a string has a certain prefix (case insensitive). If the prefix is present then the returned value
is the point past the prefix portion of p_str. If the prefix is not present then NULL is returned.

IsUriPathPrefix

bool HttpdUtilities::IsUriPathPrefix (const char *p_path, const char
*p_prefix);

This method determines if the path pointed to by p_path contains the prefix specified by p_prefix.
The path is a URL-style path and must use / as a path separator. The prefix must be at least one character
in length.

If the path contains the prefix (either in its entirety or from the start of the path to some component
boundary) then true is returned. Otherwise false is returned.

IsUriProtocol

const char *HttpdUtilities::IsUriProtocol (const char *p_uri);

Determine if a URL contains a protocol. The currently supported protocols are:

• http:

• https:

• ftp:

Core API Reference

13

• file:

This is useful for deciding if a URL is relative or absolute. If the string is an absolute URL then the returned
value is a pointer to the scheme-specific part of p_uri. If the string is a relative path then NULL is
returned.

HostPortion

char * HttpdUtilities::HostPortion (const char *p_uri);

This helper method attempts to find a hostname portion in the standard URL schema. If no hostname is
found or there is no memory available to hold the host name then NULL is returned.

It is the caller's responsibility to free the return value using HttpdOpSys::Free.

UriEncode

char *HttpdUtilities::UriEncode (const char *p_uri, bool compact_space
= false);

URL-encode a string by quoting the metacharacters used in URL strings. Returns a pointer to an encoded
string on success, NULL on failure. It is the caller's responsibility to free it (using HttpdOpSys::Free).

If compact_space is true then space characters (ASCII 0x20) are replaced with plus characters ("+").

NeedsUriEncoding

bool HttpdUtilities::NeedsUriEncoding (const char *p_uri);

This method determines if p_uri needs to be URL-encoded.

UriDecode

char *HttpdUtilities::UriDecode (const char *p_encoded, bool plus_xlat);

URL-decode a string, being safe about what we quote. A ? character terminates the decoding (any
characters following the ? are truncated from the output).

UriDecode returns a pointer to the decoded string on success, NULL on failure. It is the caller's
responsibility to free it (using HttpdOpSys::Free).

This method has two basic modes of operation. If plus_xlat is false, then UriDecode operates
in URL mode. In this mode, the + character is not translated to a space. This mode is most often used to
obtain the path component of a URL while removing the query string portion.

If the plus_xlat parameter is true then it is assumed that the string being decoded is a substring of a
URL query string. In this case, the + character is translated into an ASCII space (character value 32).

UriDecodeSingle

const char *HttpdUtilities::UriDecodeSingle (const char *p_encoded, char
*p_output);

This method URL-decodes the next character in p_encoded. When successful, the resultant character
is placed in the variable pointed to by p_output. A pointer to the character after the one that was just
processed is returned.

Core API Reference

14

On failure, NULL is returned. The string pointed to by p_encoded must contain at least one character.

HtmlQuote

char *HttpdUtilities::HtmlQuote (const char *p_str);

Escape any HTML specific character entities in p_str. Returns a pointer to an encoded string on success,
NULL on failure. It is the caller's responsibility to free it (using HttpdOpSys::Free).

NeedsHtmlQuoting

bool HttpdUtilities::NeedsHtmlQuoting (const char *p_str);

This method returns true if there are any characters in p_str that need escaping. Typically this method
can be used to avoid the memory allocation done by HtmlQuote if no work is needed.

CQuoteString

char *HttpdUtilities::CQuoteString (const char *p_str, unsigned int
flags = STR_QUOTE_C);

This method escapes any necessary characters in p_str according to the rules of C-like languages. It
returns a pointer to an escaped string on success, NULL on failure. It is the caller's responsibility to free
it (using HttpdOpSys::Free).

flags consists of zero or more of the following flags:

Flag Meaning

STR_QUOTE_UNICODE Enabled the \u escape sequence for Unicode
characters.

STR_QUOTE_HEX Enabled the \x escape sequence for byte values and
ASCII characters.

STR_QUOTE_APOS If this flag is present then the single quote ('
character) is escaped.

STR_QUOTE_C This flag specifies that strings should be escaped in
a manner that is compatible with the C language.

STR_QUOTE_JSON This flag specifies that strings should be escaped in a
manner that is compatible with the JSON encoding.

BinToHex (static buffer version)

char *HttpdUtilities::BinToHex (char *p_buffer, const void *p_data,
size_t nbytes);

This routine formats nbytes of data pointed to by p_data into an ASCII representation in the buffer
pointed to by p_buffer. The destination buffer must be large enough to hold the formatted data and the
resulting string is not zero terminated.

A pointer to the next slot in the buffer (i.e. one past the last written character) is returned.

BinToHex (dynamic string version)

char *HttpdUtilities::BinToHex (const void *p_data, size_t nbytes);

Core API Reference

15

This routine formats nbytes of data pointed to by p_data into a dynamically allocated buffer that is zero
terminated. If there is insufficient memory for the buffer then NULL is returned. It is the responsability
of the caller to free the allocated buffer using HttpdOpSys::Free.

AssembleU16

HttpdUint16 HttpdUtilities::AssembleU16 (const unsigned char *p_buf);

To avoid processor architecture and endian issues, 16-bit values are encoded in a particular way by tools
like SCPG. This method decodes the encoded 16-bit value produced by the host tools. The buffer pointed
to by p_buf must be at least HTTPD_U16_BYTES bytes in length.

AssembleU32

HttpdUint32 HttpdUtilities::AssembleU32 (const unsigned char *p_buf);

To avoid processor architecture and endian issues, 32-bit values are encoded in a particular way by tools
like SCPG. This method decodes the encoded 32-bit value produced by the host tools. The buffer pointed
to by p_buf must be at least HTTPD_U32_BYTES bytes in length.

Lookup (Generic)

const void *HttpdUtilities::Lookup (const void *p_table, size_t
table_size, size_t record_size, size_t key_offs, const char *p_key, int
(*p_comp)(const char *p_a, const char *p_b));

Carries out a binary search for key p_key in the pre-sorted table p_table, which contains
table_size elements of record_size bytes. The location of the key (as a const char *) is
determined by key_offs which can be obtained with the standard offsetof macro.

The p_comp parameter points to a comparison function that should return a positive, non-zero value if
p_a is sorted higher in the table than p_b; or a negative, non-zero value if p_b is sorted higher in the
table than p_a; or zero if the two elements are equal.

The first parameter to the comparison function (p_a) is always the current entry being examined in the
table.

Returns the discovered record upon success, NULL upon failure.

Lookup (Pairs)

const char *HttpdUtilities::Lookup (const HttpdPair *p_table, size_t
table_size, const char *p_key, int (*p_comp)(const char *p_a, const
char *p_b));

Carries out a binary search for key p_key in the pre-sorted table p_table, which contains
table_size elements.

The p_comp parameter points to a comparison function that should return a positive, non-zero value if
p_a is lexicographically greater than p_b; or a negative, non-zero value if p_b is lexicographically than
p_a; or zero if the two elements are equal.

This function is based upon the more general Lookup. It is provided for convenience because
HttpdPair tables are so common.

Returns the discovered value upon success, NULL upon failure.

Core API Reference

16

FormatTime

void HttpdUtilities::FormatTime (char *p_buf, size_t bufsz, const char
*p_format, time_t t);

Formats ANSI C time_t value t according to the specification supplied in p_format, and stores the
result in p_buf (previously allocated by the caller to be bufsz in length.)

For more information, please refer to your C library documentation on the standard strftime()
function.

Encode64

char * HttpdUtilities::Encode64 (const unsigned char *p_data, size_t
len);

This method encodes len bytes of data located at p_data into Base-64. The encoded data is returned
as a NUL-terminated string in allocated memory. It is the caller's responsibility to free it (using
HttpdOpSys::Free).

Decode64 (binary version)

unsigned char * HttpdUtilities::Decode64 (const char *p_encoded, size_t
&output_len);

This method decodes the Base-64 encoded data in p_encoded. Upon success, the decoded data is
returned in an allocated buffer and output_len is set to be the decoded length in bytes. Upon failure,
NULL is returned. It is the caller's responsibility to free it (using HttpdOpSys::Free).

Decode64 (String version)

char * HttpdUtilities::Decode64 (const char *p_encoded);

This method decodes the Base-64 encoded data in p_encoded. Upon success, the decoded data is
NUL-terminated and returned in an allocated buffer. Upon failure, NULL is returned. It is the caller's
responsibility to free it (using HttpdOpSys::Free).

NextCharInUtf8

bool HttpdUtilities::NextCharInUtf8 (HttpdUnicodeChar &uc, const char
*&p_buffer, size_t window);

This method gets the next Unicode character in the provided buffer of UTF-8 encoded Unicode characters.
The method returns true if the next character is obtained without error or false if more than window bytes
are needed to decode the character, the value of window is 0, or the buffer is not a valid UTF-8 string.

If successful then the buffer pointer, p_buffer is updated to point to the byte after the decoded character
that is placed into uc.

The typical use of this function is in a loop to decode each Unicode character as a string is walked. For
example:

 …
 char *p_utf8 = some_utf8_source();
 size_t *p_end = p_utf8 + strlen(p_utf8) + 1;

Core API Reference

17

 HttpdUnicodeCharacter uc;
 while (HttpdUtilities::NextCharInUtf8(uc, p_utf8, (size_t)(p_end - p_utf8)))
 {
 if (uc == 0)
 break; // End of string.

 // Process character uc here.
 }
 …

AppendUtf8

bool HttpdUtilities::AppendUtf8 (HttpdUnicodeChar uc, const char
*&p_buffer, size_t &buflen);

This method appends a Unicode character to the buffer using the UTF-8 encoding. True is returned if there
is enough room to hold the character and it can be properly encoded or false if there is an error. If successful
then p_buffer is updated to point to the byteafter the encoded data and buflen is decremented by the
number of bytes needed to encode the character.

DequoteToken

char * HttpdUtilities::DequoteToken (const char *&p_front, const char
*p_term = …);

There are several places in the HTTP protocol where strings within MIME headers are quoted. This is
very typical of token/value pairs following a MIME value. This method dequotes those strings and returns
the real values.

p_front should point to the start of the token. On success, a pointer to the dequoted string is returned
and p_front is updated to point to just after the string value. It is the caller's responsibility to free the
return value (using HttpdOpSys::Free).

On failure, NULL is returned and the value of p_front is undefined.

By default a non-quoted string is terminated according to the definition of token in RFC 2616. If p_term
is specified then it is the set of characters that terminate a token. Keep in mind that there are sometimes
subtle differences between the separator in different MIME headers.

QuoteToken

void HttpdUtilities::QuoteToken (char *&p_dest, const char *p_plain);

This method quotes the string in p_plain if necessary to make it safe for use as a MIME token. The
quoted result is placed into the buffer pointed to by p_dest. On return, the pointer p_dest is updated
to point to the unused byte after the quoted string.

Important

It is important to remember when using this function that no null terminator is stored in
p_dest. It is the responsibility of the caller to add one if necessary.

Another important attribute about this function is that the buffer pointed to by p_dest must
be sufficiently large to hold the worst-case scenario of every character requiring quoting.
This is 2 characters larger than double the length of p_plain.

Core API Reference

18

TokenPresent

bool HttpdUtilities::TokenPresent (const char *p_mime, const char
*p_token);

This method searches for p_token in the MIME line that is a set of tokens, p_mime. If the token is
present (regardless of value, if any) then true is returned. Otherwise false is returned.

RandomString

void HttpdUtilities::RandomString (char *p_dest, size_t len);

This method fills p_dest with a string of random alphanumeric characters, len characters long. The
buffer passed in must be at least large enough to hold len characters and the terminating zero byte.

ParseHttpVersion

HttpdProtocolVersion HttpdUtilities::ParseHttpVersion (const char
*p_version);

Given an HTTP version string p_version, return a representative HttpdProtocolVersion value. If no
version can be distinguished, the constant referring to HTTP version 0.9 is returned (that protocol version
is recognized by its lack of version identification on the wire).

The expected formatting of p_version is “HTTP/X.Y”, where X represents the major version, and Y
the minor version.

A list of current protocol version constants can be found in Table 2.1, “Predefined HttpdProtocolVersion
Constants”, to simplify comparisons.

TokenizePortions

bool HttpdUtilities::TokenizePortions (char sep, char *p_buf, char
**pp_target, …);

This method chops up the string pointed to by p_buf at boundaries specified by the character sep. The
address of the first character is placed into each successive parameter starting with pp_target. The list
of pointers must be terminated with a NULL value.

This method does not copy the string in any way, the pointers assigned to pp_target are only valid as
long as the buffer pointed to by p_buf is valid.

It is important to terminate the list with (char **)0, not NULL, because some CPU architectures have
different NULL pointer representations for different types and the compiler does not know the type of the
pointer because it is part of a variable argument list.

MemPBrk

void *HttpdUtilities::MemPBrk (void *p_buffer, size_t n, const void
*p_term, size_t termsz);

This method is similar to the strpbrk() routine. It searches in upto n bytes pointed to by p_buffer
for the termination bytes. The termination bytes are specified by p_term and termsz.

If the search bytes do not exist anywhere in the extent of the buffer then NULL is returned. Otherwise the
address of the byte preceeding the first termination byte found is returned.

Core API Reference

19

MemCountByte

size_t HttpdUtilities::MemCountByte (const void *p_buffer, size_t
buflen, unsigned char val);

This method scans the buffer and counts the number of times val appears in the buffer.

FindBoundary

int HttpdUtilities::FindBoundary (HttpdReceiver *p_receiver, const char
*p_boundary);

Before HttpdBoundaryReader::Read can be called, this method must be called to find the initial
starting point of the data (also delimited by p_boundary).

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

When 0 is returned, HttpdUtilities::IsLastBoundary should be called to
complete the parsing of the boundary string. It is entirely possible to have a multipart
MIME message that contains no subparts. In that case, the IsLastBoundary routine
will indicate that no more boundaries are expected. In this case, no instance of
HttpdBoundaryReader should be created.

IsLastBoundary

int HttpdUtilities::IsLastBoundary (HttpdReceiver *p_receiver, bool
&finished);

After HttpdBoundaryReader::Read or HttpdUtilities::FindBoundary are called and
return success, this method should be called. Aside from completing some parsing activities, the parameter
finished will be set to false if more subparts are expected. Otherwise, finished will be set to
true.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Public Data

mRoot

const char mRoot[];

This variable represents the path separator used in concatenating path segments, and other miscellaneous
uses. Its default value of “/” should not be changed without considerable thought, since URI formatting
standards specify it as a hierarchical separator.

mNetTimeFormat

const charmNetTimeFormat[] ;

Supplied as a parameter to HttpdUtilities::FormatTime, this is a string representing the desired human-
readable format to which system time should be converted. In an ANSI C environment, the underlying

Core API Reference

20

library function ultimately responsible for this transformation is strftime(). For further information
on the contents of this variable, local C library documentation on that function should be consulted.

mPastTime

const charmPastTime[] ;

This is a hard-coded time constant (formatted for HTTP) of the UNIX epoch, which is always considered
to be in the past.

mContentLength

const charmContentLength[] ;

This hard-coded array is the HTTP Content-length string used when generating headers.

mContentType

const charmContentType[] ;

This hard-coded array is the HTTP Content-type string used when generating headers.

mLineTerm

const charmLineTerm[] ;

This hard-coded array is the HTTP newline sequence. There is no NULL terminating byte on this array.

HttpdMD5 Reference

Introduction
MD5 is a one-way hashing function defined in RFC-1321. It is useful both as a checksum and (in some
cases) for cryptographic purposes. The HttpdMD5 class provides a implementation of the MD5 hashing
function.

If the compile-time option INC_FAST_MD5 is enabled the HttpdMD5 class uses a high-speed but large
algorithm. Otherwise a slower but compact algorithm is used. In general, it is recommended that the more
compact algorithm be used unless MD5 hashes are used extensively in the application.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Update (Buffer version)

void HttpdMD5::Update (const void *p_data, size_t count);

Core API Reference

21

Hash the data pointed to by p_data that is count bytes long. After the HttpdMD5 object is constructed
(or reset) this method (and the string version of Update) may be called as many times as necessary in
succession to hash all of the data.

Update (String version)

void HttpdMD5::Update (const char *p_string);

Hash the contents of the string pointed to by p_string, not including the terminating zero byte. After
the HttpdMD5 object is constructed (or reset) this method (and the buffer version of Update) may be
called as many times as necessary in succession to hash all of the data.

Final

void HttpdMD5::Final (HttpdMD5Digest digest);

After all of the data has been hashed (via Update) this method retrieves the digest from the HttpdMD5
object and copies it to digest.

Important

It is important to note that once this method is called the HttpdMD5 object is no longer valid
and no further hashing on that particular instance should be performed until Reset is called.

Reset

void HttpdMD5::Reset (void);

This method resets the state of the hashing engine. This method allows a single object instance to compute
any number of hashes.

HttpdMimeParser Reference

Introduction
HttpdMimeParser provides a general purpose parsing engine for MIME headers. These headers
are found in many Internet protocols, and HTTP is no exception. The HttpdRequest class uses
HttpdMimeParser to process headers from incoming requests.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdMimeParser

HttpdMimeParser::HttpdMimeParser (void);

Core API Reference

22

The constructor just does a simple initialization. The heavy-weight initialization is done by the
Initialize method. This allows the memory allocation to be avoided if no MIME headers need to be
parsed (but the object is owned by another object).

Initialize

bool HttpdMimeParser::Initialize (void);

This method must be called before any other methods are called. If this method returns false, then the
HttpdMimeParser object could not be initialized and should not be used. Success is indicated by a
return value of true.

ReadLine (socket version)

char * HttpdMimeParser::ReadLine (char *p_line_buf, HttpdSocket &socket,
unsigned int timeout);

This static method reads a line, structured the way MIME lines are, from socket. The p_line_buf
pointer is used as a temporary working space and must point to at least HTTPD_MAX_INPUT_LINE
bytes of storage. The value of the HTTPD_MAX_INPUT_LINE constant is determined by the value of
the MAX_INPUT_LINE build-time parameter.

Any kind of error reading the line from socket is indicated by a return value of NULL. If a valid line is
not received by timeout seconds, it is considered an error and NULL is returned.

If a line (that is not empty) is read successfully, it is copied into a fresh buffer and a pointer to that buffer
is returned. However, MIME headers are always terminated by a blank line. As an optimization to avoid
allocating a buffer for an empty string, the value of p_line_buf is returned if a line is read, but empty.

Callers should check for this special return value and consider that a marker for the end of the headers.
This approach allows three different outcomes (error, empty, or valid data) to be returned through a single
pointer.

Note

This function is static and does not depend on an initialized HttpdMimeParser object.

When ReadLine returns a pointer to a processed string (and not NULL or p_line_buf),
it is the caller's responsibility to free it (using HttpdOpSys::Free).

ReadLine (HttpdReceiver version)

char * HttpdMimeParser::ReadLine (char *p_line_buf, HttpdReceiver
*p_receiver, unsigned int timeout);

This static method reads a line from p_receiver. The semantics are identical to the socket version
(above).

Note

This function is static and does not depend on an initialized HttpdMimeParser object.

ParseLine

bool HttpdMimeParser::ParseLine (char *p_line);

Core API Reference

23

This method processes a header line (typically read with ReadLine). If the header line contained in
p_line is valid, true is returned. On failure, false is returned and no further method calls should be made
to the HttpdMimeParser object.

Note

This method should only be called after the Initialize method is called.

The string pointed to by p_line is modified during the parse. It does not have to remain
valid after this method completes, but it should be in modifiable storage. This is normally
transparent as ReadLine returns a saved copy of the string.

Finish

void HttpdMimeParser::Finish (void);

This method should be called after all header lines are parsed (using ParseLine).

Header

const char * HttpdMimeParser::Header (const char *p_key);

This method is used to look up the value of a MIME header (only if it is unique by name). A pointer to
the value of the header named p_key is returned on success, NULL is returned if the specified header
does not exist.

Note

This method should only be called after the Finish method is called.

Count

size_t HttpdMimeParser::Count (void);

This method returns the number of available header entries.

Note

This method should only be called after the Finish method is called.

Pair

HttpdPair * HttpdMimeParser::Pair (size_t index);

This method returns a pointer to the HttpdPair object for the header specified by index. This method
is useful for certain types of headers which may appear more than once. Using the Count() method to
compute the upper bound of the index, all of the headers can be enumerated.

Note

This method should only be called after the Finish method is called.

ParseHeaders

bool HttpdMimeParser::ParseHeaders (HttpdReceiver *p_recvr);

Core API Reference

24

This method reads a series of MIME headers into the parser object. Upon success, true is returned. In the
case of an error, false is returned.

Note

This method automatically calls Initialize and Finish. The state of the parser is
completely initialized by calling this routine. If it returns true then headers may be retrieved
from the object using the Header method.

HttpdTimeStamp Reference

Introduction
The profusion of alternative time and date format conventions makes it advantageous to provide a single
point of conversion and storage. HttpdTimeStamp provides such an interface. Methods are provided
to populate its member variables from ANSI C time_t values and various character string formats, as well
as to compare a previously constructed HttpdTimeStamp with a current one.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Parse

bool HttpdTimeStamp::Parse (const char *p_str_rep);

Given formatted string p_str_rep, populate the parent object's member variables with time and date
information. The input character string may be formatted in a few alternative ways, as described by the
following table:

Table 2.2. Supported Time Format Specifications

Format Type Example

RFC 822 “Sun, 06 Nov 1994 08:49:37 GMT”

RFC 850 “Sunday, 06-Nov-94 08:49:37 GMT”

ANSI C asctime() “Sun Nov 6 08:49:37 1994”

Returns true upon success, false upon failure.

Convert

bool HttpdTimeStamp::Convert (const struct tm *p_tm);

Given a pointer to an ANSI C time structure p_tm, populate the member variables of the current
HttpdTimeStamp object.

Returns true upon success, false upon failure.

Core API Reference

25

Validate

bool HttpdTimeStamp::Validate (void);

Validate that the values of the HttpdTimeStamp structure are within their valid ranges.

Returns true if all the fields are valid, false otherwise.

FindDayOfWeek

void HttpdTimeStamp::FindDayOfWeek (void);

This method adjusts the mWeekDay parameter to reflect the day for specified by mDay, mMonth, mYear.

Note

This routine can only compute the correct day from the year 1583 or later.

Compare

int HttpdTimeStamp::Compare (const HttpdTimeStamp *p_to);

Compares the parent HttpdTimeStamp object with the one indicated by p_to, and indicates their
relationship along a timeline.

Returns less than zero if p_to is in the future relative to the called HttpdTimeStamp, 0 if they are
equal, or greater than zero if p_to is in the past.

Set

void HttpdTimeStamp::Set (const HttpdTimeStamp *p_to);

This method sets the time of the object to the same time of the object pointed to by p_to.

Format

bool HttpdTimeStamp::Format (char *p_buffer, size_t bufsiz, const char
*p_format);

This function formats the time as a string. The string is written to p_buffer. If the written representation
would be larger than bufsiz bytes (including the null termination byte) then false is returned. The
p_format string is a formatting template similar to the one used in strftime. The supported specifiers
are: a (weekday), d (day of month), b (month), Y (four digit year), y (two digit year), H (hours), M
(minutes), and S (seconds).

FormatAsISO8601

void HttpdTimeStamp::FormatAsISO8601 (char *p_buffer);

This function formats the time as a string in the ISO 8601 format. The buffer pointed to by p_buffer
must be at least HttpdTimeStamp::ISO8601_FMT_BUFSIZE characters in size.

TimeInGMT

bool HttpdTimeStamp::TimeInGMT (time_t &time);

Core API Reference

26

This method sets the time of the object to the specified time in GMT.

Public Data

mDay

unsigned int mDay

The numerical day-of-month (e.g. 16).

mWeekDay

unsigned int mWeekDay

The numerical day-of-the-week (e.g. 1 is Monday).

mMonth

unsigned int mMonth

An internal table index resulting in an English representation of the month.

mYear

unsigned int mYear

The numerical year (e.g. 1996).

mHour

unsigned int mHour

The numerical hour (e.g. 07).

mMinute

unsigned int mMinute

The numerical minute (e.g. 54).

mSecond

unsigned int mSecond

The numerical second (e.g. 33).

HttpdWritable Reference

Introduction
The HttpdWritable is a base class that represents a sink of data. Typically this is the base class for
a socket but can also be derived into other base classes. Many other Seminole classes implement the
HttpdWritable interface such as HttpdSocket, HttpdContentSink, and HttpdCountingSink.

Core API Reference

27

Public Methods

Write

int HttpdWritable::Write (size_t sz, const void *p_data);

This pure virtual function is the interface for writing data to the sink. On success, sz bytes are written to
the sink from the buffer pointed to by p_data.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WriteString

int HttpdWritable::WriteString (const char *p_string);

This method writes a string pointed to by p_string to the sink.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WriteStringAndFree

int HttpdWritable::WriteStringAndFree (char *p_string);

If p_string is NULL then HttpdOpSys::ERR_OUTOFMEM is returned. Otherwise, p_string is
written to the sink and then released using HttpdOpSys::Free.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

NewLine

int HttpdWritable::NewLine (void);

This method writes an HTTP line terminator (\r\n).

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Printf

int HttpdWritable::Printf (const char *p_format, …);

This method implements a subset of the features provided by ANSI C's printf() library function.
Formatted output is written to the writable using the abstract HttpdWritable::Write method.
Permissible format specifiers are as follows:

Table 2.3. Supported Print Format Specifications

Specification Arguments Formatting

%s String (const char pointer) The string is written out “as is”.

Core API Reference

28

Specification Arguments Formatting

%d int The number is formatted as a
signed decimal number.

%x unsigned long The number is formatted as an
unsigned hexadecimal number.

%t unsigned long The number is formatted as an
unsigned decimal number.

%% No arguments Produces a literal percent sign (%)

%f Number of bytes to write
(unsigned int) and the fill
character (char)

The fill character is repeated as
many times as indicated by the
first argument (count).

%q String (const char pointer) The string is written out as defined
by RFC 2616 for quoted strings
appearing as attributes in MIME
headers.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Indent

int HttpdWritable::Indent (unsigned int depth);

This method writes depth space characters. For efficiency this routine attempts to avoid single byte
writes.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Httpd Reference

Introduction
The Httpd is an instance of a webserver that is associated with a particular port and (optionally) transport.
This class is also the hub of request processing; it creates instances of HttpdRequest and applies them
to subclasses of HttpdHandler. It also contains support methods that HttpdRequest objects can
use to handle requests.

In addition to request processing the Httpd class also provides various administrative functions such as:

• Startup and shutdown of Seminole

• Security checks prior to request handler invocation

• Methods for adding and removing request handlers

Public Methods

Httpd

Httpd::Httpd (const char *p_host_name, HttpdIpPort port = 80);

Core API Reference

29

Constructs a web-server object. The p_host_name parameter should be a valid host name or IP address
for referncing this web server. The port parameter specifies the port address for this web server. By
default it is 80 but may need to be adjusted for other transports (such as SSL).

Init

static int Httpd::Init (void);

This static method must be the first method called in the Seminole API. It initializes the portability layer,
the socket layer and other global internal state not specific to any particular instance of Httpd.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This method is not idempotent and should only be called once before any other Seminole
objects are constructed or methods invoked.

ServerName

const char *Httpd::ServerName (void);

Returns the “brand name” of the web server. The lifetime of this string must be equal to or greater than
the lifetime of this object.

If INC_DYNAMIC_SERVER_NAME is enabled then this is an overrideable method; it can be used for
internationalization and product customization purposes. If the feature is disabled then this method is static.

It is recommended that the returned string is always in the form of:

 Seminole/X.XX (…)

Where X.XX is the current version number of Seminole. Application-specific branding should be placed
within the parenthesis.

Start

bool Httpd::Start (const char *const *pp_options);

Perform the appropriate network layer initialization and begin accepting HTTP requests. Returns true when
startup is successful, false otherwise.

The NULL terminated list of strings pointed to by pp_options are passed to the
HttpdSocket::Listen method. If the INC_MULTIPLE_TRANSPORTS option is enabled then an
required attribute of sock: determines the transport used for this instance of Httpd.

The pp_options must not be NULL its self. If no socket options are desired then the default value of
the parameter, HttpdSocket::mEmptySocketOptions, may be passed as this parameter.

Stop

void Httpd::Stop (HttpdShutdownType type = GRACEFUL);

Core API Reference

30

Perform a shutdown of the webserver. If the type parameter is GRACEFUL (the default) then a graceful
shutdown is performed. A graceful shutdown stops processing any additional clients and ceases accepting
new clients. The caller of Stop will be blocked until any in-process HTTP requests are completed. This
ensures that after the call to Stop returns any objects involved in request processing may be safely
destroyed.

A HARD stop will abruptly terminate any in-process requests. Although, as with a GRACEFUL shutdown
the Stop method does not return until it is safe to destroy all resources, this is usually much quicker with
a HARD stop than with a GRACEFUL stop.

Note

This method is not defined unless the INC_SHUTDOWN option is enabled.

The ability to perform a hard stop is dependant on the socket layer implementation and may
not be implemented on a particular target platform.

Install

void Httpd::Install (HttpdHandler *p_handler);

Install the specified handler. Requests will then be dispatched through the handler if the prefix matches.
The server must be in a stopped state before calling this method.

ServerHost

const char * Httpd::ServerHost (void);

Returns the machine hostname associated with this instance of Httpd. This value is simply the second
argument of the class constructor.

Remove

HttpdHandler *Httpd::Remove (HttpdHandler *p_handler);

HttpdHandler *Httpd::Remove (const char *p_prefix);

Remove the specified handler/prefix mapping; a prefix can be supplied, in which case the corresponding
handler will be removed, or a direct pointer to the unwanted handler can be supplied, in which case that
handler is removed.

Returns a pointer to the handler which was removed, or NULL if no matching handler was found.

Note

These methods are not defined unless the INC_SHUTDOWN option is enabled.

Port

HttpdIpPort Httpd::Port (void);

Returns the network port to which this instance of Httpd is bound (specified as the first argument of
the class constructor).

Core API Reference

31

ListenSock

HttpdSocket &Httpd::ListenSock (void);

Returns a reference to the listening socket object.

ServerWideRequest

void Httpd::ServerWideRequest (HttpdRequest *p_request);

HTTP includes the notion of a “server wide request.” These are request methods that are not directed to
any particular URL on the server (identified by a a * in the request).

These requests are sent to this method. Subclasses may override this method to provide additional
functionality. Subclasses should call the Httpd implementation of this method if they do not respond
to the request.

Protected Methods
These methods are virtual and may be extended by subclasses of Httpd. Because instances of
HttpdRequest are created internally there is no way for client code to extend the behavior of methods
in that class. The typical pattern is that methods that need to be overridden are in the Httpd class and a
wrapper method from the HttpdRequest object calls these methods below.

Allowed

virtual bool Httpd::Allowed (HttpdIpAddress addr);

This method determines if the client with the specified address is allowed to connect. If the connection is
to be allowed then this method should return true, otherwise false should be returned.

ResponseHeader

virtual void Httpd::ResponseHeader (HttpdRequest *p_request, const
HttpdResponse &resp);

Send a basic set of HTTP response headers to the client, possibly in preparation for further data from a
handler.

The currently supported response codes are detailed in Supported HTTP Response Codes. For a more
detailed discussion of the circumstances under which a given code might be used, the reader is referred
to the appropriate standards document, RFC 2616 (Hypertext Transfer Protocol 1.1) [ftp://ftp.isi.edu/in-
notes/rfc2616.txt] or previous versions as appropriate to the desired application.

Supported HTTP Response Codes

• HTTPD_RESP_CONTINUE (100) - Continue with request

• HTTPD_RESP_PROTOCOL (101) - Protocol switch OK

• HTTPD_RESP_OK (200) - Request succeeded - content follows

• HTTPD_RESP_CREATED (201) - Request for resource creation succeeded (typically in response to
PUT requests)

• HTTPD_RESP_ACCEPTED (202) - Request accepted

ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt

Core API Reference

32

• HTTPD_RESP_NONAUTH_INFO (203) - Metainformation not authoritative

• HTTPD_RESP_NO_CONTENT (204) - Request succeeded, no entity-body

• HTTPD_RESP_SOME_CONTENT (205) - Request succeeded, client to reset view

• HTTPD_RESP_PARTIAL_CONTENT (206) - Request succeeded, partial entity body follows (used
for with the Range: header)

• HTTPD_RESP_MULTI_STATUS (207) - Multiple objects were affected. The entity body describes
the outcomes of the operation. This is typically used with WebDAV methods

• HTTPD_RESP_MULTI_CHOICE (300) - Requested resource has multiple representations

• HTTPD_RESP_MOVED_PERM (301) - Requested resource has new, permanent URI

• HTTPD_RESP_MOVED_TEMP (302) - Requested resource has new, temporary URI

• HTTPD_RESP_SEE_OTHER (303) - Requested resource has moved, use GET to new URI

• HTTPD_RESP_NOT_MODIFIED (304) - Conditional GET, but document not modified

• HTTPD_RESP_USE_PROXY (305) - Requested resource must be accessed via a proxy

• HTTPD_RESP_NEO_TEMP_MOVED (307) - Requested resource has new, temporary URI

• HTTPD_RESP_BAD_REQ (400) - Malformed request syntax

• HTTPD_RESP_UNAUTHORIZED (401) - Request requires authentication, but none was provided or
incorrect credentials were supplied

• HTTPD_RESP_PAYMENT_REQ (402) - Reserved for future use

• HTTPD_RESP_FORBIDDEN (403) - Request administratively forbidden

• HTTPD_RESP_NOT_FOUND (404) - Requested URI was not found

• HTTPD_RESP_METHOD_NOT_ALLOWED (405) - Request method specified not legal for this URI

• HTTPD_RESP_NOT_ACCEPTABLE (406) - Resource requested cannot generate response entities
acceptable to the client

• HTTPD_RESP_PROXY_AUTH (407) - Authentication required to use a proxy, but none was provided
or incorrect credentials were supplied

• HTTPD_RESP_REQUEST_TIMEOUT (408) - Client request timeout

• HTTPD_RESP_CONFLICT (409) - Current resource state in conflict with request

• HTTPD_RESP_GONE (410) - Requested resource not available, and no new URI is known

• HTTPD_RESP_LENGTH_REQ (411) - Missing Content-Length: header entry

• HTTPD_RESP_PRECOND_FAILED (412) - Request pre-condition failed on server side

• HTTPD_RESP_TOO_LARGE (413) - Request entity too large

• HTTPD_RESP_URI_TOO_LARGE (414) - Request URI too long

• HTTPD_RESP_UNSUPPORTED_MEDIA (415) - Unsupported media type for requested resource and/
or method

Core API Reference

33

• HTTPD_RESP_RANGE (416) - Resource extent does not match requested range

• HTTPD_RESP_EXPECTATION_FAILED (417) - Client expectation cannot be met by server

• HTTPD_RESP_LOCKED (423) - The resource is locked

• HTTPD_RESP_SRV_ERROR (500) - Unexpected server error

• HTTPD_RESP_METHOD_NOT_IMPL (501) - Unrecognized or unimplemented request method

• HTTPD_RESP_BAD_GATEWAY (502) - Invalid response from upstream provider or application

• HTTPD_RESP_UNAVAILABLE (503) - Temporary inability to service request

• HTTPD_RESP_GATEWAY_TIMEOUT (504) - Timeout on upstream provider or application response

• HTTPD_RESP_HTTP_VERSION (505) - Requested HTTP version is not supported

• HTTPD_RESP_INSUFFICIENT_SPACE (507) - There is insufficient storage space to perform the
requested operation

ResponseBody

virtual void Httpd::ResponseBody (HttpdRequest *p_request, const
HttpdResponseMsg &response, const char *p_url);

This method is used to send a simple HTML-formatted document in accompaniment to HTTP error
responses. p_title points to a string describing an alternative URL. For example, in the case of a redirect
this should point to a string containing the new URL. This parameter may also be NULL.

Respond

void Httpd::Respond (HttpdRequest *p_request, int status);

This method generally encapsulates the ResponseHeader and the ResponseBody methods, and is
used as a general error handling mechanism when HTTP errors and associated human-readable messages
are to be sent to a client. An HTTP status code is provided in status. See Supported HTTP Response
Codes for possible values.

HttpdRequest Reference

Introduction
HttpdRequest represents a single HTTP request in time being handled by Seminole. An
HttpdRequest object is instantiated by the Server() method within Httpd for each incoming
request, and then discarded once a handler either processes the request or no handler is found to do so.

The constructor of this class performs some basic request processing before a handler is located:

• The request is parsed and checked for syntactic validity

• Public variables are populated with various things of interest in the headers

• MIME headers are tokenized, and the entire header list sorted

Understanding the contents and interfaces of HttpdRequest is quite important when writing a new
handler class, since it is the primary unit of data passed from Seminole's core to the handlers.

Core API Reference

34

The request object also contains an unused data member called mpData that can be used by subclasses
for tracking additional state. This void pointer can be used to reduce the amount of context that needs to
be passed between the methods of a complex handler implementation. This pointer is initialized to NULL
when the request object is created.

Once a request is received by a handler and the necessary processing performed, the next step is naturally
to send a response. HttpdRequest provides methods to do this also; for most handlers the starting point
will often be ResponseHeader().

Public Methods

Server

Httpd *HttpdRequest::Server (void);

Returns a pointer to the Httpd object which instantiated this HttpdRequest.

Method

const char *HttpdRequest::Method (void);

Returns a character pointer to a string describing the HTTP method associated with this HttpdRequest
(GET, PUT, and so on).

IsHeadRequest

bool HttpdRequest::IsHeadRequest (void);

Determine if the request method is HEAD.

IsGetRequest

bool HttpdRequest::IsGetRequest (void);

Determine if the request method is GET.

IsPostRequest

bool HttpdRequest::IsPostRequest (void);

Determine if the request method is POST.

IsOptionsRequest

bool HttpdRequest::IsOptionsRequest (void);

Determine if the request method is OPTIONS.

PostIsMultipartMime

bool HttpdRequest::PostIsMultipartMime (void);

If the request method is POST and this method returns true then the request body is encoded using mutli-
part MIME and should be processed using the HttpdMultipartCgiParser class.

Core API Reference

35

If this method returns false then the body of the POST should be processed with
HttpdCgiParameter::ParsePostData.

ContentAvailable

bool HttpdRequest::ContentAvailable (const char *p_type);

This determines if an entity body is available in the request with a MIME type of p_type.

Protocol

HttpdProtocolVersion HttpdRequest::Protocol (void);

Returns an HttpdProtocolVersion value specifying the HTTP version associated with this
HttpdRequest.

Path

char *HttpdRequest::Path (void);

Returns a character pointer to the path component of the URI contained within this HttpdRequest,
exactly as it was sent by the client.

Query

const char *HttpdRequest::Query (void);

Returns a character pointer to the query component of the URI contained within this HttpdRequest.
If no query was provided in the request, NULL is returned.

ClientAddr

HttpdIpAddress HttpdRequest::ClientAddr (void);

Returns the client IP address for this request.

Socket

HttpdSocket &HttpdRequest::Socket (void);

Returns the HttpdSocket object which provides communication with this request's client.

Note

Sending data to the HTTP client should not be done through the socket. Instead, the Output
method returns the correct object.

Output

HttpdWritable &HttpdRequest::Output (void);

Returns the object that should be the destination for data sent to the HTTP client.

Header

const char *HttpdRequest::Header (const char *p_mime);

Core API Reference

36

Returns the value associated with HTTP request header p_mime, or NULL if the header is not found.

Headers

HttpdMimeParser & HttpdRequest::Headers (void);

Returns a reference to the MIME parser object used to parse the header section of this request.

CompleteUri

const char * HttpdRequest::CompleteUri (void);

If a full request URI was presented as the argument to the request then this method will return that URI.
If the request did not include a full URI, then this method returns NULL.

LastReq

bool HttpdRequest::LastReq (void);

This method determines if this is the last request that will be processed by the current connection. This
can be the case if any of the previous request processing resulted in a case that requests the end of the
connection.

This is most typically done because a content handler was not able to determine the content-length of the
data it was going to send. There are also administrative reasons for why this request may be the last, such
as a timeout waiting for a request or limit or quota reached.

Note

This method is not available if INC_PERSISTENT_CONN is not enabled.

ResponseHeadersSent

bool HttpdRequest::ResponseHeadersSent (void);

This method determines if the response headers have been sent already, typically via the Respond
or ResponseHeader methods. The response headers generated by the ResponseHeader method
include the Connection line.

It is best if the SetLastReq method is called before the response headers. Otherwise if no buffering is
being performed and the content being generated has an unknown size then the server must abruptly close
the connection after the content is sent. This can result in additional round trips by clients.

Note

The HttpdDynamicOutput class handles these complexities automatically.

This method is not available if INC_PERSISTENT_CONN is not enabled.

SetLastReq

void HttpdRequest::SetLastReq (void);

This forces this request to be the last on the connection. After calling this method, LastReq will return
true. There is no way to undo the effects of this method once called.

Core API Reference

37

This method should be called before any of Respond, ResponseHeader, Redirect, or
RedirectWithQuery are called. This restriction is because part of the HTTP protocol specification
requires that a Connection: close header be sent out on the last result.

If this method is called after the response is issued then no further requests will be allowed from the
connection after processing. However this mode of operation should only be done in error scenarios.

Note

This method is not available if INC_PERSISTENT_CONN is not enabled.

RequestedHostName

const char * HttpdRequest::RequestedHostName (void);

This method returns the name of the host that was requested. There are several different ways this is
obtained depending on the structure of the request. On failure, NULL is returned.

ResponseHeader

void HttpdRequest::ResponseHeader (const HttpdResponse &resp);

This method calls the Httpd::ResponseHeader to deliver the response headers to the client. Request
processing code should call this method rather than calling the method in Httpd directly.

NeedHeaders

bool HttpdRequest::NeedHeaders (void);

Indicates whether the current request requires HTTP headers to be printed within the response.

Returns true if headers are needed, false if not.

ResponseBody

void HttpdRequest::ResponseBody (const HttpdResponseMsg &response,
const char *p_url);

This method calls the Httpd::ResponseBody to deliver the response headers to the client. Request
processing code should call this method rather than calling the method in Httpd directly.

Respond

void HttpdRequest::Respond (int status);

This method generally encapsulates the HttpdRequest::ResponseHeader and
HttpdRequest::ResponseBody methods, and is used as a general error handling mechanism when HTTP
errors and associated human-readable messages are to be sent to a client. An HTTP status code is provided
in status. See Supported HTTP Response Codes for possible values.

CustomResponse

void HttpdRequest::CustomResponse (int status);

Core API Reference

38

This method is similar to HttpdRequest::Respond except it allows custom response bodies for negative
response codes.

Redirect

void HttpdRequest::Redirect (int status, const char *p_location);

Causes an HTTP redirect to be sent to the client. p_location should point to a string containing the
path or URI the client should be redirected to. The redirect is sent with the HTTP status code status;
see Supported HTTP Response Codes for possible values.

Important

p_location should always be normalized (using HttpdUtilities::Normalize).

The HttpdRedirector class provides a general handler for redirecting portions of Seminole's URL
space, and would normally encapsulate Redirect(). It is suggested that HttpdRedirector be used
when possible or sensible.

RedirectWithQuery

void HttpdRequest::RedirectWithQuery (int status, const char
*p_location);

In some cases, a redirect should include the incoming query string. In particular, some cases in
HttpdFileHandler require a redirect to add / separator characters. In those cases, the query string
(if any) needs to be preserved.

This method behaves just like HttpdRequest::Redirect with the exception of appending the query
string if one exists to the outgoing URL

NoCacheHeaders

int HttpdRequest::NoCacheHeaders (HttpdWritable *p_out);

This method writes the appropriate HTTP headers to prevent caching to the stream p_out.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

QueueHeader

void HttpdRequest::QueueHeader (const char *p_header, const char
*p_value);

This method queues the specified header and associated value for transmission during the response phase.

Note

This method is only available if the INC_QUEUED_HEADERS option is enabled.

Public Data
HttpdRequest contains no publically accessible data members. Methods are provided to access relevant
information when necessary.

Core API Reference

39

HttpdHandler Reference

Introduction
Subclasses of HttpdHandler are installed in a webserver instance to handle requests directed at a
particular URL path prefix. HttpdHandler is an abstract class and must be subclassed.

Typically subclasses of HttpdHandler will contain most of the application specific behaviors.
HttpdHandler is very low level. The HttpdFileHandler can be used for more traditional (file
oriented) behavior.

Protected Data

mpPrefix

const char *mpPrefix

This member points to the URL prefix that this handler will attempt to handle.

This member should be initialized by subclasses before this object is installed in an Httpd instance.
Preferrably it should be set in the constructor of the superclass.

Protected Methods

IsMe

char *HttpdHandler::IsMe (HttpdRequest *p_req);

This method determines if p_req contains the prefix specified by mpPrefix. If so the portion of the
URL after the prefix is returned. If not NULL is returned.

Handlers should call this method (or the IsMyPath method) in their implementation of Handle to
determine if the handler may be responsible for the request.

Note

The return value is not unescaped or processed in any form. Typically the returned string
should be passed to HttpdUtilities::UriDecode to obtain a usable path name.

IsMyPath

char *HttpdHandler::IsMyPath (HttpdRequest *p_req);

This method determines if p_req contains the path specified by mpPrefix. If so the portion of the URL
after the path prefix is returned. If not NULL is returned.

Handlers should call this method (or the IsMe method) in their implementation of Handle to determine
if the handler may be responsible for the request.

Note

The return value is not unescaped or processed in any form. Typically the returned string
should be passed to HttpdUtilities::UriDecode to obtain a usable path name.

Core API Reference

40

Public Methods

Prefix

const char *HttpdHandler::Prefix (void);

This method returns the value of the protected data member mpPrefix.

Handle

bool HttpdHandler::Handle (HttpdRequest *p_req);

This pure virtual method is called by Httpd objects to determine if the request should be handled by
this handler. If the request is handled then true should be returned. If the request is not handled then
false should be returned.

Implementations of this method should call either IsMe or IsMyPath to determine if the handler is
even appropriate. Although implementations are free to base the decision to handle the request upon other
factors as well.

Note

It is important to remember that with multi-threading this method may be called from
multiple threads simultaneously. Therefore any data memebers of the handler should be
considered to be global data and must be properly prepared for concurrent access.

HttpdResponseMsg Reference
Introduction

Since the HTTP standard has evolved over a long period of time, the possible responses and actions
in a given transaction can depend on the protocol version and client capabilities. However, none
of this needs to matter for the purpose of writing new handlers or version-independent extensions.
HttpdResponseMsg, along with HttpdRequest, serves to encapsulate and hide the details of
translating general protocol actions (such as generating a redirect) into specific network transmissions.

The typical usage scenario for this class is to use the HttpdResponseMsg::Find static method with
a response code and protocol version to get the correct response message to return. Normally this is
not necessary because the HttpdRequest::Respond does these actions. However, if a custom error
response with custom headers is desired then this class should be used to get the appropriate response
message. Although a better approach is to use the HttpdRequest::QueueHeader method if the
INC_QUEUED_HEADERS feature is enabled.

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

Find (by response code)

const HttpdResponseMsg &HttpdResponseMsg::Find (int resp);

Core API Reference

41

Given HTTP status code resp, return a reference to an appropriate HttpdResponseMsg object. If the
given status code is unknown or invalid (i.e. it is not listed in Supported HTTP Response Codes), then a
generic “server error” response object will be returned instead.

Find (by response code and protocol version)

const HttpdResponseMsg &HttpdResponseMsg::Find (int resp,
HttpdProtocolVersion vers);

Given HTTP status code resp and client protocol version vers, return a reference to an appropriate
HttpdResponseMsg object. If the precise status code given is not supported at protocol version vers,
a more general response in the same status category may be selected instead. If the given status code is
unknown or invalid (i.e. it is not listed in Supported HTTP Response Codes), then a generic “server error”
response object will be returned instead.

Public Data

mStatus

const int mStatus

The HTTP status code associated with this response (see Supported HTTP Response Codes for possible
values).

mpName

const char *mpName

A human-readable translation of the associated response's mStatus value; for example, 200
(HTTPD_RESP_OK) means “OK”.

mpDescription

const char *mpDescription

A more descriptive human-readable explanation of this response; for example, a redirection might result
in “The document has moved.\n”.

mVersion

HttpdProtocolVersion mVersion

The minimum HTTP protocol version required to understand this response.

HttpdRedirector Reference

Introduction
HttpdRedirector provides a simple handler interface for the purpose of sending HTTP redirect
responses to clients. It translates any given request within its designated URL space to a new URI, possibly
on a different host.

Core API Reference

42

A common use for this class is to provide several easy to remember top-level URL paths for users but
redirect those into the appropriate areas of a web interface.

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

HttpdRedirector

HttpdRedirector (const char *p_prefix, const char *p_newuri, int
status);

HttpdRedirector's constructor is documented here, because of its role as the sole interface to the class'
functionality. After object creation, redirectors are installed into the Seminole handler chain at runtime
just as any other handler.

The URL prefix for which this redirector will handle requests is provided in p_prefix. The new URI
to which clients are redirected is provided in p_newuri. If a local pathname is provided (i.e. the redirect
is local to this port and host), then it must be normalized, meaning that it should not contain relative path
references (such as “.” or “..”), and it must end with a forward slash (“/”). An appropriate HTTP status
code is given by status (see Supported HTTP Response Codes for possible values).

Public Data

mpNewUri

char *mpNewUri;

A pointer to a string representing the URI to which requests for this HttpdRedirector object are to
be redirected. If the new destination is a pathname rather than a complete URI, the implied server is the
current one.

mStatusCode

int mStatusCode;

Contains the desired HTTP status code to be used when issuing a redirect to a client (see Supported HTTP
Response Codes for possible values).

HttpdFileHandler Reference

Introduction
HttpdFileHandler provides all of the machinery necessary to serve a portion of a
HttpdFileSystem to HTTP clients.

In addition to being a self-contained handler, HttpdFileHandler can also serve as the base for
a variety of extensions by subclassing. Only the methods that should be overridden in subclasses are
documented here. The rest of the methods are considered internal and should not be overridden.

Core API Reference

43

The architecture of HttpdFileHandler is similar to the way Seminole handles all requests:
a state object is allocated for the request and released at the end of processing. In the case of
HttpdFileHandler the state information is stored in a structure defined within the class called
RequestState. A pointer to the RequestState object is also placed in the mpData field of the request object.

The RequestState structure also contains an unused member called mpData that can be used by subclasses
for tracking additional state. The Cleanup phase can be overridden to release resources associated with
this member.

In addition to the mpData member, the RequestState structure contains a pointer to the handler object
(mpHandler). This can be useful if HttpdFileHandler is subclassed. This pointer can be casted and
then used to accesses additional data.

If the INC_BYTERANGE_SUPPORT option is defined then the RequestState structure also contains
two members dictating the byte range of the response: mByteOffsetStart and mByteOffsetEnd.
These are byte positions relative to the start of the file.

Each request has a certain life cycle that is divided into phases. Depending on the outcome of the previous
phase request processing may terminate early. The default handling of each phase can be overridden in
subclasses to either perform extra work or abort the request with no further processing.

Most of the methods within this class are passed a reference to the current RequestState structure. It is
important to keep in mind that not all members are initialized when some methods may be called. Rather,
some members are garbage until a certain phase of request processing completes.

Table 2.4. HttpdFileHandler Request Processing Phases

Method Meaning

CheckMethod This phase initializes the mMethod member of
RequestState.

ValidMethod This phase determines if the HTTP method is
supported by the handler.

TranslateUri This phase processes the URI provided in the
mpReqPath RequestState member and initializes
the mpDecodedUri and mpFilePath members.

ProcessUri Given the results of the TranslateUri phase
this method is expected to decide on an appropriate
target file and load mFileInfo member of
RequestState.

DoFileInfo The mFileInfo member is analyzed and
appropriate action should be taken. This method
(by default) detects directories and applies special
handling to them.

DoFile At this point mFileInfo points to a target that
is a file that needs to be delivered. This phase is
where the MIME type is analyzed and an appropriate
response must be generated. Template processing
and other server-side content translations should be
done here.

Cleanup This phase releases storage allocated to
mpReqPath and mpFilePath. It can be
overridden to optionally release resources
associated with mpData.

Core API Reference

44

Directory Processing
Directory processing accomplishes two major goals. First, URI's without trailing slashes are fixed up
(handled by the DoDirectory method). Second, a response for the directory request is sent back.

When a request is made for a directory object, the DoFileInfo method calls SendIndexFile which
checks the directory for a file called index.html. If this file exists it is sent out as a result of the directory
request.

If no index.html exists and the INC_DIRECTORY_LISTS option is enabled an HTML listing of the
directory is generated at runtime.

Otherwise, if there is no index.html and INC_DIRECTORY_LISTS is not enabled a 404 (not found)
response is generated.

The bulk of the directory processing code is actually the optional listing generator, which is handled with
the following methods:

• SizeToString

• ListDirectory

• ListEntry

• ListParentDir

• DirectoryBody

Character sets & Encodings
The HTTP protocol does not designate a standard character set for textual content. In fact many different
possible character sets may be specified via the charset extension to the Content-Type MIME
header.

If the charset attribute is set for the file info this value is sent along with the Content-Type header
by the HttpdFileHandler::SendContentType method.

Public Methods

HttpdFileHandler

HttpdFileHandler::HttpdFileHandler (HttpdFileSystem *p_filesys, const
char *p_root = HttpdUtilities::mRoot, const char *p_prefix =
HttpdUtilities::mRoot, HttpdUint8 flags = 0);

This constructor initializes the object. The parameter p_prefix is used to determine which URI strings
are associated with this handler. The other two parameters are used to specify the source of files. If p_root
is anything other than “/” then it must be a valid path to which all requests are relative to.

If flags includes HttpdFileHandler::SUPPORTS_POST then the ValidMethod will allow
POST requests through.

FileSystem (getter)

HttpdFileSystem *HttpdFileHandler::FileSystem (void);

Core API Reference

45

Returns the file system provider assigned to the handler during construction.

Protected Methods

Note

These methods typically constitute a major phase of request processing and can be overridden
in subclasses for additional processing.

CheckMethod

void HttpdFileHandler::CheckMethod (RequestState &state);

This method performs the CheckMethod phase. The following members of state are initialized during
this phase:

• mHandled (to the value true)

• mpRequest (to the current HttpdRequest object)

• mpReqPath (to the requested URI)

• mpData (to NULL)

This method is required to initialize the mMethod member of state. It should be set to one of
UNKNOWN_METHOD, HEAD_METHOD, GET_METHOD, or POST_METHOD.

ValidMethod

int HttpdFileHandler::ValidMethod (RequestState &state);

This method returns 0 if mMethod is a supported method. If the method is not supported then an
appropriate HTTP error status should be returned, such as HTTPD_RESP_METHOD_NOT_IMPL. The
following members of state are initialized during this phase:

• mHandled (to the value true)

• mpRequest (to the current HttpdRequest object)

• mpReqPath (to the requested URI)

• mMethod (to the method of the request)

TranslateUri

bool HttpdFileHandler::TranslateUri (RequestState &state);

This method performs the TranslateUri phase. This phase occurs after the CheckMethod phase.
All of the members of state initialized before and during CheckMethod are valid for this phase.

This method is required to initialize the mpDecodedUri and mpFilePath members of state. These
values should be initialized to point to storage allocated from HttpdOpSys::Malloc because Cleanup will
release them using HttpdOpSys::Free.

If this method returns false processing is aborted. The Cleanup phase is still executed, however. It is
therefore always necessary to initialize mpDecodedUri and mpFilePath. If they do not point to valid
storage then they should be set to NULL.

Core API Reference

46

If processing should be passed on to other handlers (and no error response was sent out during this phase)
then mHandled can be set to false.

If this method returns true then processing continues with the ProcessUri phase.

ProcessUri

void HttpdFileHandler::ProcessUri (RequestState &state);

This method performs the ProcessUri phase. This phase occurs after the TranslateUri phase. All
of the members of state initialized before and during TranslateUri are valid for this phase.

This method is required to initialize the mFileInfo member of state. This is typically done using
the path name in mpFilePath in state that was generated during the TranslateUri phase. If
mFileInfo is not able to be initialized then an appropriate error response should be generated.

The default implementation does not do any additional translations on mpFilePath as these should
normally be done in the TranslateUri phase. This method may be used in subclasses to locate files
on a different filesystem for some criteria.

DoOptions

int HttpdFileHandler::DoOptions (RequestState &state, HttpdStringSink
&allowed_methods, HttpdStringSink &headers);

This method is called when the request is an OPTIONS method. Additional headers in the response
should be written to headers while additional methods (separated by a comma) are written to
allowed_methods.

Subclasses of HttpdFileHandler may override this method to add additional information to the
response. Subclasses should call the implementation in HttpdFileHandler before writing additional
data.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This method is only available if the INC_OPTIONS_METHOD feature is enabled.

DoFileInfo

void HttpdFileHandler::DoFileInfo (RequestState &state);

This method performs the DoFileInfo phase. This phase does the first analysis of the mFileInfo
member of state to determine the appropriate way to continue processing the request.

The critical test performed here is that of directory objects. If mFileInfo is determined to be a directory
object and not a file object the request is passed off to directory processing.

DoFile

void HttpdFileHandler::DoFile (RequestState &state);

Core API Reference

47

This method performs the DoFile phase. At this point we know we have a valid target file that was
selected by the previous phases. This phase allows the remainder of request processing to proceed with
that assumption.

This phase analyzes the remaining attributes of the mFileInfo member of state to determine an
appropriate response.

The most common tests to be performed are on the MIME type of the file. The default implementation
checks for a MIME type of x-server-internal/private and generates an error for files of this
type. Otherwise the request is passed on to the SendFile method.

Cleanup

void HttpdFileHandler::Cleanup (RequestState &state);

This method performs the Cleanup phase. Request processing is about to terminate and any resources
allocated during the processing of this request should be freed.

SendFile

void HttpdFileHandler::SendFile (RequestState &state);

This method takes a RequestState object that has completed the DoFile phase and sends out the
appropriate response to the client. Depending on the request, headers are optionally generated. The file is
opened and pushed to the socket of the HttpdRequest object.

NeedToSendOut

bool HttpdFileHandler::NeedToSendOut (RequestState &state);

This method analyzes the If-Modified-Since header to determine if content needs to be sent out
at all. If the content must be sent true is returned. Otherwise, false is returned and a HTTP 304 response
can be sent instead.

Note

This method only exists if the INC_MODIFIED_SINCE option is enabled.

ResultHeader

bool HttpdFileHandler::ResultHeader (RequestState &state, int resp);

This method generates an appropriate header and response message. The resp is the status code for which
the response is being generated.

The value false is returned on error. Otherwise true is returned.

SendIndexFile

bool HttpdFileHandler::SendIndexFile (RequestState &state);

This method is called from the default implementation of DoFileInfo for a directory. It attempts to
locate a file called index.html inside the specified directory. If this file exists its contents are sent as
response.

Core API Reference

48

If no response was sent this method returns false and request processing should continue. Otherwise true
is returned if the request was handled.

DoDirectory

void HttpdFileHandler::DoDirectory (RequestState &state);

This method is used to fix up URI's that point to a directory name without a trailing slash character (“/”).
In addition, this is where the response to a directory request is generated for directories that do not contain
an index.html.

SendContentType

int HttpdFileHandler::SendContentType (RequestState &state);

This method sends a Content-Type header to the request object in the state object. The value of the
header is derived from the mInfo member of state.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

FullRange

void HttpdFileHandler::FullRange (RequestState &state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. This method adjusts the current
byte range to be inclusive of the entire file. It can be called any time after the CheckByteRanges method
is called to respond with complete content and a status code of HTTPD_RESP_OK.

CheckByteRanges

void HttpdFileHandler::CheckByteRanges (RequestState &state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. This method analyzes the
HTTP request headers to see if a partial range request is desired. If so the range in the state object is
updated with the new range. The range is not validated at this point therefore upon return of this method
the byte range within the RequestState may be invalid.

IsRangeASubset

bool HttpdFileHandler::IsRangeASubset (const RequestState &state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. If the range in the RequestState
object does not cover the entire entity body then true is returned. Otherwise the request is for a full entity
body and false is returned.

ValidRange

bool HttpdFileHandler::ValidRange (const RequestState &state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. A byte range is considered
valid if it is in a forward direction (the ending position is greater or equal to the starting position) and
the range is within the entity body length. If the range is valid then true is returned. For invalid ranges
false is returned.

Core API Reference

49

InvalidValidRangeResponse

void HttpdFileHandler::InvalidValidRangeResponse (const RequestState
&state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. This method returns a
HTTPD_RESP_RANGE with the appropriate Content-Range: header value. No further response
should be issued for the request, either by calling the Respond method of the request or by calling the
ResultHeader method of the file handler.

CheckForRangeCondition

void HttpdFileHandler::CheckForRangeCondition (const RequestState
&state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. This method is called by
the CheckByteRanges. It processes conditional range requests (indicated by the presence of a If-
Range: header line in the request) and invalidates the subrange if necessary.

HttpdRequestForwarder Reference

Introduction
Sometimes it is necessary to declare two different Httpd objects that both should share the same set of
handlers. For example, if the same set of handlers should be accessible via either SSL or TCP. A handler
can only be installed in one Httpd object at a time.

The HttpdRequestForwarder class is a handler that forwards requests to the handlers installed in
another Httpd object. It cleanly solves the problem of having more than one Httpd object where the
same handling must be performed across objects.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Public Methods

HttpdRequestForwarder

HttpdRequestForwarder::HttpdRequestForwarder (Httpd *p_server);

Initialize the handler to send all requests to p_server.

HttpdUrl Reference

Introduction
In many cases Seminole parses a URL using open-coded logic — for efficiency. Although when necessary
HttpdUrl can be used to decompose a URL easily.

Core API Reference

50

The HttpdUrl can be used repeatedly without recreating the object. However it is important to remember
that each component string will be invalidated when a new URL is parsed with the object.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Parse

int HttpdUrl::Parse (const char *p_url);

This method parses the URL. If successful 0 is returned; otherwise a system dependent error value is
returned (see Table 4.1, “OS Abstraction Layer Error Codes”).

Cleanup

void HttpdUrl::Cleanup (void);

This function releases any stored memory from a previously parsed URL. It is safe to call this function at
any time; even if there is no previously parsed URL. You should call this method if you are sure that the
parsed URL components are no longer needed. This releases the allocated memory for use elsewhere. It
is not necessary to call this method; it is strictly a space optimization.

Path

const char *HttpdUrl::Path (void);

Returns a pointer to the path component of the URL. This method will never return NULL if a URL has
been parsed.

Host

const char *HttpdUrl::Host (void);

Returns a pointer to the host name component of the URL. This method will never return NULL if a URL
has been parsed.

Scheme

const char *HttpdUrl::Scheme (void);

Returns a pointer to the scheme component of the URL. This method will never return NULL if a URL
has been parsed.

Transport

const char *HttpdUrl::Transport (void);

Returns a pointer to the transport name used for this URL. If the INC_MULTIPLE_TRANSPORTS feature
is not enabled then this method will always return NULL.

Core API Reference

51

Query

const char *HttpdUrl::Query (void);

Returns a pointer to the query string of this URL If no query string is present then NULL is returned.

Port

HttpdIpPort HttpdUrl::Port (void);

This method returns the port the URL references. If no port is specified then the appropriate port for the
scheme is returned.

StandardPort

bool HttpdUrl::StandardPort (void);

This method returns true if the port is the default for the scheme of the URL and need not be specified. If
false is returned then the port is special and needs to be specified for this scheme.

Url

const char *HttpdUrl::Url (void);

Returns a pointer to the URL that was parsed. This method will never return NULL if a URL has been
parsed.

Authority

const char *HttpdUrl::Authority (void);

Returns a pointer to the authority information of the URL. If the URL does not contain any authority
information then NULL is returned.

IsRelative

bool HttpdUrl::IsRelative (const char *p_relative);

This method determines if p_relative is a component relative to this URL. If true is returned then
p_relative can be converted to an absolute URL using the Relative method, described below.

Relative

char *HttpdUrl::Relative (const char *p_relative);

This method returns an absolute URL that is the current URL adjusted by p_relative. NULL is
returned upon failure. If successful it is the caller's responsibility to free the returned string (using
HttpdOpSys::Free).

IsSecure

bool HttpdUrl::IsSecure (void);

This method determines if the URL is “secure”. For example a URL is considered secure if the transport
for the scheme is SSL.

Core API Reference

52

HostNameMatchesHeader

bool HttpdUrl::HostNameMatchesHeader (const char *p_host_header);

This method determines if the hostname portion of the Host: header matches the host used in the URL

SeparatePath

char **HttpdUrl::SeparatePath (const char *p_path);

This static method separates p_path into an array of components. If successful it returns a pointer to an
array of strings. Each string is the decoded path component (decoded). The returned array is terminated
by a NULL entry. If unsuccessful then NULL is returned.

It is the responsability of the caller to release the memory allocated by the array by calling the
FreePathList method.

FreePathList

void HttpdUrl::FreePathList (char **pp_path);

This static method frees the memory allocated by the SeparatePath method.

TrimLastEntry

void HttpdUrl::TrimLastEntry (char **pp_path);

This static method removes the very last entry (if one exists) of the provided path array. Typically this
final component is determined to be a file name while all of the other components are directories.

PathIsSubset

bool HttpdUrl::PathIsSubset (const char *const *pp_base, const char
*const *pp_path);

This static method determines if pp_base contains pp_path.

HttpdCgiParameter Reference

Introduction
Serving anything more complex than static documents via HTTP typically requires use of the Common
Gateway Interface, or CGI. CGI parameters are passed by encoding them in URI strings, or through use of
the POST method. Seminole provides common mechanisms to decode and parse CGI parameters within
the HttpdCgiParameter class.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Core API Reference

53

Public Methods

ParseUriString

HttpdCgiParameter *HttpdCgiParameter::ParseUriString (const char
*p_query);

Given a set of URL-encoded CGI parameters in p_query, returns a pointer to a HttpdCgiParameter
object containing the decoded parameters. Each subsequent parameter can be obtained by following each
HttpdCgiParameter's mpNext pointer. NULL is returned if there are no encoded parameters in
p_query.

The caller is expected to free the returned pointer using HttpdCgiParameter::FreeList, if the call is
successful.

ParsePostData

HttpdCgiParameter *HttpdCgiParameter::ParsePostData (HttpdRequest
*p_request);

Parse data sent via the HTTP POST method, in the request p_request. A pointer to a
HttpdCgiParameter object containing the decoded parameters is returned. Each subsequent
parameter can be obtained by following each HttpdCgiParameter's mpNext pointer. NULL if none
are found or there is an error in processing.

The caller is expected to free the returned pointer using HttpdCgiParameter::FreeList, if the call is
successful.

ParseFormData

HttpdCgiParameter *HttpdCgiParameter::ParseFormData (HttpdRequest
*p_request);

This method parses all form data from the request. Pairs from the query string appear first in the resultant
list followed by any posted form data (if the method is POST).

The caller is expected to free the returned pointer using HttpdCgiParameter::FreeList, if the call is
successful.

ParseString

HttpdCgiParameter *HttpdCgiParameter::ParseString (char *p_attr);

Given a set of URL-encoded CGI parameters in p_attr, returns a pointer to a HttpdCgiParameter
object containing the decoded parameters. Each subsequent parameter can be obtained by following each
HttpdCgiParameter's mpNext pointer. NULL is returned if there are no encoded parameters.

The caller is expected to free the returned pointer using HttpdCgiParameter::FreeList, if the call is
successful.

Important

The attribute string may only be parsed once. For efficiency reasons the parsing modifies
the string in place. It is important that the string not be parsed again. If the parsing

Core API Reference

54

must be performed more than once then a copy of the string should be made (using
HttpdUtilities::SaveString).

FreeList

void HttpdCgiParameter::FreeList (HttpdCgiParameter *p_list);

Destroys a HttpdCgiParameter object, and frees its resources. CGI handlers should call this method
when finished with their processing.

Find

const char *HttpdCgiParameter::Find (const char *p_name);

Find the named parameter from the current node forward. Typically this method is called from the first
node in the list but it can be used to walk a list with multiple parameters of the same name.

On success this method returns the value of the found node. NULL is returned on error.

FindNode

HttpdCgiParameter *HttpdCgiParameter::FindNode (const char *p_name);

Find the named parameter from the current node forward. Typically this method is called from the first
node in the list but it can be used to walk a list with multiple parameters of the same name.

On success this method returns the address of the found node. NULL is returned on error.

Lookup

HttpdCgiParameter *HttpdCgiParameter::Lookup (HttpdCgiParameter
*p_list, const char *p_name);

Find the named parameter in the list.

On success this method returns the address of the found node. NULL is returned on error. If p_list is
NULL then the list is considered empty and NULL is always returned.

CompareLists

bool HttpdCgiParameter::CompareLists (const HttpdCgiParameter
*p_list_a, const HttpdCgiParameter *p_list_b);

This static method determines if the contents pointed to by p_list_a are identical (in both value and
order) to the nodes pointed to by p_list_b.

If the two lists are identical true is returned. If they are not identical then false is returned.

CopyList

bool HttpdCgiParameter::CopyList (HttpdCgiParameter *&p_dest, const
HttpdCgiParameter *p_src);

This static method copies all of the nodes pointed to by p_src into a new list with the first node pointed
to by p_dest. If successful true is returned. If there is insufficient memory then false is returned.

Core API Reference

55

Public Data

mPair

HttpdPair mPair;

The parameter name and value of this HttpdCgiParameter.

mpNext

HttpdCgiParameter *mpNext;

A pointer to the next HttpdCgiParameter object on the list, or NULL if this object is the last member
of the list.

HttpdCgiHash Reference

Introduction
The HttpdCgiParameter class is designed to be generic. The parameters are stored in a linked list to preserve
order and allow for duplicate parameters. The intention was to allow anything from a remote procedure
call interface to a real-time data stream to be transported using CGI parameter encoding. The cost for that
flexibility is speed. Searching for a particular parameter by name linearly scans the entire parameter list.

HttpdCgiHash re-orders the nodes of a HttpdCgiParameter list to make searching for parameters
by name significantly faster. This class takes advantage of the fact that after parsing CGI parameters are
stored in a singly linked list. It is a very easy transform to convert the linear list to an open-chained hash
table. The nodes are not copied, they are re-linked in place into the appropriate bucket.

The HttpdCgiHash also behaves as an array of pointer to HttpdCgiParameter objects. The array
is always HTTPD_CGI_HASH_SIZE (defined by the CGI_HASH_SIZE build parameter) elements in
size. This behavior allows easy iteration of a collection of CGI parameters as long as the order is not
important. For example:

 for(size_t i = 0; i < HTTPD_CGI_HASH_SIZE; i++)
 for(HttpdCgiParameter *p_param = hash[i];
 p_param != NULL;
 p_param = p_param->mpNext)

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdCgiHash

HttpdCgiHash::HttpdCgiHash (void);

Core API Reference

56

The constructor of HttpdCgiHash initializes the object. After initialization the hash is empty. Nodes
can be added with the Append method.

~HttpdCgiHash

HttpdCgiHash::~HttpdCgiHash (void);

It is important to understand that any parameter nodes contained in the hash are owned by the hash. When
the HttpdCgiHash instance is destroyed, so are all the nodes contained in the hash.

Append

void HttpdCgiHash::Append (HttpdCgiParameter *p_list);

The CGI parameters contained in p_list are appended to the hash. After being appended,
the nodes in p_list are owned by the hash table. They should not be released (via
HttpdCgiParameter::FreeList) or manipulated in any way.

It is possible to append several sets of parameters to the hash table. In this case the hash table contains
the union of all of the appended sets of parameters. In the cases of duplicate parameter names all of the
nodes are stored but in an unpredictable order.

Find

HttpdCgiParameter HttpdCgiHash::Find (const char *p_name);

Find the named parameter in the hash. If a parameter by the name of p_name exists then the address of the
first parameter by that name in the chain is returned. If no parameter by that name exists, NULL is returned.

If more than one parameter with the name p_name exists in the hash, the Find method can be applied
to the returned pointer to find additional nodes with the same name.

Remove

void HttpdCgiHash::Remove (HttpdCgiParameter *p_obj);

Remove p_obj from the table. The object must be a member of the hash or the behavior is undefined.
After removal, the object must be freed using HttpdCgiParameter::FreeList when it is no longer
needed.

HttpdMultipartCgiParser Reference

Introduction
To support HTML forms with file upload a special MIME encoding of multipart/form-data is
used with the POST method. This class parses POST request data in this format. This class may also be
subclassed to handle incoming data without storing it in memory or to handle binary data that does not
store well as a string.

For low-memory devices this feature is very important. Incoming data can be processed as it is received
by substituting a customized subclass of HttpdWritable for a particular parameter.

Alternatively data can be processed by “pulling” data directly from an instance of
HttpdBoundaryReader.

Core API Reference

57

Subclassing Using a Push Model
When using a push model the OpenDestination and CloseDestination methods are typically
modified to special case certain parameters. Let us assume we are loading a binary file into a
HttpdStringSink for later firmware updates.

 class Update_MultipartParser : public HttpdMultipartCgiParser
 {
 HttpdStringSink mFirmware;
 bool mFirmwareOpen;

 protected:
 virtual int OpenDestination(State &state, HttpdWritable *&p_dest);
 virtual int CloseDestination(State &state,
 HttpdWritable *p_dest,
 int rc);
 };

To open the destination it is necessary to examine state and determine if this is part requires special
processing:

 int Update_MultipartParser::OpenDestination
 (
 HttpdMultipartCgiParser::State &state,
 HttpdWritable *&p_dest
)
 {
 if (strcmp(state.mAttributes.mpName, "new_fw_file") == 0)
 {
 // If the firmware destination is open then the client is confused...
 // The constructor of this class sets this to false. So just ignore
 // this data from the confused client -- our firmware files are
 // checksummed anyhow.
 if (mFirmwareOpen)
 {
 p_dest = HttpdNullSink::Null();
 return (0);
 }

 // Clear out any previous content that may be in there.
 HttpdOpSys::Free(mFirmware.TakeBuffer());

 // Here we are!
 p_dest = &mFirmware;
 mFirmwareOpen = true;
 return (0);
 }

 // For other fields -- handle normally.
 return (HttpdMultipartCgiParser::OpenDestination(state, p_dest));
 }

Core API Reference

58

The close case is similar but there are a few additional things to check for:

 int Update_MultipartParser::CloseDestination
 (
 HttpdMultipartCgiParser::State &state,
 HttpdWritable *&p_dest,
 int rc
)
 {
 // If this is our special-cased part:
 if (p_dest == &mFirmware)
 {
 // If successful.
 if (rc == 0)
 {
 // Do whatever application specific processing is needed.
 …
 }
 else // Clear out any partial data on error.
 HttpdOpSys::Free(mFirmware.TakeBuffer());

 // Pass the status up to the higher layers.
 return (rc);
 }

 // Call the superclass method for default processing.
 return (HttpdMultipartCgiParser::CloseDestination(state, p_dest, rc));
 }

Of course it is possible to use any object that implements the HttpdWritable interface; even files and
sockets are legitimate targets.

Subclassing Using a Pull Model
It isn't always easy or convenient to process data by getting calls to a method in a class. For these cases a
different approach can be taken. Consider the idea of loading an FPGA from a file upload:

 class FPGA_MultipartParser : public HttpdMultipartCgiParser
 {
 protected:
 virtual int HandlePart(State &state, HttpdBoundaryReader &reader);
 };

For a “pull” model only one method must be subclassed. Neither mode is mutually exclusive. The default
implementation of HandlePart is what calls OpenDestination and CloseDestination.
Therefore it is possible to override all three methods and handle each named part differently.

However, with the pull-only approach above HandlePart is implemented as follows:

Core API Reference

59

 int FPGA_MultipartParser::HandlePart
 (
 HttpdMultipartCgiParser::State &state,
 HttpdBoundaryReader &reader
)
 {
 // Is this our special part?
 if (strcmp(state.mAttributes.mpName, "fpga_image") == 0)
 {
 int rc;

 for(;;)
 {
 const void *p_buffer;
 size_t len;

 // Read a block of data. Use the normal timeout used for other
 // CGI processing. We can of course us a different timeout if
 // necessary here.
 rc = reader.Read(p_buffer, len, HTTPD_CGI_TIMEOUT);
 if (rc == HttpdBoundaryReader::HTTPD_MIME_BOUNDARY)
 return (0); // Nothing left to read.
 else if (rc != 0)
 break; // Error.

 // Process the buffer of len bytes here.
 …
 }

 return (rc);
 }

 // Otherwise perform the normal processing.
 return (HttpdMultipartCgiParser::HandlePart(state, reader));
 }

Here the data can be processed in place without buffering it up or wrapping up processing into a self-
contained object.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdMultipartCgiParser

HttpdMultipartCgiParser::HttpdMultipartCgiParser (HttpdRequest
*p_request);

Core API Reference

60

This constructor initializes the parser and associates it with the request p_request. To parse the
incoming data use the HttpdMultipartCgiParser::Parse method.

List

HttpdCgiParameter *HttpdMultipartCgiParser::List (void);

This method gets the current parameter list. A pointer to the first node in the parameter list is
returned. Unless the list is removed with TakeList, the list will be automatically destroyed when the
HttpdMultipartCgiParser object is destroyed.

TakeList

HttpdCgiParameter *HttpdMultipartCgiParser::TakeList (void);

This method is similar to HttpdMultipartCgiParser::List except that it removes the current
list of parameters from the parser object.

If the parser is re-invoked (via Parse) after the list is taken, it is as if the parser was newly constructed
and had no parameters.

Note

It is the responsibility of the caller to free the list using HttpdCgiParameter::FreeList.

OpenDestination

int HttpdMultipartCgiParser::OpenDestination
(HttpdMultipartCgiParser::State &state, HttpdWritable *&p_dest);

This method gets a target HttpdWritable object for a parameter encoded as one part of a MIME
multipart message. The default behavior implemented by this method is to store the parameter data into
a HttpdCgiParameter node.

However, for large fields (such as files uploaded or large text areas) this method can be overridden by
subclasses to provide a different object for handling the data. The returned writable object in p_dest
could do anything, even process the data as it is received.

To identify the particular parameter the state object is passed to this method. This object contains all
of the specifics for this particular multipart entity:

Members of HttpdMultipartCgiParser::State

Type: HttpdMimeParser
Name: mMimeParser
Description: Each entity in multipart MIME data has its own set of headers. This object is the parser used
to parse those headers. Additional headers (such as Content-Type) can be extracted from this parser.
Type: Attributes
Name: mAttributes
Description: This structure contains various attributes about the current entry.

The Attributes structure contains the details for processing the current entry. It is defined as follows:

Members of HttpdMultipartCgiParser::Attributes

Type: char *
Name: mpName

Core API Reference

61

Description: This is the name (as defined by the HTML NAME attribute of the INPUT element) of the
parameter.
Type: char *
Name: mpFileName
Description: For input elements of type FILE, this is the client-specific name of the file.
Type: const char *
Name: mpContentDisposition
Description: This is the value of the Content-Disposition MIME header of this particular multipart
entity.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned. If no error is returned, it
is expected that p_dest is pointed to a valid object.

CloseDestination

int HttpdMultipartCgiParser::OpenDestination
(HttpdMultipartCgiParser::State &state, HttpdWritable *p_dest, int rc);

This method is called after all the data for a particular field is written to p_dest object obtained via
OpenDestination.

Because this function performs double duty, cleaning up the resources used by p_dest and storing or
processing data, the rc argument is used to indicate the success of reading the data. A non-zero value of
rc indicates that the read was unsuccessful and whatever data was written to p_dest should be ignored
(or undone if data was being processed as it was read). Cleanup of the resources should be performed in
either case.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned. If rc was non-zero, that
value should be returned in place of success.

HandlePart

int HttpdMultipartCgiParser::HandlePart
(HttpdMultipartCgiParser::State &state, HttpdBoundaryReader &reader);

The default implementation of this method calls OpenDestination, pumps the contents of the part
into the opened destination, and then cleans up the destination.

For clients wishing to use the HttpdBoundaryReader interface directly (for example to use a “pull” model
of processing the data) this method can be overridden.

Note

If success is returned then reader should have absorbed the boundary string. Do not return
0 if this is not the case.

Parse

int HttpdMultipartCgiParser::Parse (void);

This method invokes the parser. The multipart body is separated into entities and each one is written to
an object provided by the overridable OpenDestination method. The default behavior of which is to
append each parameter in a list of HttpdCgiParameter objects.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned. Zero indicates success and
that a valid parameter list can be obtained via HttpdMultipartCgiParser::List.

Core API Reference

62

Important

The caller of this method must validate that the MIME type of the incoming POST request
is in fact multipart/form-data.

HttpdCgiWriter Reference

Introduction
HttpdCgiWriter objects are used to generate query strings to objects that implement the HttpdWritable
interface.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdCgiWriter

HttpdCgiWriter::HttpdCgiWriter (HttpdWritable *p_target, bool
compact_space = false);

Constructs a HttpdCgiWriter object that writes the query string to p_target. The ? separator
between the file path and the query string is not written by this class and, if desired, must be written
manually before this object is constructed.

If compact_space is true then space characters (ASCII 0x20) are replaced with plus characters ("+").

Write

int HttpdCgiWriter::Write (const char *p_name, const char *p_value);

Append the name and value parameter to the query string being assembled in the target sink.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WriteNode

int HttpdCgiWriter::WriteNode (const HttpdCgiParameter *p_node);

Append the contents of p_node to the query string being assembled in the target sink.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WriteList

int HttpdCgiWriter::WriteList (const HttpdCgiParameter *p_list);

Append the contents of every node in p_list to the query string being assembled in the target sink.

Core API Reference

63

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Reset

void HttpdCgiWriter::Reset (void);

Reset the writer for a new string of parameters.

HttpdAttributeParser Reference

Introduction
Several extensions to the values of the MIME headers of an HTTP request are done using token/value
pairs. These pairs typically (but not always) follow data terminated by a semicolon (;).

The HttpdAttributeParser class parses these kinds of attributes. Because most of these attributes
are clauses that can be processed without much state information, the interface of this class is designed to
allow easy, procedural looping of the name/value pairs.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdAttributeParser

HttpdAttributeParser::HttpdAttributeParser (const char *p_front, const
char *p_valueterm = …);

Initialize the attribute parser to begin parsing the string pointed to by p_front.

If p_valueterm is specified then this is the set of characters that terminate an unquoted value. See
HttpdUtilities::DequoteToken for more information.

NextAttribute

bool HttpdAttributeParser::NextAttribute (void);

This method should be called to obtain each successive name/value pair. After each call, the appropriate
values are in the mpKey and mpValue data members.

This method returns true if there are more name/value pairs to be obtained or false if there are no more.

Public Data

mpKey

This data member contains the key (name) portion of the attribute pair. It points to internally allocated
storage that is managed by the object. If the caller wishes to keep the string then this data member can be

Core API Reference

64

set to NULL before calling NextAttribute again and the buffer will not be freed. It is then the up to
the new owner of this string to free it using HttpdOpSys::Free.

If NextAttribute returns true then this member will never be NULL.

mpValue

This data member contains the value portion of the attribute pair. For a standalone token this data member
will be set to NULL. If not NULL it points to internally allocated storage that is managed by the object.
If the caller wishes to keep the string then this data member should be set to NULL before calling
NextAttribute again as with the mpKey member.

mpFront

This is a pointer within the input string. This pointer is advanced as the parse progresses. It can be used to
do early termination by looking for characters or strings before calling NextAttribute.

HttpdCookies Reference

Introduction
This class provides a mechanism for sending Set-Cookie headers to clients and parsing Cookie
headers from clients. Instances of HttpdCookies are associated with a particular HttpdMimeParser
(which is part of a HttpdRequest object). Once associated, cookies associated with a request may be
enumerated using a loop.

A static method, HttpdCookies::SendCookie is also provided to generate Set-Cookie headers
to a client via the HttpdDynamicOutput class.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdCookies

HttpdCookies::HttpdCookies (HttpdMimeParser &mime_parser);

Initialize the cookie iterator to begin parsing the cookies associated with the MIME headers received in
mime_parser. The HttpdMimeParser passed into this construct must have already completed its
parsing phase (i.e. HttpdMimeParser::Finish must have already been called on the object).

NextCookie

bool HttpdCookies::NextCookie (void);

This method should be called to obtain each successive name/value cookie pair. After each call, the cookie
name is available using the Key method and the value of the cookie is available using the Value method.

Core API Reference

65

This method returns true if there are more name/value pairs to be obtained or false if there are no more.

It is important to realize that clients can send no cookies in a request. Therefore this method should always
be called first (typically as the conditional of a while loop) to determine if the Key and Value methods
should even be called.

Key

const char * HttpdCookies::Key (void);

This method should be called to obtain the name of the current cookie. The returned pointer is only valid
for this iteration and its contents will change after the next call to NextCookie. This method never
returns NULL.

Note

This method should not be called until NextCookie has been called and returned true.

Value

const char * HttpdCookies::Value (void);

This method should be called to obtain the value of the current cookie. The returned pointer is only valid
for this iteration and its contents will change after the next call to NextCookie. This method may return
NULL for value-less cookies.

Note

This method should not be called until NextCookie has been called and returned true.

SendCookie (Stream version)

int HttpdCookies::SendCookie (HttpdWritable *p_out, const char *p_key,
const char *p_value, …);

This method generates a Set-Cookie header with one or more name/value pairs. The pairs are provided
as a variable list of arguments. Either two valid pointers must be provided or a terminator (zero cast to a
constant character pointer) can be passed.

This method is a static method and is not associated with any instances of HttpdCookies. The resulting
header is sent to the p_out stream. When using HttpdDynamicOutput the p_out parameter should
be obtained from the HttpdDynamicOutput::Headers.

It is important to remember that the terminator must always be included (even for sending a single pair):

 HttpdCookies::SendCookie(p_out,
 "SESSION_ID",
 "123456",
 (const char *)0);

When sending more than one header it is also important to remember that the key portion and value portion
are distinct. The pairs are always presented in key then value order:

Core API Reference

66

 HttpdCookie::SendCookie(p_out,
 "SESSION_ID",
 "123456",
 "USERID",
 (const char *)user_id,
 "SYSTEM",
 "control",
 (const char *)0);

It is also important that any pointers should be explicitly cast to constant character pointers to avoid any
variable argument pitfalls.

SendCookie (Dynamic version)

int HttpdCookies::SendCookie (HttpdDynamicOutput *p_out, const char
*p_key, const char *p_value, …);

This method generates a Set-Cookie header with one or more name/value pairs. It is called in a
similar way to the overloaded version that takes a HttpdWriteable pointer. This version uses a
HttpdDynamicOutput object as the target.

HttpdAuthenticator Reference

Introduction
HTTP provides an authentication framework that can handle multiple authentication
schemes. HttpdAuthenticator provides a framework for authenticating requests with a
minimum of programming effort. For example authentication can be performed during the
HttpdFileHandler::ProcessUri phase of request processing.

The authentication framework is defined in a header file called sem_auth.h. In order to use any of these
classes or methods, this header file must be included.

Note

HttpdAuthenticator is an abstract base class. It must be subclassed and provided with
methods for getting credentials.

Public Methods

Authenticate (Default version)

bool HttpdAuthenticator::Authenticate (HttpdRequest *p_request);

This method should be called during request processing for any request which must be authenticated. If
this method returns false, no further processing of the request should be performed; the correct response
will be sent. If this method returns true then the request should be processed as normally.

This version of the Authenticate utilizes all of the enabled authentication schemes. The version below
allows fine-grained control of what schemes are used and in what order they are presented.

Core API Reference

67

Authenticate (Specific version)

bool HttpdAuthenticator::Authenticate (HttpdRequest *p_request, const
HttpdAuthSchemes *p_schemes);

This method is identical to the default version of Authenticate (described above) except that precise
control over what authentication schemes (and in what order) are used.

The array pointed to by p_schemes must be terminated by a value of End.

Create

int HttpdAuthenticator::Create (void);

This method initializes an HttpdAuthenticator class for use. It must be called successfully before
any other methods can be accessed.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned, or zero on success.

SecureStrEqu

bool HttpdAuthenticator::SecureStrEqu (const char *p_str1, const char
*p_str2);

This static method compares p_str1 with p_str2. If the strings are equal then true is returned;
otherwise false is returned.

This method is more secure than strcmp because it defends against timing attacks. No matter how the
contents of the strings differ the amount of CPU time this method takes to execute is constant. This implies
that the time it takes to reject a valid password can not be used to guess successive characters of the correct
password.

The default implementation of ValidatePassword calls this method to compare the provided
password with the correct one. Other circumstances where timing attacks are possible should also use this
method.

Note

The timing of this method is only consistent if the INC_PASSWD_BLINDING option is
enabled.

The implementation of this method is tuned to use as few conditional branches as possible.
Furthermore local variables are declared volatile to provide consistent behavior across
compilers. However if security is a high concern then manual inspection of the generated
assembly code for this method is recommended.

Protected Methods

Realm

void HttpdAuthenticator::Realm (HttpdRequest *p_request, char
*p_realm);

Core API Reference

68

Note

This method is pure virtual. It must be overridden in subclasses with the appropriate
functionality.

This method is called to obtain the name of the realm for a given request. The provided buffer, p_realm is
HTTPD_MAX_REALM_LENGTH bytes in length. The value of the HTTPD_MAX_REALM_LENGTH
constant is controlled by the MAX_REALM_LENGTH build-time parameter.

GetPassword

bool HttpdAuthenticator::GetPassword (const char *p_user, HttpdRequest
*p_request, char *p_buf);

Note

This method is pure virtual. It must be overridden in subclasses with the appropriate
functionality.

This method is called to obtain the password of the user p_user for a given request. The
provided buffer, p_buf is HTTPD_MAX_PASSWD_LENGTH bytes in length. The value of the
HTTPD_MAX_PASSWD_LENGTH constant is controlled by the MAX_PASSWD_LENGTH build-time
parameter.

If the user specified in p_user does not exist or there is an internal error getting the password then false
should be returned. If p_buf is set to the correct password then true should be returned.

ValidatePassword

bool HttpdAuthenticator::ValidatePassword (const char *p_user,
HttpdRequest *p_request, const char *p_provided_password);

This method is called to validate that p_provided_password is in fact a valid password for p_user.
The default implementation calls GetPassword and compares the passwords.

Subclasses may override this method if they wish to customize the password matching behavior. For
example supporting case-insensitive passwords. Another reason to override this method may be that the
password can't be easily obtained and it can only be validated. For example if the password is stored as
a one-way hash or backed by a RADIUS server.

If the password and username combination is not valid for any reason then this method should return false.

Note

This method may not be called for all authorization schemes. In particular the digest
authentication scheme does not provide the password to the server. Authentication schemes
where the provided password is not available call GetPassword directly.

Override this method only if you understand all of the consequences fully.

DigestAuthHeader

void HttpdAuthenticator::DigestAuthHeader (HttpdRequest *p_request,
bool stale);

Core API Reference

69

This method is called for an unauthorized client (for whatever reason) when digest authentication is
enabled. The default behavior is to propose digest authentication by adding a WWW-Authenticate
header for the digest method.

If this method is being called because credentials were supplied against a stale nonce then stale will
be true.

AuthorizeDigest

bool HttpdAuthenticator::AuthorizeDigest (HttpdRequest *p_request,
const char *p_resp, const HttpdAuthSchemes *p_schemes);

This method is called when a request includes a WWW-Authenticate header for the digest
authentication method. It should return true if the request is authorized or false if the request was declined.
The digest parameters (following the method name in the WWW-Authenticate header) are given to
this method as p_resp.

BasicAuthHeader

void HttpdAuthenticator::BasicAuthHeader (HttpdRequest *p_request);

This method is called for an unauthorized client (for whatever reason) when basic authentication is enabled.
The default behavior is to propose basic digest authentication by adding a WWW-Authenticate header
for the current realm.

AuthorizeBasic

bool HttpdAuthenticator::AuthorizeBasic (HttpdRequest *p_request, const
char *p_resp, const HttpdAuthSchemes *p_schemes);

This method is called when a request includes a WWW-Authenticate header for the basic authentication
method. It should return true if the request is authorized or false if the request was declined. The parameters
(following the method name in the WWW-Authenticate header) are given to this method as p_resp.

NotAuthorized

void HttpdAuthenticator::NotAuthorized (HttpdRequest *p_request, const
HttpdAuthSchemes *p_schemes);

This method is whenever (and for whatever reason) a client has requested a resource that it did not present
proper credentials for. The default behavior is to send a HTTPD_RESP_UNAUTHORIZED (401) response
with the authentication challenges listed in p_schemes.

HttpdSessionManager Reference

Introduction
HTTP transactions are stateless. The HttpdSessionManager class maintains a collection of
HttpdSessionObject objects. The session manager addresses the objects it manages by key string.
The key string can be stored in the client as a cookie or hidden form field. HttpdSessionManager
does not force a policy of how the key is stored on the client side.

The number of HttpdSessionObject that can be stored in the session manager is fixed at creation
time. When a new session needs to be created and there is no room the oldest (inactive) session is purged

Core API Reference

70

to make room for the new one. To avoid sessions that are being used to process an active request from
being deleted, session objects are reference counted.

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

Create

int HttpdSessionManager::Create (size_t count);

Initialize the session manager to contain count session objects. This method must be called before any
other methods of the object with the exception of the methods that configure background scrubbing:
MaxSessionAge, CycleTime, and ScrubbingBatchSize.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

CycleTime (setter)

void HttpdSessionManager::CycleTime (unsigned long cycle_time);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. This method sets
the time between scrubbing intervals (in milliseconds). During each scrubbing interval a batch (controlled
by ScrubbingBatchSize) of sessions are examined. These two parameters control the amount of
processor time devoted to scrubbing inactive sessions.

Setting this parameter to 0 disables background scrubbing for this instance of session manager. However if
background scrubbing is to be disabled it must be done by calling this method with a parameter of 0 before
Create is called. Alternatively, the default value is zero and the call to this method can be avoided.

Enabling background scrubbing is a security enhancement. The session manager is always free to eject an
old session if no space can be found. However, old sessions are never timed out if background scrubbing
is not enabled. This leaves open the possability of the session key being obtained and then utilized by
an attacker.

MaxSessionAge (setter)

void HttpdSessionManager::MaxSessionAge (long max_age);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It sets the
maximum amount of time (in seconds) that a session can live without being accessed. Once that time is
exceeded the session is deleted.

Note

When INC_BACKGROUND_SESSION_PURGE is enabled and the cycle time is set to a
non-zero value then this method must also be called to set the initial value before Create
can be called.

ScrubbingBatchSize (setter)

void HttpdSessionManager::ScrubbingBatchSize (size_t batch_size);

Core API Reference

71

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It sets the size of
a scrubbing batch. This is the number of sessions that are examined during a scrubbing cycle.

Note

When INC_BACKGROUND_SESSION_PURGE is enabled and the cycle time is set to a
non-zero value then this method must also be called to set the initial value before Create
can be called.

CycleTime (getter)

unsigned long HttpdSessionManager::CycleTime (void);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It returns the
current interval between session scrubbing cycles (in milliseconds).

MaxSessionAge (getter)

long HttpdSessionManager::MaxSessionAge (void);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It returns the
current maximum allowable session age (in seconds).

ScrubbingBatchSize (getter)

size_t HttpdSessionManager::ScrubbingBatchSize (void);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It returns the
current session scrubbing batch size.

Insert

int HttpdSessionManager::Insert (HttpdSessionObject *p_obj);

This method inserts p_obj into the session manager. If the object is inserted successfully (0 is returned)
then the session was inserted. Upon successful return, the session will be given a reference count of 1
and should be unlocked (via Unlock) when the pointer is no longer needed (typically at the end of a
HTTP transaction).

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

UnlockedInsert

int HttpdSessionManager::Insert (HttpdSessionObject *p_obj);

This method is identical to Insert except the session manager mutex is not locked. Callers must obtain
the lock prior to calling this method.

Find

int HttpdSessionManager::Find (const char *p_session_id,
HttpdSessionObject *&p_obj);

This method uses the session identifier (obtained via the HttpdSessionObject::SessionId
method) in p_session_id to locate the session object. This string is typically stored on the client either

Core API Reference

72

in a cookie or passed as a hidden form variable. If the session is still stored in the container its reference
count is increased and its address is placed into p_obj.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

UnlockedReference

void HttpdSessionManager::UnlockedReference (HttpdSessionObject
*p_obj);

This method increments the reference count of p_obj. Callers must lock the session manager mutex
before calling this method. This is typically done when searching for a session object in some other manner
(while holding the lock) and then referencing the object so the session manager lock can be released.

Unlock

void HttpdSessionManager::Unlock (HttpdSessionObject *p_obj);

Whenever an object is inserted (via HttpdSessionManager::Insert) or retrieved (via
HttpdSessionManager::Find) its reference count is incremented to prevent it from being
destroyed by another thread.

When the session object is no longer needed for the remaining processing of the request it should be
unlocked using this method.

Delete

void HttpdSessionManager::Delete (HttpdSessionObject *p_obj);

If a session object is to be destroyed (such as a user logging out, for example) then a pointer to the session
object can be passed to Delete instead of Unlock to destroy the object. The session object should be
locked by at least one thread.

If the session object is in use by other threads then it is not destroyed until all threads using it unlock it
(via HttpdSessionManager::Unlock).

Mutex

HttpdMutex &HttpdSessionManager::Mutex (void);

The HttpdSessionManager is thread-safe because a HttpdMutex is used to synchronize access to
the list of session objects.

If session objects are tracked in a manner external to the HttpdSessionManager it may be desirable
to have a single lock manage both lists. In these cases this method gives access to the lock used to maintain
the session object list.

There are also non-sychronized versions of the accessor methods that can be called when the lock is
obtained externally via this method.

HttpdSessionObject Reference
Introduction

This class is a base class for objects managed by the HttpdSessionManager class. This class overrides
operator new and operator delete to allocate space using HttpdOpSys::Malloc.

Core API Reference

73

In addition to some helper methods, the HttpdSessionObject class defines some protected data
members that are for the use of the HttpdSessionManager class.

Public Methods

SessionId

void HttpdSessionObject::SessionId (char *p_session_id);

This method obtains the session identifier that can be used to track the session. This should only be called
after a successful insertion of the session object into the manager.

The buffer pointed to by p_session_id, which must be at least HTTPD_SESSION_KEY_LEN
characters in length, is filled in with the session identifier. This string is generally sent to the client
(either as a cookie or hidden form variable) to identify the session object on subsequent requests (via the
HttpdSessionManager::Find method).

Deleted

bool HttpdSessionObject::Deleted (void);

This method returns true if the object has been marked for deletion.

HttpdDynamicOutput Reference

Introduction
Some HTTP features designed to increase efficiency do not work well when the length of the content
is unknown. In particular, persistent connections do not work without a Content-Length: header.
Generating dynamic content is considerably easier when the length does not have to be known in advance.
This is even true of Seminole's template system.

There are several approaches to this problem. The simplest is to close the connection whenever an object
of unknown length is requested. This results in lower throughput and wasted bandwidth. Another option is
to buffer dynamically generated content in memory at the server end. Once it is generated, the length of the
buffered data is known and can then be sent out. Of course, this leads to increased memory consumption
on the server as well as a delay in sending the content. The third solution uses chunked transfer encoding.
This solution sends out the data in small chunks. The length of each chunk is sent along with the chunk
so the receiver can keep in sync. This solution is almost ideal for dynamically generated content but it is
only supported by HTTP/1.1 or higher.

Seminole includes HttpdContentSink and HttpdChunkedSink classes that handle the protocol mechanics of
buffering and chunking content, respectively. The HttpdDynamicOutput class acts as a switchboard
to select these different mechanisms and provide a uniform interface for generating dynamic content.

One of the major goals of Seminole is that it be small but also support as much of the HTTP
protocol as possible. To achieve both of these goals, HttpdDynamicOutput uses conditional
compilation to (optionally) avoid as much support code as possible. The INC_PERSISTENT_CONN,
INC_BUFFER_OUTPUT, and INC_CHUNK_OUTPUT options control how much support code
HttpdDynamicOutput requires.

An important question to ask is should content be written for HEAD requests. The answer is: it depends.
If no content is written then there is no wasted effort in generating it — less CPU load. In this case the

Core API Reference

74

repsonse to the HEAD request will not include a Content-Length header which may be the reason the
HEAD request was submitted.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdDynamicOutput

HttpdDynamicOutput::HttpdDynamicOutput (HttpdRequest *p_request, bool
is_head);

This constructor initializes the dynamic output engine. If the request should only require headers (a HEAD
request, for example) then the parameter is_head should be set to true.

Note

For optimal memory utilization and efficiency it is best if the HttpdDynamicOutput
object can be constructed before the HttpdRequest::Respond or
HttpdRequest::ResponseHeader methods are called. Otherwise, the resulting
headers may be out of sync with the response.

Furthermore, only one HttpdDynamicOutput instance should be associated with a
request. Therefore the HttpdDynamicOutput should be created in the innermost scope
that covers its use. Typically this is the point at which the handler has determined how to
handle the request and dynamically generated output is necessary.

It is normal to construct an instance of this class on the stack and then pass a pointer to it
down to the various routines that generate the content.

Header

void HttpdDynamicOutput::Header (const char *p_name, const char
*p_value);

This method sends a MIME header to the output stream. The p_name should contain the name of the
header without the colon or other separator characters. No processing is done on p_value, however,
multi-line escapes can be included within p_value as long as it does not end with a CRLF (as this is
supplied automatically by this method).

Note

This method can be called as many times as necessary and should follow the call to the
HttpdRequest::Respond method of the request.

HeaderComplete

void HttpdDynamicOutput::HeaderComplete (void);

This method should be called after all headers have been written (via the Header method).

Core API Reference

75

Body

HttpdWritable * HttpdDynamicOutput::Body (void);

This method obtains the object that should receive the dynamically generated content. It is impossible for
this method to return NULL or result in an error.

Note

This method can be called at any point after construction of the HttpdDynamicOutput
object. However, it is very important that no data be written to the object until after the
HeaderComplete method is called.

Headers

HttpdWritable * HttpdDynamicOutput::Headers (void);

This method returns a pointer to a stream that can be used to dump header data to in place of using the
Header method. Like the Header method, data should only be written to this stream after the call to
HttpdRequest::Respond and before the call to HeaderComplete.

This method will never return NULL.

HttpdInboundTransfer Reference

Introduction
HttpdInboundTransfer is used to process received data from an HTTP client; such as POST
requests.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdInboundTransfer

HttpdInboundTransfer::HttpdInboundTransfer (HttpdRequest *p_request,
int &rc);

This function prepares the inbound transfer associated with p_request. The success of
opening the transfer is placed into rc. If the status is non-zero (i.e. an error) then
HttpdInboundTransfer::Receiver should not be called.

Receiver

HttpdReceiver * HttpdInboundTransfer::Receiver (void);

This function returns an interface for reading data from the transfer.

Core API Reference

76

HttpdOutboundTransfer Reference

Introduction
HttpdOutboundTransfer is used to process received data from an HTTP server.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdOutboundTransfer

HttpdOutboundTransfer::HttpdOutboundTransfer (HttpdSocket &socket,
HttpdMimeParser *p_parser, int &rc);

This function prepares the outbound transfer associated with the socket and MIME parser. The
success of opening the transfer is placed into rc. If the status is non-zero (i.e. an error) then
HttpdOutboundTransfer::Receiver should not be called.

Receiver

HttpdReceiver * HttpdOutboundTransfer::Receiver (void);

This function returns an interface for reading data from the transfer.

HttpdTracer Reference

Introduction
The HttpdTracer class provides a simple debugging facility for Seminole This is especially important
when integrating Seminole into an existing system. In order to remain “lean and mean” Seminole uses the
C++ preprocessor (along with HttpdTracer) to show whats going on.

Tracing support is enabled by setting the INC_TRACING build option to a non-zero (true) value. If
INC_TRACING is defined to be 0 then tracing has no runtime overhead impact whatsoever.

Seminole includes many built-in trace points at interesting locations that should allow easy bring-up of
even the most complex configurations without resorting to a debugger (well a debugger on Seminole).

Using the Tracing Macros
In order to trace a particular block of code the tracer must be declared. This is done using the
HTTPD_DIARY macro rather than a standard C++ declaration. Once declared the tracer object can
be used to print informational messages using HTTPD_NOTE. Expression values can be logged using
HTTPD_LOG. In addition, if the type of an expression needs to be forced to a particular type there are
variants of HTTPD_LOG which include a type cast: HTTPD_LOGL for long integers, HTTPD_LOGUL
for unsigned long integers, and HTTPD_LOGP for pointers.

Core API Reference

77

The HTTPD_DIARY macro takes an argument that defines the minimum trace level required
to display the messages. The trace level is controlled with the static member variable
HttpdTracer::mTraceLevel. The trace level is divided into discrete ranges that roughly parallel
the various operational phases of Seminole Trace messages for a particular diary will only be displayed if
mTraceLevel is equal to or above the level associated with the HTTPD_DIARY macro call. The trace
levels are defined with an enumeration inside the HttpdTracer class:

Tracing Levels

NONE No tracing should be performed.

STARTUP Tracing for the various startup phases such as the spawning of the acceptor and
the installation of handlers.

REQUESTS Tracing for incoming requests and the basic processing mechanism.

AUTH The authentication phase is typically done after the incoming request. This
trace level is after REQUESTS but takes place before HEADERS. Additional
authentication may be performed later on, this trace level is merely a convention.

HEADERS This tracing phase is typically associated with the processing the headers of an
associated request.

PREPROCESSING This phase is used to denote any additional processing before the real “meat” of
request processing.

LOGIC This phase denotes the core processing logic in the Handle method of the handler.

RESPONSE This phase is used to denote the delivery of the HTTP response to the client and
any logic (such as template evaluation) involved in this phase.

POSTPROCESSING This phase is used to denote any additional processing after the RESPONSE phase.
A good example is logging or auditing of requests which is generally performed
after the response is delivered for performance reasons.

CLIENT This level covers the operation of HttpdClient and its associated classes during
HTTP client operations.

ALL This tracing level covers all phases.

Important

Only one tracer can be declared in a single scope, so each scope should contain only one
call to the HTTPD_DIARY macro. Typically a single call at the beginning of a routine is
sufficient.

As a simple example, this function is adorned with tracing:

 void MyFrobalizer(int a, char *p_address)
 {
 bool free_server;

 HTTPD_DIARY(STARTUP);

 HTTPD_LOG(a);

Core API Reference

78

 if (p_address == NULL)
 {
 HTTPD_NOTE("No address provided, getting it from the server");
 p_address = GetFromServer();
 free_server = true;
 }

 int connector = ConnectTo(p_address);
 int offset = DefaultConnectorOffset();
 HTTPD_LOG(connector + offset);

 DoSomething(connector, offset);
 if (free_server)
 HttpdOpSys::Free(p_address);
 }

As you can see the HTTPD_LOG macro conveniently takes an expression and logs it. Using the stringizing
operator of the preprocessor your trace includes the expressions along with time stamps and file names
and line numbers.

79

Chapter 3. Support Classes
There are many classes that are part of the public API in Seminole although they are also used “under the
covers” to support other classes. Just as with the much of the core API these classes also may be used
without a webserver instance if useful.

HttpdFileSystem Reference

Introduction
An HttpdFileSystem is an abstraction of a particular “namespace” of files. This class is derived and
implemented by various file system providers.

Filesystem/backing store concepts can range from a fully hierarchical tree with long filenames to a flat
namespace with very constrained naming conventions, or possibly a single binary image containing
discrete chunks of data. Seminole abstracts filesystem services using an abstract interface built around the
HttpdOpSys, HttpdFileInfo, HttpdFile, and HttpdDirectory objects. The abstraction is
designed to be as generic as possible. For example, some filesystems have two distinct concepts when
opening up a file:

• Locating the file and computing an “internal identifier” from the name.

• Actually transporting the file data from the storage medium to the requesting code.

Seminole separates the concept of the file metadata from the data. This makes opening a file a two-step
process:

1. Build a HttpdFileInfo object that is attached to the file.

2. Open the file based on the HttpdFileInfo object and the requested access.

In the case of filesystems where these two concepts are a single atomic operation, the abstraction layer can
simply keep a file name as part of the HttpdFileInfo object.

There can be any number of file systems present at the same time, all abstracted by HttpdFileSystem
instances. Instances of this interface serve as factories for file info, file, and directory objects from a file
system.

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

FileInfo (From path)

int HttpdFileSystem::FileInfo (const char *p_path, HttpdFileInfo &info);

This method obtains information about a file named p_path and places it into info. The info object
can then be used to open the file (or directory) for access.

Support Classes

80

In addition, the data within the info object can be queried without the overhead of opening the file.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

HttpdFileSystem implementations should take note that (for efficiency) callers may use
the same HttpdFileInfo object repeatedly to query information about multiple paths.
As such implementations of this method should always be sure to set all the fields.

FileInfo (From parent & path tuple)

int HttpdFileSystem::FileInfo (const HttpdFileInfo *p_parent, const char
*p_name, HttpdFileInfo &info);

This method obtains information about a file named p_name that is contained in the directory identified
by p_parent. If p_parent is NULL then the root of the hierarchy of this filesystem is assumed. If
p_parent is not NULL then it must be the obtained information for a directory. The gathered information
is placed into the info object.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

HttpdFileSystem implementations should take note that (for efficiency) callers may use
the same HttpdFileInfo object repeatedly to query information about multiple paths.
As such implementations of this method should always be sure to set all the fields.

OpenFile

int HttpdFileSystem::OpenFile (const HttpdFileInfo &info, int mode,
HttpdFile *&p_file);

Assuming that IsDir is not true for info, the associated file is opened. The address of the opened file
system object is placed in p_file. For mode, it can be one of HttpdFileSystem::FILE_READ_ONLY
or HttpdFileSystem::FILE_READ_WRITE depending on the desired access.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

OpenDirectory

int HttpdFileSystem::OpenDirectory (const HttpdFileInfo &info,
HttpdDirectory *&p_dir);

Assuming that IsDir is true for info, the associated directory is opened for iteration. The address of
the opened directory object is placed in p_file.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Open

int HttpdFileSystem::Open (const char *p_name, int mode, HttpdFile
*&p_file);

Support Classes

81

This method is a little helper that obtains file information for the file named p_name with the FileInfo
and then opens the file.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

LoadFile (ASCII)

int HttpdFileSystem::LoadFile (const char *p_filename, char *&p_result);

This helper method loads the contents of the file specified by p_filename into a null-terminated buffer.
Upon success, p_result points to the file contents in allocated storage.

It is the caller's responsibility to free the buffer (using HttpdOpSys::Free).

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

LoadFile (binary)

int HttpdFileSystem::LoadFile (const char *p_filename, char *&p_result,
size_t &size);

This version of the LoadFile is identical to the ASCII version with the exception of the size (in bytes)
of the file is placed in the size parameter.

Delete (Parent & path tuple)

int HttpdFileSystem::Delete (const HttpdFileInfo *p_parent, const char
*p_name);

This method deletes a file named p_name that is contained in the directory identified by p_parent. If
p_parent is NULL then the root of the hierarchy of this filesystem is assumed. If p_parent is not
NULL then it must be the obtained information for a directory.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

File systems must not implement a recursive delete. If the file to be deleted is a directory and it is not
empty then it must not be removed and an error must be returned.

Note

This method is only available if INC_MODIFIABLE_FILESYSTEMS is enabled.

Delete (via HttpdFileInfo))

int HttpdFileSystem::Delete (const HttpdFileInfo &info);

This method deletes the file identified by info.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

File systems must not implement a recursive delete. If the file to be deleted is a directory and it is not
empty then it must not be removed and an error must be returned.

Support Classes

82

Note

This method is only available if INC_MODIFIABLE_FILESYSTEMS is enabled.

MakeDirectory

int HttpdFileSystem::MakeDirectory (const HttpdFileInfo *p_parent,
const char *p_name);

This method creates an empty directory named p_name that is contained in the directory identified by
p_parent. If p_parent is NULL then the root of the hierarchy of this filesystem is assumed. If
p_parent is not NULL then it must be the obtained information for a directory.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This method is only available if INC_MODIFIABLE_FILESYSTEMS is enabled.

MakeFile

int HttpdFileSystem::MakeFile (const HttpdFileInfo *p_parent, const char
*p_name, HttpdFile *&p_file);

This method creates and opens an empty file named p_name that is contained in the directory identified
by p_parent. If p_parent is NULL then the root of the hierarchy of this filesystem is assumed. If
p_parent is not NULL then it must be the obtained information for a directory.

If successful the open file is returned in p_file which must be closed when no longer needed by the
caller. The file is always opened for reading and writing.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This method is only available if INC_MODIFIABLE_FILESYSTEMS is enabled.

CopyFrom

int HttpdFileSystem::CopyFrom (const HttpdFileInfo &from, const
HttpdFileInfo *p_parent, const char *p_dest);

This method creates a new file, named p_dest, from the contents of the file identified by from. The
newly created file is placed in the directory identified by p_parent. If p_parent is NULL then the
root of the hierarchy of this filesystem is assumed. If p_parent is not NULL then it must be the obtained
information for a directory.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This method is only available if INC_MODIFIABLE_FILESYSTEMS is enabled.

Support Classes

83

MoveTo

int HttpdFileSystem::MoveTo (const HttpdFileInfo &from, const
HttpdFileInfo *p_parent, const char *p_to);

This method relocates (or renames) the file or directory identified by from to p_dest in the directory
identified by p_parent. If p_parent is NULL then the root of the hierarchy of this filesystem is
assumed. If p_parent is not NULL then it must be the obtained information for a directory.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This method is only available if INC_MODIFIABLE_FILESYSTEMS is enabled.

GetQuota

int HttpdFileSystem::GetQuota (const HttpdFileInfo &info,
HttpdFileQuota "a);

If quota information is available for this filesystem then this method populates the fields of quota with
quota information.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Note

This method is only available if INC_FILE_QUOTAS is enabled.

Members of HttpdFileQuota

Type: unsigned long
Name: mAvailable
Description: The available writing space in units of 1000 bytes.
Type: unsigned long
Name: mUsed
Description: The available space used in units of 1000 bytes.

SupportsQuota

int HttpdFileSystem::SupportsQuota (void); const

If this filesystem supports quota information then this method returns true. Otherwise false is defined.

Note

This method is only available if INC_FILE_QUOTAS is enabled.

Protected Methods

CommonFileInfo

int HttpdFileSystem::CommonFileInfo (const HttpdFileInfo &info);

Support Classes

84

This is a helper routine for subclasses of HttpdFileSystem. It sets up fields in the HttpdFileInfo
object info with values for parameters common to all file systems.

Public Data
This is an abstract interface class and therefore contains no data members of interest.

HttpdFileInfo Reference
Introduction

Generally, a distinction is made between a file's contents and metadata concerning the file. HttpdFile
objects provide access to a file's contents, while HttpdFileInfo objects provide access to
file metadata. HttpdFileInfo instances are generally created by the caller and populated by
HttpdFileSystem::FileInfo.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

IsDir

bool HttpdFileInfo::IsDir (void);

Determine whether this HttpdFileInfo object refers to a directory, on platforms where this concept
exists.

Returns true if a directory, false if not.

FileSystem (getter)

HttpdFileSystem *HttpdFileInfo::FileSystem (void);

Returns the file system provider associated with this file.

MimeType (getter)

const char *HttpdFileInfo::MimeType (void);

Determine the MIME type of the file described by the parent HttpdFileInfo object.

Returns a pointer to a string containing the MIME type encoding upon success. The returned value should
never be NULL if a FileInfo call returned success on this object.

Note

This method should not be considered an absolute guarantee of file type; some file systems
(such as the platforms' native file system) do not provide any method for explicitly describing
a file's contents other than direct inspection. For these file systems, this method provides at
best an educated guess based on naming conventions, etc.

Support Classes

85

Size (getter)

unsigned long HttpdFileInfo::Size (void);

Determine the size in octets of the file described by the parent HttpdFileInfo object.

Returns the number of octets (on systems with 8-bit bytes, this also happens to be the number of bytes).

LastModificationTime

const HttpdTimeStamp * HttpdFileInfo::LastModificationTime (void);

This method returns the last time the file was modified.

CreationTime

const HttpdTimeStamp * HttpdFileInfo::CreationTime (void);

This method returns the time the file was created.

FileSystem (setter)

void HttpdFileInfo::FileSystem (HttpdFileSystem *p_fs);

This method is used to set the associated file system provider of the file.

ChangeLastModificationTime

HttpdTimeStamp * HttpdFileInfo::ChangeLastModificationTime (void);

This method is used to set the last modification time of the file information. Normally this method is only
used by providers of a file system interface.

ChangeCreationTime

HttpdTimestamp * HttpdFileInfo::ChangeCreationTime (void);

This method is used to set the creation time of the file information. Normally this method is only used by
providers of a file system interface.

Size (setter)

void HttpdFileInfo::Size (unsigned long sz);

This method is used to set the size (in bytes) of the file information. Normally this method is only used
by providers of a file system interface.

IsDir (setter)

void HttpdFileInfo::IsDir (bool is_it);

This method is used to set the directory flag of the file information. Normally this method is only used
by providers of a file system interface.

MimeType (setter)

void HttpdFileInfo::MimeType (const char *p_type, bool must_free);

Support Classes

86

This method is used to set the MIME type of the file information. If must_free is true, it is assumed
that the storage for p_type was allocated with HttpdOpSys::Malloc. Normally this method is only used
by providers of a file system interface.

Location (getter)

HttpdParameter HttpdFileInfo::Location (void);

This obtains the location property of the file. This is an internal value that should be used by a file system
provider to track the referenced file.

The purpose of the location is to split apart the operation of finding a file from a catalog and to actually
doing I/O from the file. Of course, for some operating systems (such as POSIX) this can store the file
name if separating these two actions is impossible.

Because this data is specific to a file system provider only the associated provider should be used to open
the file.

Location (setter)

void HttpdFileInfo::Location (HttpdParameter param, bool must_free);

This method is used to set the location tag of the file information. If must_free is true, it is assumed that
the storage for mpVoid field of param was allocated with HttpdOpSys::Malloc. Normally this method is
only used by providers of a file system interface.

ETag (setter)

void HttpdFileInfo::ETag (const char *p_tag, bool must_free, bool
is_weak = false);

This method is only present if INC_ETAGS is enabled. If so, this method sets the ETag member to point
to the new ETag in p_tag. If must_free is true, it is assumed that the string pointed to by p_tag was
allocated with HttpdOpSys::Malloc and therefore must be freed when no longer needed. Normally this
method is only used by providers of a file system interface.

Entity tags come in two flavors: weak and strong which affect how they compare. The is_weak argument
can be used to indicate the specified tag is a weak one.

In most cases generating a completely unique entity tag for a given file is prohibitively expensive. Most
file system implementations use meta-data to construct the entity tag rather than a hash function (such as
MD5). In these cases implementations should be careful to not generate an entity tag with a high probability
of not changing if the file contents can change.

If p_tag is NULL then the weak flag should be ignored.

ETag (getter)

const char *HttpdFileInfo::ETag (void);

This method is only present if INC_ETAGS is enabled. If so, this method returns the ETag of the file
object if one exists. If no ETag is available for the file, NULL is returned.

ETagIsWeak

bool HttpdFileInfo::ETagIsWeak (void);

This method determines if the entity tag is weak.

Support Classes

87

Attributes (setter)

void HttpdFileInfo::Attributes (HttpdCgiParameter *p_attrs);

Every file can have various name-value pairs associated with it. This meta-data is managed using the
HttpdCgiParameter class. If any attributes are available for a file this method stores the list in the
HttpdFileInfo object. It is important to understand that this method does not make a copy of the
attributes and once given to this method they should no longer be managed by the caller. If no attributes
are available for this file it is safe to call this method with a p_attrs value of NULL. Normally this
method is only used by providers of a file system interface.

Attributes (getter)

HttpdCgiParameter *HttpdFileInfo::Attributes (void);

This method obtains the attribute list for the file. If there are no attributes then NULL is returned. The
HttpdFileInfo object owns the list and callers should refrain from modifications of the attribute list.

Public Data
HttpdFileInfo contains no publically accessible data members.

HttpdFile Reference

Introduction
An HttpdFile object represents a valid file “handle” suitable for performing I/O operations on. Its
semantics are as consistent as possible across heterogeneous platforms, and this class should be used to
perform file-related tasks in a portable manner.

The HttpdFile class is an abstract interface. File systems provide appropriate implementations of
this interface. These specific implementations are accessed through HttpdFileSystem::OpenFile
method and do not need to be created by users of this class.

If the INC_MODIFIABLE_FILESYSTEMS feature is enabled the interface specified by HttpdFile
also includes HttpdWritable. Files that are writable can be used anywhere the HttpdWritable interface
can be utilized.

Even though the compile-time feature enables methods for modifying files and filesystem structure this
does not guarantee that a file (or filesystem) is modifiable. The default implementation of modification
methods return a HttpdOpSys::ERR_NOTREADY error code.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Read

int HttpdFile::Read (void *p_buffer, size_t &sz);

Support Classes

88

Read sz bytes from the HttpdFile object, and store the result in the storage pointed to by p_buffer.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). sz is updated to reflect the actual number of bytes read. If end-of-file
is reached, success is returned and sz is set to 0.

ReadObject

int HttpdFile::ReadObject (void *p_buffer, size_t sz);

Read exactly sz bytes from the HttpdFile object, and store the result in the storage pointed to by
p_buffer.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes”). If sz bytes could not be read, this method returns
HttpdOpSys::ERR_BADFORMAT.

Write

int HttpdFile::Write (size_t sz, const void *p_buffer);

Write sz bytes from the storage pointed to by p_buffer to the HttpdFile object.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful, all bytes were written by Write().

Note

This method is only available if INC_MODIFIABLE_FILESYSTEMS is enabled.

SetSize

int HttpdFile::SetSize (unsigned long size);

This method sets the size of the file to size bytes. If the file is larger then it will be truncated. If the file
is smaller then it will be grown.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This method is only available if INC_MODIFIABLE_FILESYSTEMS is enabled.

Seek

int HttpdFile::Seek (long offset, int whence);

Change the current position of the seek pointer associated with the HttpdFile. If whence is set to
FILE_SEEK_START, offset represents the new absolute position of the seek pointer. A value of
FILE_SEEK_CUR adds offset to the seek pointer's current position. FILE_SEEK_END adds offset
to the size of the file and sets the seek pointer to that value.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Support Classes

89

Tell

int HttpdFile::Tell (unsigned long &offset);

Obtain the current position of the seek pointer associated with the file. The zero-based position is stored
in offset on success.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

PushToSink

int HttpdFile::PushToSink (HttpdWritable *p_sink);

This method writes the entire contents of the file to the object pointed to by p_sink. Before calling the
file pointer should be at the begining of the file and is indeterminate after this operation.

The default implementation of this method simply transfers files in blocks of XFER_BUF_SIZE bytes.
Implementations of the HttpdFile interface may override the default implementation if a more efficient
approach is possible.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

PushFileSegment

int HttpdFile::PushFileSegment (HttpdWritable *p_sink, unsigned long
start_offs, unsigned long end_offs);

This method writes the specified window of the contents of the file to the object pointed to by p_sink.
The range of bytes written starts at start_offs byte offset (inclusive) and ends at the byte position of
end_offs (exclusive). After this call the file pointer is indeterminate.

The default implementation of this method simply transfers files in blocks of XFER_BUF_SIZE bytes.
Implementations of the HttpdFile interface may override the default implementation if a more efficient
approach is possible.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Public Data
Other than the constants mentioned in the Seek() entry, HttpdFile contains no publically available
data members.

HttpdDirectory Reference

Introduction
For those filesystems which support the concept of hierarchical namespaces or file listings,
HttpdDirectory objects provide the ability to traverse one directory's contents in a
linear fashion. Like HttpdFile objects the HttpdDirectory object is opened using the
HttpdFileSystem::OpenDirectory given a file info object.

Support Classes

90

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Name

const char *HttpdDirectory::Name (void);

Return the currently loaded directory entry in this HttpdDirectory object. The syntax of the resultant
string is entirely system-dependent.

The provided string pointer is valid until the originating HttpdDirectory is closed.

Next

bool HttpdDirectory::Next (void);

Load the next directory entry in series within the parent HttpdDirectory object.

Returns true if successful, false if no further directory entries exist.

Close

void HttpdDirectory::Close (void);

Destroy the HttpdDirectory object and release any allocated resources. After calling this method the
pointer to the HttpdDirectory is no longer valid.

Public Data
HttpdDirectory contains no publically accessible data members.

HttpdReadOnlyMemoryFile Reference
Introduction

The class HttpdReadOnlyMemoryFile implements the file interface against a read-only buffer.

Note

Only additional methods are described here. This class implements the methods in the
HttpdFile class.

Public Methods

HttpdReadOnlyMemoryFile

HttpdReadOnlyMemoryFile::HttpdReadOnlyMemoryFile (const void *p_data,
size_t sz);

Support Classes

91

Associates a file with sz bytes pointed to by p_data.

HttpdMemoryFile Reference

Introduction
The class HttpdMemoryFile implements the file interface against a data buffer.

Note

Only additional methods are described here. This class implements the methods in the
HttpdFile class.

Public Methods

HttpdMemoryFile

HttpdMemoryFile::HttpdMemoryFile (void *p_buffer, size_t sz);

Associates a file with sz bytes pointed to by p_buffer.

HttpdRedirectResponse Reference

Introduction
The HttpdRedirectResponse class coordinates sending back redirect responses to HTTP requests.
For simple applications the HttpdRequest::Redirect method is more appropriate. Using this class
additional MIME headers (such as Set-Cookie) can be appended to the redirect.

Instances of HttpdRedirectResponse encapsulate the state involved in sending out a redirect
response. Under normal use the Begin method is called. If successful the response is partially complete
and in the MIME header phase. Callers can then write out additional headers to the HttpdRequest
object. After writing any additional headers, callers should invoke the End method to complete the
response.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdRedirectResponse

HttpdRedirectResponse::HttpdRedirectResponse (HttpdRequest *p_request,
int status);

The constructor prepares the object to perform the redirect. The p_request parameter is a pointer to
the current request. The type of redirect response is specified in status; see Supported HTTP Response
Codes for possible values.

Support Classes

92

Begin

int HttpdRedirectResponse::Begin (const char *p_url);

Begin the response to the HttpdRequest object given to the constructor of this object. The p_url
parameter is the target URL for the redirection. The URL does not have to be absolute.

Important

The return code indicates a success or failure of the operation (see Table 4.1, “OS Abstraction
Layer Error Codes”). If 0 is returned the caller should generate any additional headers and
invoke the End method.

Upon failure no further action should be taken as an appropriate error response is sent to the
client before the failure return of this routine.

End

void HttpdRedirectResponse::End (void);

This method must be called after the MIME headers are sent to the client (assuming Begin returned
success).

HttpdSocket Reference
Introduction

HttpdSocket serves as a container for protocol-specific network operations, and provides abstract
access to a communication endpoint connected with a client.

If the INC_MULTIPLE_TRANSPORTS option is not enabled then the HttpdSocket is simply a
synonym for the platform-specific HttpdTcpSocket object. If INC_MULTIPLE_TRANSPORTS is
enabled then HttpdSocket acts as an abstraction to one or more transport layers.

The interface of HttpdSocket closely mirrors the Berkeley sockets API, and hence will be quite familiar
to experienced UNIX® or WinSock programmers. It is expected that additional abstraction or separation
of platform independent and dependent code will occur in this area, so its interfaces are subject to future
change.

Generally, HttpdSocket itself is encapsulated by an HttpdRequest object, so it is often of little
concern to programmers modifying Seminole within the existing framework (e.g. adding a handler).

Transport objects (i.e. HttpdTcpSocket) are derived from HttpdSocketInterface. The
HttpdSocketInterface interface is ultimately derived from HttpdWritable and thus provides an
interface for writing data.

The interface provided by HttpdSocketInterface closely parallels the methods provided
by HttpdSocket. Implementors porting Seminole are encouraged to study the existing socket
implementations for reference.

Public Methods

Initialize

static int HttpdSocket::Initialize (void);

Support Classes

93

Initialize the socket abstraction. This static method is called by Httpd::Init before any any socket
(including the listening socket) is created.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This method does not have to be idempotent. It is called once and only once by
Httpd::Init.

Write

int HttpdSocket::Write (size_t nbytes, const void *ptr);

Given a pointer ptr to a block of storage nbytes bytes in length, attempt to write the data therein to
a network endpoint (socket).

It is important to note that some network API's have semantics which make it possible for writes to return
successfully, yet incomplete, as opposed to blocking until an error occurs or all data has been written.
Write takes the latter approach, so Seminole programmers need not make allowances for it.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

EnterReadMode

int HttpdSocket::EnterReadMode (void);

Before the HttpdSocket::ReadN, HttpdSocket::Read, or HttpdSocket::Gets methods
can be called, this method must be invoked to prepare the socket for reading.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

ReadN

int HttpdSocket::ReadN (void *ptr, size_t nbytes, unsigned int timeout);

Given a pointer ptr to a block of previously allocated storage, read nbytes bytes of data from
a network endpoint (socket). If no data is received for timeout seconds, the read is aborted and
HttpdOpSys::ERR_NOTREADY is returned.

It is important to note that some network API's have semantics which make it possible for reads to return
successfully, yet incomplete, as opposed to blocking until an error occurs or all data has been read. ReadN
takes the latter approach, so Seminole programmers need not make allowances for it. Success will only be
returned if nbytes are actually received. If partial reads are desired, Read should be used instead.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Note

The EnterReadMode method must be called before ReadN can be called.

Read

int HttpdSocket::Read (void *ptr, size_t &nbytes, unsigned int timeout);

Support Classes

94

Given a pointer ptr to a block of previously allocated storage, read up to nbytes bytes of data from a
network endpoint (socket). The value of nbytes is updated with the actual number of bytes read. If no
data is available then Read will block for up to timeout seconds. As soon as any data is received this
function copies it into the buffer and returns.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Note

The EnterReadMode method must be called before Read can be called.

Read (multiple wait version)

int HttpdSocket::Read (void *ptr, size_t &nbytes, unsigned int timeout,
HttpdSocketWaitHandle wait_for);

This method only exists if the portability layer defines HAVE_SOCK_WAIT to 1. If the portability layer
and underlying operating system support waiting for other events in addition to a socket event then the
wait_for parameter acts as an “escape hatch” to pass an object to wait on to the operating system (and/
or network stack).

LeaveReadMode

int HttpdSocket::LeaveReadMode (void);

After reading on the socket is complete, this method must be invoked to allow write operations (via Write)
on the socket.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Gets

bool HttpdSocket::Gets (char *p_buf, size_t maxbuf, unsigned int
timeout);

Given a pointer p_buf to a block of previously allocated storage, read one line from the communications
endpoint represented by the parent HttpdSocket object, assuming that each line is terminated by a
newline character (ASCII line feed). The value of maxbuf is used to advise Gets() of the maximum
length of the storage pointed to by p_buf. The resulting string is terminated by an ASCII NUL character.

It is worth noting that a carriage return may be embedded in the buffer, as Gets() does not purge them.

If an entire input line is not received in timeout seconds this function should return false.

Returns true on success, false upon failure. This method should never return true unless the string p_buf
contains at least one character.

AbortGets

bool HttpdSocket::AbortGets (void);

This method attempts to abort another thread on this socket blocked in the Gets method. If the thread
is sucessfully unblocked then this method should return true. If the thread can not be aborted or is not
blocked in Gets then false is returned. The return value does not have to be precise as there may be race
conditions involved with this operation. The intention of this method is a “best effort” attempt.

Support Classes

95

Note

This method need only be implemented if INC_OVERLOAD_PROTECTION is non-zero.

Socket

bool HttpdSocket::Socket (const char *p_transport);

Initializes a communications endpoint, which can subsequently be used to receive a connection from
clients, or to establish an outbound connection with a server.

Calling Socket() is a generally a prerequisite for calling any other method in HttpdSocket
meaningfully.

Returns true on success, false upon failure.

The p_transport is the transport to be used for this socket and its children. If
INC_MULTIPLE_TRANSPORTS is not enabled then this parameter should not be provided.

Close

void HttpdSocket::Close (void);

Destroys the communications endpoint associated with the parent HttpdSocket object. Close() does
not perform an orderly cleanup of an active connection, so if “graceful” termination of a connection is
desired, use the Shutdown() method instead.

Listen

bool HttpdSocket::Listen (HttpdIpPort port, const char **pp_options);

Causes a previously initialized communications endpoint to be placed into a listening state, so that network
clients can connect to it. The local port designated by port is used to discriminate incoming connections.

pp_options contains a list of open-ended list of name/value pairs that can be used to
configure the specifics of the various transport layers. The list must be terminated with a
NULL pointer. If no socket options are desired then the default value of the parameter,
HttpdSocket::mEmptySocketOptions, may be passed as this parameter.

The life-time of pp_options is not required to extend beyond the call to Listen. Therefore it is
the responsabilty of the socket implementation to locally copy any information it may need from the
pp_options array.

Although the options supported by the socket are dependant on the implementation of the portability layer
most implementations handle a common subset of options. What follows is a general summary rather than
a specification. Those implementing a new portability layer should attempt to follow existing practice.

Option Meaning Example

bind This option binds the socket to a
particular interface.

bind:192.168.1.16

ipv6 If the target supports IPv6
(INC_IPV6_SUPPORT) then
this option configures the socket
for communication on an IPv6
network.

ipv6

Support Classes

96

Option Meaning Example

bind6 If the target supports IPv6
(INC_IPV6_SUPPORT) then the
socket is bound to a specific IPv6
listening address. This option is
mutually exclusive with the bind
and ipv6 options.

bind6:19::12ab:00d1

Listen returns true on success, false upon failure.

Connect

bool HttpdSocket::Connect (HttpdIpAddress addr, HttpdIpPort port, const
char **pp_options);

Causes a previously initialized communications endpoint to be connected with a remote system and
process. The remote system's network address is provided in addr, while the remote port is provided in
port.

pp_options contains a list of open-ended list of name/value pairs that can be used to configure the
specifics of the various transport layers.

Returns true on success, false upon failure.

ConnectTo

int HttpdSocket::ConnectTo (const char *p_host, HttpdIpPort port, const
char *const *pp_options);

This method connects to the specified port using the provided host name. Optional platform-specific
parameters may be specified in pp_options to control how the socket is connected.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Shutdown

void HttpdSocket::Shutdown (void);

Destroys the communications endpoint associated with the parent HttpdSocket object. The currently
established connection, if any, is first closed in an orderly fashion.

Accept

bool HttpdSocket::Accept (HttpdParameter &con, HttpdIpAddress
&client_addr);

Accept incoming connections to the communications endpoint (previously prepared with Listen())
contained within the parent HttpdSocket object.

Upon successful acceptance of a new connection, the peer's network address is placed in client_addr,
while a handle for the connection itself is placed in con. Once the new connection is appropriately
dispatched (typically by the creation of a new server thread, process, or task), Accept() can be called
again to set up the next incoming connection request on the original endpoint. Thus, each connection
accepted creates a new, unique pair of endpoints.

Support Classes

97

Returns true on success, false upon failure.

Note

A newly accepted connection should be aborted by means of the
HttpdSocket::Cancel method or initialized using the HttpdSocket::Socket method.
When no longer needed client_addr should be disposed of by calling
HttpdSocketFoundation::FreeAddress.

Cancel

void HttpdSocket::Cancel (HttpdParameter param);

After acceptance of a new connection via HttpdSocket::Accept, it is possible to find that the connection
should be prematurely ended, either for administrative reasons or system errors. In that case, the new
connection should be aborted by means of this method.

Note

The object used to invoke this method should be the listening socket that generated the
HttpdParameter value.

Socket

bool HttpdSocket::Socket (HttpdSocket *p_listen, HttpdParameter param);

After acceptance of a new connection via HttpdSocket::Accept, this method takes the generated
HttpdParameter value and initializes a socket object associated with the incoming connection. The listening
socket that generated param should be passed in as p_listen.

Note

If this method fails no further methods should be called on the socket object.

GetLocalAddress

int HttpdSocket::GetLocalAddress (HttpdIpAddress &addr);

This method obtains the local address (near end) that a listening or accepted socket is associated with.

On success a 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

If successful it is the responsability of the caller to discard the IP address object returned with
the HttpdSocketFoundation::FreeAddress method.

ForceShutdown

void HttpdSocket::ForceShutdown (void);

This method is called on a listening socket. When called it will unblock all waiting calls on any socket
objects for any thread that were originated from this listening socket. Methods such as Gets and Read
and ReadN should return with an error in the case of this method being called in another thread.

Support Classes

98

Note

When implementing this particular method it is important to pay close attention to the
lifetimes of the sockets. In particular the listening socket may be destroyed before all of its
children sockets are.

In this case if ForceShutdown is called and then the listening socket is immediately
destroyed all of the child sockets must still have been released.

In addition, this method is not required to block while the other threads are released. The
synchronization is instead handled by waiting for the worker threads to terminate.

After this method is called, all child sockets should remain as unreadable until the listening socket is closed.

Transport

const HttpdTransport * HttpdSocket::Transport (void);

This method returns a pointer to the transport object associated with the socket. This method should only
be called after the socket has been initialized with the HttpdSocket::Socket method.

Note

This function is not available unless INC_MULTIPLE_TRANSPORTS is enabled.

Public Data

mEmptySocketOptions

const char *mEmptySocketOptions[];

Some socket calls (i.e. HttpdSocket::Listen) take a list of parameters. This variable is the default
list of options if no extra parameters are needed.

HttpdSocketInterface Reference

Introduction
The class HttpdSocketInterface is the base class for all transports that are used by Seminole.

The following methods must be provided by subclasses of HttpdSocketInterface. The behavior
of the transport-specific implementations should be identical to the definitions of the following methods
in HttpdSocket.

• static int HttpdSocketInterface::Initialize (void);

• int HttpdSocketInterface::Write (size_t nbytes, const void *ptr);

• int HttpdSocketInterface::EnterReadMode (void);

• int HttpdSocketInterface::Read (void *ptr, size_t &nbytes, unsigned int timeout);

• int HttpdSocketInterface::Read (void *ptr, size_t &nbytes, unsigned int timeout,
HttpdSocketWaitHandle wait_for);

Support Classes

99

Note

This method is only provided if the portability layer defines HAVE_SOCK_WAIT to 1.

• int HttpdSocketInterface::ReadN (void *ptr, size_t nbytes, unsigned int timeout);

• int HttpdSocketInterface::LeaveReadMode (void);

• bool HttpdSocketInterface::Gets (char *p_buf, size_t maxbuf, unsigned int timeout);

• void HttpdSocketInterface::Close (void);

• bool HttpdSocketInterface::Listen (HttpdIpPort port, const char **pp_options);

• bool HttpdSocketInterface::Connect (HttpdIpAddress addr, HttpdIpPort port, const char
**pp_options);

• void HttpdSocketInterface::Shutdown (void);

• bool HttpdSocketInterface::Accept (HttpdParameter &con, HttpdIpAddress
&client_addr);

• void HttpdSocketInterface::Cancel (HttpdParameter param);

• int HttpdSocketInterface::GetLocalAddress (HttpdIpAddress &addr);

• bool HttpdSocketInterface::AbortGets (void); (only if
INC_OVERLOAD_PROTECTION is enabled).

Important

The methods defined in HttpdSocketInterface Public Methods are methods that must be
provided in addition to those listed above.

Public Methods

Socket

bool HttpdSocketInterface::Socket (void);

Initialize the communications object. This method is almost always called before calling any other method
of the class.

Returns true on success, false upon failure.

Socket

bool HttpdSocketInterface::Socket (HttpdSocketInterface *p_listen,
HttpdParameter param);

After acceptance of a new connection via HttpdSocketInterface::Accept this method converts
the HttpdParameter handle value and initializes a socket object associated with the incoming connection.
The listening socket that generated param is passed in as p_listen.

Support Classes

100

Factory

static HttpdSocketInterface * HttpdSocketInterface::Factory (void);

This method only needs to be defined if INC_MULTIPLE_TRANSPORTS is enabled. Using the
operator new that is provided in HttpdSocketInterface, this function should return an instance
of the particular socket associated with the class.

The address of this method is registered with the HttpdTransport structure associated with this particular
protocol.

HttpdSocketFoundation Reference

Introduction
The HttpdSocketFoundation class is the base class for anything related to the socket
and networking abstraction provided by the portability layers. HttpdSocketInterface and
HttpdUdpServerSocket are derived from this class although this class has no non-static members.
The inheritance is solely to provide access to the utility routines in this namespace.

The utility routines are general purpose helpers for dealing with HttpdIpAddress values. They
may be called anywhere they are necessary or useful not just from classes derived from
HttpdSocketFoundation.

If the portability layer defines HTTPD_HAVE_BULKY_SOCKET_ADDRESSES then a few additional
methods are available for use by portability layers to help manage large address objects. These methods
should not be called by platform independent code.

Public Methods

CreateAddress

int HttpdSocketFoundation::CreateAddress (HttpdIpAddress &addr, const
char *p_str_rep);

This routine translates a string representation of an address to an HttpdIpAddress object. The format
of the string representation may be platform dependent and is determined by the portability layer.

On success a 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

If successful it is the responsability of the caller to discard the IP address object created with
the HttpdSocketFoundation::FreeAddress method.

This method should be implemented by the portability layer.

AddressEqual

bool HttpdSocketFoundation::AddressEqual (HttpdIpAddress addr_1,
HttpdIpAddress addr_2);

Support Classes

101

This method should be used by platform independent code to determine if two HttpdIpAddress objects
refer to the same address. If so then this method returns true otherwise false is returned.

CopyAddress

int HttpdSocketFoundation::CopyAddress (HttpdIpAddress &dest,
HttpdIpAddress src);

This method copies an address object from src into the variable referred to by dest.

On success a 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

If successful it is the responsability of the caller to discard the IP address object in dest
with the HttpdSocketFoundation::FreeAddress method.

FreeAddress

void HttpdSocketFoundation::FreeAddress (HttpdIpAddress addr);

This method frees an HttpdIpAddress when it is no longer needed. All address objects must eventually
be released using this method. This is true even if the HttpdIpAddress originated from a method other
than CreateAddress (such as the one returned from HttpdSocketInterface::Accept.

CreateAddress (Portability Layer Support)

int HttpdSocketFoundation::Create (HttpdIpAddress &addr);

This method is only available if the portability layer defines
HTTPD_HAVE_BULKY_SOCKET_ADDRESSES to a non-zero value. As such this method should only
be called by the portability layer code when it must create an address object and return it to the caller. A
typical example of this is the socket object method GetLocalAddress.

On success a 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

If successful it is the responsability of the caller to discard the IP address object in dest
with the HttpdSocketFoundation::FreeAddress method.

HashAddress

size_t HttpdSocketFoundation::HashAddress (HttpdIpAddress addr);

This method computes a hash value for addr. The hash value can be computed with any appropriate
algorithm. Preferrably the algorithm should evenly distribute addresses around the hash space (the entire
range of size_t).

FormatAddress

void HttpdSocketFoundation::FormatAddress (HttpdIpAddress addr, char
*p_str);

Support Classes

102

This method converts addr to a string representation. The size of the buffer pointed to by p_str is
guaranteed to be at least HTTPD_IPADDR_STR_LEN bytes in length by all callers. The portability layer
must define this constant as appropriate.

HttpdUdpServerSocket Reference
Introduction

If the platform supports UDP sockets (HAVE_UDP_SOCKETS not equal to zero) then the portability layer
should provide an implementation of this class which is used to send and receive datagram packets. If the
platform supports multicast then the preprocessor symbol HTTPD_HAVE_UDP_MULTICAST should
be defined to a non-zero value and it should be possible to use multicast addresses with this class.

This class abstracts a UDP socket that is capable of both sending and receiving packets on a port that is
bound at creation time. As with the HttpdTcpSocket various parameters for the socket are specified
as an array of strings. This allows platform specific options to be passed easily from the client application
through protocol code to the socket layer.

Public Methods

Socket

int HttpdUdpServerSocket::Socket (HttpdIpPort &port, const char *const
*pp_options = mDefaultOptions);

This method must be called before the HttpdUdpServerSocket can be used. The port parameter
specifies what port the UDP socket listens on. If any socket specific options are to be specified then
pp_options should point to an array of parameter strings terminated by a NULL.

If port is set to 0 (and the system supports this concept) a free port is allocated and upon successful
return the value of port is set to the allocated port.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

The options supported by the socket are dependant on the portability layer. However the included
portability layers provide some general options that work across most platforms.

Option Meaning Example

bind This option binds the socket to a
particular interface.

bind:192.168.1.16

mcast If the target supports multicast
(HAVE_UDP_MULTICAST) then
this option joins this socket
into a particular multicast group.
Optionally an interface address
can be specified to join the
multicast group on a particular
interface.

mcast:238.17.1.1 or with
an interface address:
mcast:238.17.1.1,192.168.1.16

mc-loop If the socket is part of a
multicast group this enables
loopback of multicast packets.
Any packets transmitted are

mc-loop:0

Support Classes

103

Option Meaning Example

also queued for reception. The
argument is zero to turn off
loopback or non-zero to turn it
on. This option is only available
if HAVE_UDP_MULTICAST is
enabled. Not all platforms support
this option.

mc-ttl This sets the TTL for packets
transmitted with a multicast
address. Not all platforms support
this option.

mc-ttl:32

sndbuf This option sets the size of the
send buffer (in bytes) that holds
packet data until the necessary
interface becomes available. Not
all platforms support this option.

sndbuf:65536

rcvbuf This option sets the size of the
receive buffer (in bytes) that
holds packet data received from
network interfaces until it can
be processed. Not all platforms
support this option.

rcvbuf:65536

Close

void HttpdUdpServerSocket::Close (void);

This method shuts down any operations on the socket and releases any resources owned by the socket. No
operations should be performed on the socket once this method is called.

ForceShutdown

void HttpdUdpServerSocket::ForceShutdown (void);

In order to halt a thread that may be suspended performing a read operation on the socket this method
aborts the readers with an error code.

Note

Portability layers may only perform a “best effort” implementation of this method. So it care
should be taken that shutdown can happen without this method being perfect.

ReadPacket

int HttpdUdpServerSocket::ReadPacket (void *p_buffer, size_t &len,
HttpdIpAddress &addr, HttpdIpPort &port, unsigned int timeout);

This method reads a packet from the socket. If no packet is available it will block for up to timeout
milliseconds. If no packet is received within this time then ERR_NOTREAD is returned.

If a packet is received properly it is placed into the buffer pointed to by p_buffer and len is set to the
length of the packet (in bytes). The source address and port are placed into addr and port, respectively.

Support Classes

104

Upon receiving a packet, 0 is returned. On timeout ERR_NOTREADY is returned. If the read operation
is aborted by the ForceShutdown method then ERR_SYSPERM is returned. Otherwise a system
dependent error value is returned (see Table 4.1, “OS Abstraction Layer Error Codes”).

SendPacket

int HttpdUdpServerSocket::SendPacket (const void *p_buffer, size_t len,
HttpdIpAddress addr, HttpdIpPort port);

This method is used to send responses to requests. It is not limited to sending packets on the port that
the socket is bound to. Rather the port and destination address are specified for each packet sent and may
differ for each packet.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdIpAddressBase Reference
When the representation of an IP address is large (i.e. more complex than a single scalar value) the
portability layer may define HTTPD_HAVE_BULKY_SOCKET_ADDRESSES to request that Seminole
handle the larger addresses in an efficient manner.

When bulky addresses are present the HttpdIpAddress type becomes a pointer to the
HttpdIpAddressObject class.

The HttpdIpAddressObject is a platform specific class that is defined and implemented by the
portability layer if address objects are large. The HttpdIpAddressBase class provides support for the
storage and lifetime of its only intended superclass - HttpdIpAddressObject.

Note

HttpdIpAddressBase is only available if the portability layer defines
HTTPD_HAVE_BULKY_SOCKET_ADDRESSES to a non-zero value.

An HttpdAllocatorCache is used to efficiently allocate HttpdIpAddressObject instances. It
is required that HttpdIpAddressObject implement:

• operator==

• virtual destructor (if necessary)

• operator= (if necessary)

HttpdIpAddressObject is also free to implement any methods in addition to the above provided
they are not called from platform independent code.

HttpdMemoryAllocator Reference

Introduction
HttpdMemoryAllocator provides a dynamic memory pool with an interface similar to the
malloc() and free() functions provided by the standard C runtime system. It can be used for pooling
memory in certain thread contexts or to provide dynamic heap allocation in the portability layer for an
underlying operating system with no notion of dynamic memory.

Support Classes

105

Instances of this class are not thread-safe, and multiple accesses to it should be guarded by a mutual
exclusion mechanism such as that provided by an HttpdMutex.

Public Methods

Create

void HttpdMemoryAllocator::Create (void *p_mem, size_t sz);

HttpdMemoryAllocator objects are not usable until this method initializes the memory allocator,
given a pre-existing memory arena of size sz bytes pointed to by p_mem.

This method is guaranteed not to fail, and instead will generate assertions (if enabled) when given incorrect
parameters.

Allocate

void * HttpdMemoryAllocator::Allocate (size_t sz);

Allocate new memory sz bytes in length.

Returns a pointer to a buffer of at least the requested size, taking into account host alignment requirements,
or NULL upon error or exhaustion of the memory pool.

Free

void HttpdMemoryAllocator::Free (void *p_ptr);

Release a block of allocated memory pointed to by p_ptr.

Reallocate

void * HttpdMemoryAllocator::Reallocate (void *p_oldptr, size_t newsz);

Expand or shrink the size of the memory block pointed to by p_oldptr, to be newsz bytes in length.

Returns a revised pointer upon success, or NULL upon failure.

Important

If Reallocate() fails to change the size of a given block of memory, the original block
remains valid and can be used normally. Therefore, it is important to keep track of the
previous allocation and free it as necessary.

Public Data
HttpdMemoryAllocator contains no publically accessible data members.

HttpdAllocatorCache Reference
Introduction

HttpdAllocatorCache caches pre-allocated memory buffers for quick allocation of fixed size
objects. The contents of the blocks are not guaranteed across allocations. The allocator is thread safe and
may be accessed by multiple threads simultaneously.

Support Classes

106

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

HttpdAllocatorCache

HttpdAllocatorCache::HttpdAllocatorCache (size_t object_size, size_t
max_depth);

This constructs an allocation cache for objects of object_size bytes. The max_depth parameter
controls the maximum number of free objects that the cache will hold.

The object can not be used until the Create method is called first.

Create

int HttpdAllocatorCache::Create (size_t initial_depth = 0);

This method creates and initializes the cache. The cache populates itself with initial_depth objects.

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes”).

Prune

void HttpdAllocatorCache::Prune (size_t desired = 0);

This method reduces the size of the cache to desired objets. If less than desired objects exist in the
cache then the method simple returns success.

AllocateObject

void * HttpdAllocatorCache::AllocateObject (void);

This method allocates an object from the cache. If the cache is empty then it attempts to allocate an object
using HttpdOpSys::Malloc.

Returns a pointer to the newly allocated upon success, or NULL if there is insufficient memory to allocate
the object.

FreeObject

void HttpdAllocatorCache::FreeObject (void *p_object);

This method frees an object allocated from the cache. If p_object is NULL then this method performs no
operation. If p_object is not NULL then it must have been a value returned from AllocateObject.

PurgeAllCaches

void HttpdAllocatorCache::PurgeAllCaches (void);

Support Classes

107

If INC_ALLOCATION_CACHE_PURGE is enabled then this static method frees all cached memory
from all allocator caches. If INC_ALLOCATION_CACHE_PURGE is disabled then this method does
nothing.

HttpdList and HttpdListNode Reference

Introduction
The HttpdList and HttpdListNode classes implement compact and efficient doubly-linked list
container support. Lists can be made circular and insertions can be performed at any point. A very important
feature is that HttpdListNode contains a backpointer to the object that owns it. This allows an object
to be linked into several lists at the same time.

There are several strategies for doubly linked-lists. The most common approach is to use NULL as a value
of a next or previous pointer to indicate that no node exists beyond the current one. This requires that many
special cases for end of node be peppered all over the code for inserts and deletes. A workaround for this
is to use two “dummy nodes” that are always present, even in an empty list.

Dummy
Head
Node

Dummy
Tail

Node

NodesList

Traditional approach to dummy nodes

The dummy nodes waste little space for the amount of code they save, but they still waste four pointers
worth of space. We can optimize this further by overlapping the dummy nodes. This optimization reduces
the overhead to three pointers per list. Without any dummy nodes a list would need to contain a minimum
of a head and tail pointer so the dummy node overhead is minimal.

Dummy
Head
Node

Dummy
Tail

Node

List Nodes

Compact dummy nodes

Support Classes

108

Public Methods (HttpdListNode)

Owner (Getter)

void *HttpdListNode::Owner (void);

Each node object maintains a backpointer to the owning object. This method obtains the value of the
backpointer.

Owner (Setter)

void HttpdListNode::Owner (void *p_value);

Set the backpointer in the node to p_value.

Next

HttpdListNode *HttpdListNode::Next (void);

Get the address of the next node in the list.

Prev

HttpdListNode *HttpdListNode::Prev (void);

Get the address of the previous node in the list.

InsertBefore

void HttpdListNode::InsertBefore (HttpdListNode *p_pos);

Insert this node before the node specified by p_pos.

InsertAfter

void HttpdListNode::InsertAfter (HttpdListNode *p_pos);

Insert this node after the node specified by p_pos.

Remove

void HttpdListNode::Remove (void);

Remove the node from the list it is inserted in.

MakeCircular

void HttpdListNode::MakeCircular (void);

This method allows a node to be constructed that is considered a single, circular list. Other nodes can then
be inserted around it.

Support Classes

109

Public Methods (HttpdList)

Initialize

void HttpdList::Initialize (void);

Initialize a list object. This method must be called before the list can be used.

IsEmpty

bool HttpdList::IsEmpty (void);

This method returns true if the list is empty (contains no nodes other than the dummy nodes). Otherwise
the list is not considered empty and false is returned.

AddToHead

void HttpdList::AddToHead (HttpdListNode *p_node);

Insert p_node to the front of list.

AddToTail

void HttpdList::AddToTail (HttpdListNode *p_node);

Insert p_node to the rear of list.

Head

HttpdListNode *HttpdList::Head (void);

Return the front node on the list or NULL if the list is empty.

Tail

HttpdListNode *HttpdList::Tail (void);

Return the rear node on the list or NULL if the list is empty.

CountChildren

size_t HttpdList::CountChildren (void);

This method counts the number of nodes in the list and returns the value. For large lists this operation
may take some CPU time.

Concatenate

void HttpdList::Concatenate (HttpdList &src);

This method concatenates all of the nodes in the list specified by src to the tail of this list. After this call,
src is no longer a valid list and must be re-initialized (via Initialize) if it is to be used again.

MakeCircular

void HttpdList::MakeCircular (void);

Support Classes

110

This method removes the dummy nodes of the list from the nodes already linked in to the list. Thus, the
nodes that were previously linked in the list object are turned into a circular chain of nodes. After this call,
src is no longer a valid list and must be re-initialized (via Initialize) if it is to be used again.

It is important to get a pointer to at least one of the nodes in the list before calling this method. After this
call completes the list object is no longer associated with any of the nodes in the list.

Iterating over lists
Iterating the contents of HttpdList objects can be error prone. Therefore a helper class, called
HttpdListIterator, is provided to make this easier. Instances of HttpdListIterator are
typically used as index variables in for-loops.

For example, to iterate the contents of a list from head to tail the following construct can be employed:

 for(HttpdListIterator i(list.Head()); i.Continue(); i.Next())
 {
 SomeClass *p_obj = (SomeClass *)(void *)i;
 p_obj->DoSomething();
 }

The conditional state of the loop is always provided by the HttpdListIterator::Continue
method. Notice the way we obtain the object pointer. Casting the iterator to void * is equivalent to calling
HttpdListNode::Owner to obtain the data pointer from the node.

Traversing the list from tail to head is follows a similar structure:

 for(HttpdListIterator i(list.Tail()); i.Continue(); i.Prev())
 {
 HttpdListNode *p_node = (HttpdListNode *)i;
 ProcessNode(p_node);
 }

Here we cast the HttpdListIterator object to a HttpdListNode *. This obtains the current node we
are iterating over. Deleting nodes from a list during traversal deserves special attention. If we wanted to
remove the node from the list during iteration we would have to do something like this:

 HttpdListIterator i(list.Head());
 while (i.Continue())
 {
 // We must store the pointer to the node here as we may be
 // modifying the list later on.
 HttpdListNode *p_node = (HttpdListNode *)i;

 bool need_adj = NeedsAdjustment((SomeObject *)p_node->Owner());

 // Advance the iterator before we alter the node.
 i.Next();

 // Now we can fiddle with the node.

Support Classes

111

 if (need_adj)
 {
 p_node->Remove();
 adjustment_list.AddToHead(p_node);
 }
 }

The iterator can be repositioned to an arbitrary node with the HttpdListIterator::Reposition
method.

HttpdBitSet Reference

Introduction
The HttpdBitSet class acts as a pointer to HttpdBitWord where each bit can be individually
manipulated or examined. This class is mainly useful for maintaining arrays of boolean values or for small
set membership. No memory allocation or range checking is done by this class, it really does function just
like a native pointer.

To use the HttpdBitSet it must first be assigned storage of a suitable size. The the static method Size
can be used to compute the size of the storage required. The store (as a pointer to HttpdBitWord) can be
assigned to the HttpdBitSet object.

To set a bit the operator += is used. To clear a bit the operator -= is used. To check the value of a bit the
HttpdBitSet object can be dereferenced like an array.

Note

The storage provided is accessed as an array of HttpdBitWord objects. Therefore the
storage must have alignment that is appropriate for these accesses.

 HttpdBitSet bs;
 HttpdBitWord storage = 0;

 bs = &storage; // Assign the storage.

 // Set bits #9 and #11.
 bs += 9;
 bs += 11;

 // Now print out all the set bits.
 for(unsigned int i = 0; i < 16; i++)
 printf("Bit %d is %s\n", i, bs[i] ? "set" : "clear");

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Support Classes

112

Public Methods

Size

size_t HttpdBitSet::Size (size_t bits);

This static method returns the number of bytes required for an HttpdBitSet object to hold the number
of bits specified by bits.

Elements

size_t HttpdBitSet::Elements (size_t bits);

This static method returns the number of HttpdBitWord entries in the storage needed to hold the number
of bits specified by bits.

RemoveLeadingSet

size_t HttpdBitSet::RemoveLeadingSet (size_t bits);

This operation is like a left shift on the entire bitmap. The portion of the bitmap affected is limited to bits
bits in length. The number of bits the bitmap is shifted is computed automatically such that the first bit in
the resulting bitset is the first (leftmost) 0 (i.e. unset) bit in the bitset.

The number of bits shifted out is returned.

Storage

HttpdBitWord *HttpdBitSet::Storage (void);

This static method returns the pointer to the storage the HttpdBitSet is using.

HttpdMacroProcessor Reference

Introduction
HttpdMacroProcessor is a utility class for doing string substitutions. An input string is written to
either a dynamic string or an HttpdWritable interface. Tokens in the input string are parsed and a pure
virtual method is called to replace the macro.

Substitutions are broken up into an array of strings — much like a POSIX command line. In fact two forms
of quoting are available as well. The argument vector is then used by the Command method to perform a
substitution. For example, consider the following macro string:

 The user is $(age -years) years old $(today "\n\x1b") and has a bank account
 balance of $$ $(account 'John Q Public' 1234).

Notice that doubling the special character, $ in this case is used as a literal escape. Otherwise it is required
that a macro begin with a left parenthesis following the special character. Notice in the above example

Support Classes

113

that a macro may contain three types of tokens: non-quoted strings, single-quoted strings, and double-
quoted strings.

Non-quoted strings must not have a “)” or whitespace character in them. Either of those characters is a
delimiter either ending the substitution or delimiting the next argument.

Strings quoted with a single quote character can have any character in them except for a single quote
character. This is the most general form of quoting.

Strings quoted with a double quote character allow ANSI C style escape sequences.

Thread Safety

This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdMacroProcessor

HttpdMacroProcessor::HttpdMacroProcessor (char special = '$');

This constructs the macro processor object with special as the delimiter character.

Expand (sink version)

int HttpdMacroProcessor::Expand (HttpdWritable *p_target, const char
*p_macro);

This function writes p_macro to p_target expanding tokens delimited by the special character in the
process.

Upon success 0 is returned. Otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Expand (string version)

int HttpdMacroProcessor::Expand (char *&p_output, const char *p_macro);

This function copies p_macro into a string pointed to by p_output. The resultant string is allocated
dynamically and should be freed using HttpdOpSys::Free by the caller if successful.

Upon success 0 is returned. Otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Protected Methods

Command

int HttpdMacroProcessor::Command (void);

Support Classes

114

This pure virtual method is called when a substitution has been parsed and is to be replaced. The
substitution is broken apart into a vector of arguments — the mArgCount and mArgs protected member
variables. The substituted text (if any) should be written to mpTarget.

WriteString

int HttpdMacroProcessor::WriteString (size_t args, const char
*p_string);

This function formats p_string as a macro substitution. This method should be called from the
implementation of Command.

The remaining arguments (starting at offset args) allow various transformations to be performed on
p_string before it is written. The following transformations are possible:

• html escapes characters that are HTML tokens.

• uri encodes the string using the HttpdUtilities::UriEncode routine.

• unuri decodes the string using the HttpdUtilities::UriDecode routine.

• unuri+ decodes the string using the HttpdUtilities::UriDecode routine with the
plus_xlat parameter set to true.

• c-ascii encodes the string using the section called “CQuoteString” with the STR_QUOTE_C
mode.

• js-utf8 encodes the string using the section called “CQuoteString” with the STR_QUOTE_JSON
mode.

• The remove-chars attribute causes any characters in its value to be removed from the formatted
string.

• remove removes any characters from the string as specified by the next argument.

• filter removes any characters from the string as not specified by the next argument.

Upon success 0 is returned. Otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdCgiMacroProcessor Reference

Introduction
The HttpdCgiMacroProcessor is a subclass of HttpdMacroProcessor. This class takes a
HttpdCgiParameter list and uses the contents of that list for expanding macros. When a value is
found in the list it is written using HttpdMacroProcessor::WriteString.

Public Methods

HttpdCgiMacroProcessor

HttpdCgiMacroProcessor::HttpdCgiMacroProcessor (HttpdCgiParameter
*p_params, char special = '$');

Support Classes

115

This constructs the macro processor object where p_params is used to satisfy the value of the
substitutions. The character special specifies the delimiter character.

HttpdHtmlQuoter Reference

Introduction
HttpdHtmlQuoter is a helper class for HTML-escaping strings. Although this task can be
accomplished with the HttpdUtilities::HtmlQuote method using this class is more efficient. The
HtmlQuote method always copies the resulting string to dynamically allocated storage, even if there are
no characters to be escaped.

The HttpdUtilities::NeedsHtmlQuoting method scans a string for characters that need
quoting. If none are found then the call to HtmlQuote can be avoided. However care must be taken to
free the allocated memory only if HtmlQuote is actually called.

This class handles these details, automatically freeing allocated memory when it is destroyed. The typical
use case for this class is to be allocated on the stack for the duration that the quoted string is needed. For
example:

 int rc;
 HttpdHtmlQuoter quoter(some_string, rc);
 if (rc != 0)
 {
 // Handle the error!
 return;
 }

 rc = p_stream->Printf("<code>%s</code>\n", quoter.Quoted());
 if (rc != 0)
 {
 // Things just aren't good today.
 return;
 }

HttpdDataSource Reference

Introduction
The HttpdDataSource is a base class that represents a source of data. Examples are things
like flash chips, files, and memory buffers. The interface exposed by this class is realized by the
HttpdMemoryDataSource class provided by Seminole. For specialized data sources such as banked flash
chips, external files, or even network sources user-written implementations of this interface may be created.

Public Methods

ReadAt

int HttpdDataSource::ReadAt (void *p_data, size_t sz, unsigned long
offset);

Support Classes

116

This pure virtual function is the interface for reading data from the source. On success, sz bytes are written
to the buffer pointed to by p_data starting at offset bytes from the start of the data from the source.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

ReadValue (32-bit)

int HttpdDataSource::ReadValue (HttpdUint32 &val, unsigned long offset);

This method reads a 32-bit unsigned value from the source starting at offset offset from the start of the
data in the source. The decoding is performed by the HttpdUtilities::AssembleU32 routine.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). The returned value is placed in the val argument.

ReadValue (16-bit)

int HttpdDataSource::ReadValue (HttpdUint16 &val, unsigned long offset);

This method reads an unsigned 16-bit value from the source starting at offset offset from the start of
the data in the source. The decoding is performed by the HttpdUtilities::AssembleU16 routine.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). The returned value is placed in the val argument.

AddressOf

const void * HttpdDataSource::AddressOf (unsigned long offset, size_t
sz);

Some sources of data are accessible directly via a memory address. For those kinds of sources this method
allows access to the memory space. If a HttpdDataSource does not support access via a pointer this
function can safely return NULL and the data will be accessed using the ReadAt and ReadValue
methods.

If the data can be mapped for sz bytes starting at offset from the start of the data in the source, the
mapped address should be returned. The returned address should be valid until ReleaseAddress is
called on the returned pointer.

This function should only be implemented for cases where access through a pointer would be faster than
calls to ReadAt. For example, allocating a buffer and reading the contents of a file into it is not really
any more efficient than having the data read into a buffer provided to ReadAt.

However, an implementation data source backed by something like a Disk-On-Chip® from M-Systems
with a memory-mapping window would implement this method in a special way to avoid the copy if
sufficient mapping window is available.

ReleaseAddress

void HttpdDataSource::ReleaseAddress (const void *p_addr);

This method releases any resources associated with a mapped address obtained from AddressOf.

Support Classes

117

HttpdMemoryDataSource Reference

Introduction
The HttpdMemoryDataSource is a class that abstracts an addressable region of memory as a data
source (see HttpdDataSource).

A very typical use of this class is to provide an interface between content data stored in an array
by the bin2c tool and the HttpdRomFileSystem. The initialized array from bin2c is accessed via a
HttpdMemoryDataSource that is provided to an instance of HttpdRomFileSystem.

Thread Safety

This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Public Methods

HttpdMemoryDataSource

HttpdMemoryDataSource::HttpdMemoryDataSource (void *p_data, size_t sz);

This function initializes a memory data source that points to p_data and is sz bytes in length.

HttpdFileDataSource Reference

Introduction
The HttpdFileDataSource is a class that abstracts a HttpdFile object as a data source (see
HttpdDataSource).

There are two distinct implementations of this class depending on the
INC_CACHING_FILE_DATA_SOURCE option. If this option is disabled then it is assumed that read
and seek operations on a file are very fast.

If the INC_CACHING_FILE_DATA_SOURCE is enabled then the HttpdFileDataSource object
maintains a cache of buffers to avoid having to read continually from the file. This is especially desirable
if HttpdFile objects have high overhead performing seeks and reads.

The HttpdFileDataSource arbitrates access to the underlaying file object so that the data source
may be used in a thread-safe manner. This allows a single file object to service many threads using the
data source; as is common when the data source is used to back an instance of the HttpdRomFileSystem.

If your platform provides either virtual memory (and an interface similar to POSIX mmap()) or has large
amounts of directly addressable storage then consider using the HttpdMemoryDataSource class instead.
Otherwise the HttpdFileDataSource object is doing the same work that the memory manager within
the operating system is doing; and performing this work twice is less efficient.

Support Classes

118

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Caching
The caching version of HttpdFileDataSource maintains a set of fixed-size cache buffers in a hash
table for easy access. The hash is indexed on the logical address of the block and the ordering of the nodes
within each bucket is explicitly from most recently used (list head) to least recently used (list tail).

Once the maximum number of buffer blocks are resident in the cache any access outside the resident blocks
requires that a block be evicted. The eviction process rotates through all the buckets to avoid punishing
any particular group of blocks. Buffers are evicted starting from the end of the list which is where the least
recently used blocks reside.

In order to support mapped access (see HttpdDataSource::AddressOf) some blocks are “pinned”
and are never removed from the cache until they are “un-pinned.”

Tuning the cache is a matter of understanding the costs of the HttpdFile object backing
the HttpdFileDataSource and the access pattern of the data source. In most cases the
HttpdRomFileSystem package will be accessing the data source. The ROM filesystem performs two types
of accesses: Small random accesses for searching the meta-data and large consecutive accesses to the data
once found. The HttpdRomFileSystem class attempts to map data areas directly.

It is best to keep the cache block size (FILE_DATASRC_CACHE_SIZE) a multiple of the
underlaying filesystem block size as well as a power of two (to avoid lengthy division). The
FILE_DATASRC_MAX_PINNED setting should be increased for lots of concurrent access as multiple
threads attempt to map different regions of data.

The FILE_DATASRC_HASH_BUCKETS and FILE_DATASRC_MAX_CACHE_BLOCKS
parameters should be increased for large amounts of data.

Public Methods

HttpdFileDataSource

HttpdFileDataSource::HttpdFileDataSource (HttpdFile *p_file);

This function initializes a file data source backed by p_file. The file must be reserved exclusively for
the use of the data source as long as the HttpdFileDataSource object exists. In addition the lifetime
of p_file must meet or exceed the lifetime of the HttpdFileDataSource object.

Create

int HttpdFileDataSource::Create (void);

This method should be called once before the HttpdFileDataSource object is used. If this method
returns failure then the object should not be used.

Support Classes

119

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdContentSink Reference

Introduction
The HttpdContentSink implements the interface of HttpdWritable. Data written to the
HttpdContentSink is buffered up in memory for later use. The buffering is done in such a way
that when the contents are written out to a sink (which is typically a socket) the writes are in chunks of
SINK_BUFFER_SIZE bytes.

The most common use is to direct the output of an operation such that the output data is queued for later
transmission. In fact, once stored within the HttpdContentSink the data can be sent multiple times.

Another common use of HttpdContentSink is to buffer up data so that a correct Content-length
header can be sent as the result of an HTTP request. If a sink that can convert the content into a null-
terminated C string is desired consider using a HttpdStringSink.

The HttpdContentSink class provides a guaranteed atomic behavior for writes. If a write will not
succeed the stored content within the sink remains unchanged as if the Write method was not called.
This behavior allows recovery from a failure when using the HttpdContentSink. In fact this is how
the INC_BUFFER_OVERFLOW_RECOVERY option is implemented.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

ContentLength

size_t HttpdContentSink::ContentLength (void);

This function returns the number of bytes queued in the HttpdContentSink at the current moment.

SendData

int HttpdContentSink::SendData (HttpdWritable *p_data);

This function writes the queued data to the interface specified by p_data.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Support Classes

120

Purge

void HttpdContentSink::Purge (void);

This method removes all stored content from the sink.

HttpdBatchWriter Reference

Introduction
>

The HttpdBatchWriter implements a filter that can be applied to a HttpdWritable object to batch
up smaller writes into larger ones.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Many TCP implementations do not perform well when many small writes of various sizes are performed
on a socket. This can be avoided by enabling the Nagle algorithm although this results in higher latency.
The HttpdBatchWriter is a filter that sits on top of a HttpdSocket sink and normalizes the size
of the writes to the socket to XFER_BUF_SIZE bytes.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdBatchWriter

HttpdBatchWriter::HttpdBatchWriter (HttpdWritable *p_target);

Initialize the batch writer. The batched data is written to p_target periodically.

Flush

int HttpdBatchWriter::Flush (void);

This method flushes the pending data that has not been batched yet.

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes”).

Note

Pending data is not flushed if the HttpdBatchWriter is destroyed; although all allocated
resources are released. Therefore it is important to call Flush before releasing this object
in the event of successful request processing.

Support Classes

121

HttpdNullSink Reference

Introduction
The HttpdNullSink implements the interface of HttpdWritable. Data written to the HttpdNullSink
is destroyed.

The most common use (from a user point of view) for this strange class is for multipart MIME file handling.
To ignore a particular entity of a MIME multipart message, the address of an instance of this class can be
passed to HttpdBoundaryReader::Read as the p_target parameter.

Because there is no instance specific data in this object, an instance of HttpdNullSink is available as a
singleton from HttpdNullSink::Null. This instance is valid for the lifetime of the system and may
be used any time after global constructors are executed.

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

Null

static HttpdWritable *HttpdNullSink::Null (void);

This function returns a writable object that simply ignores any data written to it. The pointer is never NULL.

HttpdStringSink Reference

Introduction
The HttpdStringSink implements the interface of HttpdWritable. Data written to the
HttpdStringSink is stored as a regular, contiguous, zero-terminated string.

This class differs from a HttpdContentSink in that the buffer is contiguous and can be used as a null-
terminated C string. If the content is only to be stored and then written out to another sink consider using
a HttpdContentSink as it is more efficient.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Support Classes

122

Public Methods

String

const char * HttpdStringSink::String const (void);

This function returns a (read-only) pointer to the current contents of the sink. If the sink is empty a pointer
to the empty string is returned.

Buffer

char * HttpdStringSink::Buffer const (void);

This function returns a pointer to the current contents of the sink. Unlike the String method if the sink is
empty the return value is undefined. This method is slightly more efficient than calling String, however.

TakeBuffer

char * HttpdStringSink::TakeBuffer (void);

This method removes the current string in the sink and reset the sink to contain an empty string. A pointer
to the string that contains the contents of the sink. If the sink is empty, NULL is returned. After this call
the string is owned by the caller. It is the responsibility of the caller to release it using HttpdOpSys::Free
when no longer needed.

Length

size_t HttpdStringSink::Length (void);

This method returns the size (in bytes) of the string data. The return value is the number of bytes written
to the buffer not the actual size of the buffer. The size of the buffer may be larger than the number of
bytes written.

Clear

void HttpdStringSink::Clear (void);

This function removes any content written to the sink. The allocated buffer is not returned to the system
however and is re-used when more data is written to the sink.

ClearAndRelease

void HttpdStringSink::ClearAndRelease (void);

This function removes any content written to the sink. Additionally, the allocated buffer is returned to
the system.

Prepare

void HttpdStringSink::Prepare (size_t size);

This method pre-allocates size bytes of free space within the sink. This is useful for avoiding heap
fragmentation if the size of the data being written to the sink is known in advance.

Support Classes

123

It is okay to call this method at any time during the life of the object. This method will never reduce the
size of the allocated free space if it is greater than size.

ReleaseBuffer

void HttpdStringSink::ReleaseBuffer (void);

This method releases any unused buffer space in the sink. It is a good idea to call this method for long-
lived sinks that will not be modified once built.

It is okay to call this method at any time during the life of the object. Writing additional data to the sink
will simply reallocate the buffers if needed.

HttpdBufferWriter Reference

Introduction
The HttpdBufferWriter class is similar in purpose to the HttpdStringSink class. This class
implements the interface of HttpdWritable such that data written to the interface is stored in a fixed size
buffer. Attempts to write more data than the buffer has available results in an error. The buffer is not null
terminated and is not allocated or managed by this class.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Count

size_t HttpdBufferWriter::Count const (void);

This function returns the number of bytes written into the buffer. The count is reset to zero when a new
buffer is assigned.

Buffer

void HttpdBufferWriter::Buffer (void *p_buffer, size_t max_size);

This method assigns a new buffer as the target for written data. The p_buffer parameter points to the
address of the new buffer. The max_size parameter is the maximum number of bytes that may be written
into the buffer.

The buffer set by this method remains the target for writing until either the HttpdBufferWriter
instance is destroyed or a new buffer is set with this method.

Support Classes

124

Setting a new buffer resets the number of bytes written counter

HttpdFifo Reference

Introduction
This class implements a dynamically sized buffer that can be used to capture streamed data for analysis.
The expected use of this class is that data is removed from the buffer as it is processed. A typical example
would be to process data in a streaming fashion where processing must be delayed until a certain amount
of data has arrived.

Use of this class provides a very efficient solution to producer/consumer type problems. HttpdFifo
implements the HttpdWritable interface in addition to a zero-copy interface that can directly access
the internal buffer of the FIFO. The latter interface is ideal for processing data from a HttpdReceiver
object efficiently.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdFifo

HttpdFifo::HttpdFifo (size_t initial_buffer = 0, size_t max_buffer =
infinity);

This function constructs the HttpdFifo object. If initial_buffer is not 0 then this is the number
of bytes allocated initially. If max_buffer is specified then this is the maximum amount of data that
may be buffered before the methods of this object return an error condiition.

AvailableWriteBuffer

size_t HttpdFifo::AvailableWriteBuffer const (void);

This method returns the number of bytes that the current write buffer can take without a reallocating
memory.

TransferSize

size_t HttpdFifo::TransferSize const (void);

This method returns the ideal size to use for the buffer window specified to the GetWriteBuffer()
method. It avoids lots of repeated small (inefficient) writes by rounding the transfer size up if necessary.

Support Classes

125

GetWriteBuffer

void *HttpdFifo::GetWriteBuffer (size_t window);

This method returns a pointer to the buffer for writing data. The buffer will be at least window bytes in
size. If NULL is returned then there is insufficient memory to open the buffer to the specified size.

After writing upto window bytes to the returned buffer Produce() should be called with the number
of bytes actually written.

Produce

int HttpdFifo::Produce (size_t count);

This method registers that count bytes were written to the write buffer returned by
GetWriteBuffer().

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Used

size_t HttpdFifo::Used const (void);

This method returns the number of bytes available in the FIFO for reading (i.e. used buffer space).

ReadData

void *HttpdFifo::Used const (void);

This method returns a pointer to the FIFO data. The pointer points to all of the data available: the number
of bytes returned by Used().

Consume

void HttpdFifo::Consume (size_t count);

This method removes count bytes from the FIFO. Typically this method is invoked after processing data
accessed by the pointer returned from ReadData().

Read

size_t HttpdFifo::Read (void *p_buffer, size_t count);

This method moves up to count bytes from the FIFO to p_buffer. If fewer than count bytes are
available then the actual number of bytes read is returned.

ReleaseBuffer

void HttpdFifo::ReleaseBuffer (void);

This method releases any memory allocated by the FIFO if the FIFO is empty. The FIFO can be used after
this at which point it will reallocate the buffer automatically.

Support Classes

126

Finish

int HttpdFifo::Finish (void);

This method is to be called when no more data is written to the tokenizer. In this class it simply returns 0
but subclasses may override it to provide additional functionality.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). The returned value is obtained from the Error method which may be
overridden for additional error reporting.

ReadBody

int HttpdFifo::ReadBody (HttpdRequest *p_request, unsigned int time_out
= HTTPD_CGI_TIMEOUT);

This method reads an document that is provided with the entity body of p_request. If the entity body
is fully digested then Finish() is automatically called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdCountingSink Reference

Introduction
The HttpdCountingSink implements the interface of HttpdWritable. Data written to the
HttpdCountingSink is discarded but a running total of the number of bytes written is kept. This class
is especially useful when generating the Content-Length headers.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

WrittenSize (Getter)

size_t HttpdCountingSink::WrittenSize (void); const

This method determines how many bytes have been written into the sink object.

WrittenSize (Setter)

void HttpdCountingSink::WrittenSize (size_t sz);

Support Classes

127

This method sets the current byte count of the sink.

HttpdChunkedSink Reference

Introduction
The HttpdChunkedSink implements the interface of HttpdWritable. Data written to the
HttpdChunkedSink is reformatted to the HTTP chunked transfer encoding.

This transfer encoding is only necessary for dynamically generated content where the length is unknown
before it is generated. Unless chunked encoding is used, persistent connections can not be maintained with
dynamically generated content.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

HttpdChunkedSink

HttpdChunkedSink::HttpdChunkedSink (HttpdWritable *p_out);

This constructor initializes the sink. The output of the sink is sent to p_out. This parameter should almost
always be the socket from a request object.

Open

int HttpdChunkedSink::Open (void);

This method should be called before any data is written to the object. Not calling this method when a sink
is not used avoids memory waste for the chunking buffers.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned. However, this error code
can be ignored as it is not fatal. Should Open fail writes to this object will simply return an error.

Finalize

int HttpdChunkedSink::Finalize (void);

This method should be called after all data is written to the object. No more data should be written after
Finalize is called. The only reason for not calling this is if the socket the sink is attached to is being
abandoned due to error.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Support Classes

128

HttpdRomFileSystem Reference

Introduction
HttpdRomFileSystem provides an interface for the abstract class HttpdFileSystem which
provides an abstract interface for a file system. The structure of the filesystem is stored in a packed form
generated by the SCPG tool.

The packed content generated by SCPG must be stored in some form of read-only storage and provided
to the HttpdRomFileSystem via a HttpdDataSource class.

This class can be used independently of Seminole. However, the file system semantics implemented by
this class are really oriented for HTTP style transactions. Files are directly associated with MIME types
and there is no concept of a “current working directory.” The ROM filesystem is designed to have full path
names for the most efficient file lookup.

The ROM filesystem also allows named attributes on a per-file basis if the INC_ROM_ATTRIBUTES
configuration option is enabled.

Even if your embedded platform has a flash filesystem it is probably optimal to use a
HttpdRomFileSystem contained in a single file holding all of the web content. There are several
reasons for this:

• Many flash filesystems do not deal well with the kinds of access patterns that HTTP requests generate.

• Websites are composed of many small files. Sophisticated flash filesystems that perform wear-leveling
and bad block handling (e.g. YAFFS or jffs2) keep a large amount of meta-data per file. Storing web
content in these filesystems can waste a large amount of space.

• HttpdRomFileSystem provides highly optimized versions of the PushToSink and
PushFileSegment methods. These operations are fundamental to web serving.

• Traditional filesystem semantics (e.g. POSIX) do not keep track of content types or other meta data
while HttpdRomFileSystem does.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
HttpdRomFileSystem is thread safe provided the underlaying data source is reentrant. For
performance reasons there is no locking within HttpdRomFileSystem. Therefore multiple threads
may be opening files against the HttpdRomFileSystem although each individual open file object may
only be used by one thread at a time.

Public Methods

Mount

int HttpdRomFileSystem::Mount (HttpdDataSource *p_source);

Support Classes

129

This method should be called once after the construction of the HttpdRomFileSystem. Given a valid
ROM file system image contained in p_source, the ROM filesystem becomes active.

No accesses to the filesystem should be made until it is mounted without error.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdReceiver Reference

Introduction
HttpdReceiver is an abstract interface that is used to read data from an HTTP inbound transfer. It
has similar methods to a socket for reading data. This interface is mainly used when reading data from
POST requests.

Public Methods

HttpdReceiver

HttpdReceiver::HttpdReceiver (HttpdSocket &p_request);

This function constructs the abstract portion of the HttpdReceiver object.

ReadUntil

bool HttpdReceiver::ReadUntil (char term, char *&p_buffer, size_t bufsz,
unsigned int timeout);

This function reads bytes from the transfer until either term is seen; in which case term is not stored in
the resulting buffer. The method returns if the timeout period elapses.

In order to avoid excessive memory allocations on entry p_buffer should point to a statically allocated
buffer that is bufsz bytes in size. If the amount of data to be read exceeds the statically allocated buffer
size then a dynamic buffer will be allocated. When this method returns if p_buffer no longer points to
the statically allocated buffer then it must be freed by the caller.

This method returns true if at least one byte of data was returned. The returned data is terminated by a zero
byte. If no data was received then false is returned.

Read

int HttpdReceiver::Read (void *p_buf, size_t &nbytes, unsigned int
timeout);

This function reads upto nbytes from the transfer into p_buf. If no data is received for timeout
seconds then an error is returned. Upon successful return nbytes will be set to the number of bytes read,
which may be less than the requested amount.

Pump

int HttpdReceiver::Pump (HttpdFifo *p_fifo, unsigned int timeout);

This function transfers all of the received data into p_fifo.

Support Classes

130

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

ReadN

int HttpdReceiver::ReadN (void *p_buf, size_t nbytes, unsigned int
timeout);

This function reads exactly nbytes from the transfer into p_buf. If not enough data is received for
timeout seconds then an error is returned.

Gets

int HttpdReceiver::Gets (char *p_buf, size_t nbytes, unsigned int
timeout);

This function reads one line from the receiver, assuming that each line is terminated by a newline character
(ASCII line feed). The value of maxbuf should be the size of the buffer, p_buf.

As with the HttpdSocket version of this method, it is worth noting that a carriage return may be
embedded in the buffer, as Gets() does not purge them.

If the entire line is not received by the specified timeout (in seconds) then
HttpdOpSys::ERR_NOTREADY is returned. If the line would exceed the available
buffer size then HttpdOpSys::ERR_LIMITRCHD is returned. For an empty string
HttpdOpSys::ERR_BADFORMAT is returned.

Callers should keep in mind that it is possible that this method returns some other error code surfaced from
the underlying socket layer.

More

bool HttpdReceiver::More (unsigned int timeout);

This function returns true if there is likely to be more data available in the transfer. If the transfer is
complete then false is returned.

Pump

int HttpdReceiver::Pump (HttpdWritable *p_sink, unsigned int timeout);

This function transfers the body of the HTTP transaction (the received content) into p_sink. If data is
not received in timeout seconds then the transfer is aborted with an error.

If successful 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdBoundaryReader Reference

Introduction
The HttpdBoundaryReader class is used for processing MIME multipart messages. These are used
for encapsulating many kinds of data; in particular, HTTP file uploads are done using multipart MIME.
Multipart MIME separates components with a unique boundary string that is obtained from encapsulation
headers. This class does not parse these headers.

Support Classes

131

Instances of HttpdBoundaryReader are associated with a receiver and can be used either by “pulling”
the data or pushing the data into a subclass of HttpdWritable.

Public Methods

HttpdBoundaryReader

HttpdBoundaryReader::HttpdBoundaryReader (HttpdReceiver *p_receiver,
const char *p_boundary, int &rc);

The HttpdBoundaryReader must be provided with a reference to the receiver to read from
(p_receiver) and the boundary string (p_boundary). The rc parameter is set to an error status after
the constructor returns if there was a problem initializing.

Note

The boundary should be found (using HttpdUtilities::FindBoundary before this class is
constructed.

Read (pull model)

int HttpdBoundaryReader::Read (const void *&p_buffer, size_t &len,
unsigned int timeout);

This function reads from the associated receiver, waiting for up to timeout milliseconds for data.

If there is data to be read then len is set to the number of bytes that were read and p_buffer is pointed
to the data and 0 is returned.

The returned pointer is valid until the next call to this method or the destruction of the object.

If the boundary is found then HttpdBoundaryReader::HTTPD_MIME_BOUNDARY is returned.
In this case callers should call HttpdUtilities::IsLastBoundary to complete the boundary parsing and
determine if another part of the multipart entity is present.

Otherwise a system dependent error value is returned (see Table 4.1, “OS Abstraction Layer Error Codes”).

Read (push model)

int HttpdBoundaryReader::Read (HttpdWritable *p_target, unsigned int
timeout);

This method writes the contents of the current part of the multipart message into p_target. If no data
is received in timeout milliseconds the operation is aborted and an error code is returned.

As with the pull version of Read if success is returned (a return value of 0) then
HttpdUtilities::IsLastBoundary should be called to complete the boundary parsing.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

Data is written into the sink in chunks no larger than the boundary size. If the target stream
does not perform well with small writes then the HttpdBatchWriter class can be used to
increase the write size.

Support Classes

132

HttpdMuxFileSystem Reference

Introduction
To support the modular construction of systems, the HttpdMuxFileSystem class allows multiple
separate HttpdFileSystem objects to be combined into a single object. Each filesystem is
addressed with a specific prefix that is assigned at registration time. HttpdMuxFileSystem
provides an abstract interface for a file system although the OpenFile method is not used. The
HttpdMuxFilesystem class fills in the correct filesystem in the HttpdFileInfo object when the
HttpdMuxFilesystem::FileInfo method is called.

A good example for the use of this class is an embedded device with slots that allow additional modules to
be inserted. It would be convenient if each module could contain its own filesystem image for configuration
of its specific parameters. With this approach new modules can be developed without even having to
update the software on the embedded device.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

Mount

int HttpdMuxFileSystem::Mount (const char *p_prefix, HttpdFileSystem
*p_fs);

This method adds p_fs to the translation table addressed by the prefix string in p_prefix.

No accesses to the filesystem should be made until all calls to Mount complete without error. Once the
filesystem is accessed no more prefixes should be added.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

133

Chapter 4. Portability Layer Reference
Platform Specific Definitions

The definitions in sem_sys.h are specific to the target OS. The specifics of the TCP implementation
are defined in sem_syssock.h. Seminole comes with reference implementations for several operating
systems. The reference implementations do not have to be used, and the class specifications in this section
can be implemented in any way necessary.

It is also okay to change the reference code to work around any special platform needs. Unless the target
platform is very different from any of the other targets it is suggested that an existing portability layer
be taken as a base when attempting a new port. The source code for all of the reference applications are
in src/targets/OS-NAME. New portability layers should be placed in the same parent directory as
the existing ones.

Although it is not necessary, application code may also make use of the portability layer if desired. It is
also not strictly necessary for the portability layer to use the operating system to implement its services.
For example instead of implementing the memory allocation service in terms of malloc and free the
HttpdMemoryAllocator class within Seminole can be used to allocate from a statically declared
chunk of storage.

HttpdOpSys Reference

Introduction
HttpdOpSys serves as an abstraction layer between Seminole's platform-independent code and the
specific interfaces offered by the host operating system. Primarily, it provides generic memory and
process management facilities, since these are the most basic requirements for Seminole. Like the
HttpdUtilities class all members of this class are static and there is no need to ever instantiate this
class.

More detailed architectural discussion of Seminole's portability mechanisms can be found in the section
called “Operating Environment Abstraction Layers”.

When requesting services from the underlying host operating system through HttpdOpSys, it is possible
for internal errors to eventually be returned to the caller within Seminole. However, these errors are
abstracted to generic equivalents which are descriptive of the error condition, but do not depend on any
platform-specific representation. The possible OS errors are listed in Table 4.1, “OS Abstraction Layer
Error Codes”.

Table 4.1. OS Abstraction Layer Error Codes

Constant Meaning

ERR_NOTFOUND File, directory, or entity not found

ERR_SYSPERM Administrative permission denied

ERR_NOTREADY Device, resource, or unit not ready

ERR_LIMITRCHD Maximum limit or capacity reached

ERR_IO Low-level or hardware I/O error

ERR_WRONGTYPE Inappropriate type or target for operation

Portability Layer Reference

134

Constant Meaning

ERR_OUTOFMEM Ran out of memory

ERR_BADPARAM Invalid or out-of-range parameter

ERR_BADFORMAT The provided data is corrupted or not in a valid
format.

ERR_NOSPACE There is insufficient permanent storage to complete
this operation.

ERR_UNKNOWN Unknown/untranslatable error

ERR_USER This is the base number for error codes
in components that use HttpdOpSys. Some
components in Seminole need these numbers to
return extended error or status codes and use this
number as a starting base.

Public Methods

Init

int HttpdOpSys::Init (void);

This static method initializes the operating system abstraction layer. No other services from HttpdOpSys
can be utilized before this method is called and returns success.

Returns an error code from Table 4.1, “OS Abstraction Layer Error Codes” on failure or zero on success.

Note

This method does not have to be idempotent. It is called once and only once by
Httpd::Init.

Malloc

void *HttpdOpSys::Malloc (size_t sz);

Allocate new memory sz bytes in length.

Returns a pointer to a buffer of at least the requested size, taking into account host alignment requirements,
or NULL upon error.

If desired implementations can make use of the HTTPD_MALLOC_RETRY_LOOP and
HTTPD_MALLOC_RETRY_TAIL macros to add a retry mechanism for allocations. These macros clear
the allocation caches if INC_ALLOCATION_CACHE_PURGE is enabled. A typical implementation in
the portability layer would be:

 void *HttpdOpSys::Malloc(size_t size)
 {
 HTTPD_MALLOC_RETRY_LOOP
 {
 void *p_buffer = malloc(size);
 if (p_buffer != NULL)
 return (p_buffer);

Portability Layer Reference

135

 HTTPD_MALLOC_RETRY_TAIL
 }

 return (NULL);
 }

Free

void HttpdOpSys::Free (void *p_ptr);

Release a block of allocated memory pointed to by p_ptr.

Realloc

void *HttpdOpSys::Realloc (void *p_oldptr, size_t newsz);

Expand or shrink the size of the memory block pointed to by p_oldptr, to be newsz bytes in length.

Returns a revised pointer upon success, or NULL upon failure.

Important

If Realloc() fails to change the size of a given block of memory, the original block is
invalidated and cannot be used. Therefore, if the block being resized has pointers to other
objects embedded within, it is better to use the SafeRealloc method and explicitly free
the original pointer.

As with Malloc() implementations may opt to use the HTTPD_MALLOC_RETRY_LOOP and
HTTPD_MALLOC_RETRY_TAIL macros to add a retry mechanism.

SafeRealloc

void *HttpdOpSys::SafeRealloc (void *p_oldptr, size_t newsz);

This method is similar to Realloc. It expands or shrinks the size of the memory block pointed to by
p_oldptr, to be newsz bytes in length.

Returns a revised pointer upon success, or NULL upon failure.

Unlike Realloc, if this method returns NULL the original block pointed to by p_oldptr is not released.
It must be explicitly released. This gives callers a chance to perform further cleanup before releasing the
allocated memory block.

Fork

bool HttpdOpSys::Fork (void (*p_func)(HttpdParameter p1, HttpdParameter
p2, HttpdParameter p3), HttpdParameter p1, HttpdParameter p2,
HttpdParameter p3, HttpdParameter p3, HttpdPriorityHint pri_hint);

Create a new process, job, or task (depending on the host platform), which will immediately enter the
function p_func, passing it p1, p2, and p3 as arguments.

pri_hint serves as a characterization to the underlying operating system of the type of work the new
thread of execution will be performing, so that it can be scheduled accordingly. The behavior this hint

Portability Layer Reference

136

elicits is completely dependent on the operating system abstraction layer being used; while all layers must
support the standard values of pri_hint, they are not actually required to take any action on it. These
standard values are listed in Table 4.2, “Fork() Priority Hints”. The existence of other values should not
be relied upon, since the operating system abstraction layer is only required to support the listed values.

Table 4.2. Fork() Priority Hints

Constant Meaning

HTTPD_PRI_WORKER Standard worker thread

HTTPD_PRI_ACCEPTOR Webserver connection acceptor thread

HTTPD_PRI_SESSION_SCRUBBER Session table scrubbing thread

HTTPD_PRI_DISCOVERY Discovery server thread

Returns true upon successful process creation, false upon failure.

TaskSleep

void HttpdOpSys::TaskSleep (unsigned int msec);

This method suspends the calling thread for msec milliseconds. Ideally, the operating system should
schedule other tasks during the interval.

Now

void HttpdOpSys::Now (HttpdOpSys::TimeStamp &now);

This method obtains the current time as measured from some arbitrary epoch and places it into now. This
notion of “current time” is not necessarily connected with the actal wall-clock time. Instead it is used to
measure time realtive to other values of the same clock.

On some systems the wall-clock time is either not available or changes in a manner that does not reflect
the passage time (e.g. is periodically adjusted to some other reference clock). In these cases this routine
can be implemented to provide a “pure” time measurement source.

The TimeStamp type must be defined by HttpdOpSys as an abstract type that can represent this measured
time.

DiffTime

int HttpdOpSys::DiffTime (const HttpdOpSys::TimeStamp &t1, const
HttpdOpSys::TimeStamp &t0);

This method computes the signed difference, in seconds, between the time values given by t1 and t0
by subtracting t0 from t1.

This method is similar to the standard library routine difftime except that it does not return a floating
point value (which is frequently inappropriate for embedded systems).

Randomize

void HttpdOpSys::Randomize (void);

This method is called by Seminole just before it is about to obtain entropy (via the
HttpdOpSys::Entropy method) to potentially give some additional randomness to the obtained data.

Portability Layer Reference

137

In particular the timing of when this function is called is typically a function of the requests delivered
to Seminole Although this is not an ideal source of entropy (since it can be manipulated externally) in
systems with few other sources of entropy it can be helpful.

Note

This function may be called from multiple threads because it is not called at startup but rather
when a stream of entropy is needed.

Entropy

unsigned int HttpdOpSys::Entropy (unsigned int max_val);

This method should return a random value between 0 and max_val (inclusive). Ideally the data should
be totally random as it may be used for cryptographic purposes. However, the only real source of true
randomness is from specialized hardware (such as an avalanche noise). For cost-sensitive applications it
may be necessary to gather entropy from other sources such as the time between keypresses or the input
of an analog-to-digital converter.

Therefore the implementation of this method (and the associated HttpdOpSys::Randomize method)
is considered to be very platform specific.

NativeFileSystem

HttpdFileSystem * HttpdOpSys::NativeFileSystem (void);

Some operating systems have their own native file systems (well, most actually). On these systems, the
native filesystem is abstracted as a file system interface (HttpdFileSystem).

On operating systems that do not have a native file system available this routine shall return NULL.

OpenSystemFile

int HttpdOpSys::OpenSystemFile (const char *p_filename, HttpdDataSource
*&p_source);

This routine maps a native operating system file to a HttpdDataSource abstraction.

The address of the created data source object is placed in p_source. When the object is no longer needed
it should be released with HttpdOpSys::CloseSystemFile.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

This routine is optional and does not have to be implemented. If implemented, the symbol
HTTPD_HAVE_NATIVE_FILE_SOURCES should be defined to a non-zero (true) value.

CloseSystemFile

void HttpdOpSys::CloseSystemFile (HttpdDataSource *p_source);

This releases the file mapping created with HttpdOpSys::OpenSystemFile. The data source pointed to by
p_source is no longer valid after this method is called.

Portability Layer Reference

138

Note

This routine is optional and does not have to be implemented. If implemented, the symbol
HTTPD_HAVE_NATIVE_FILE_SOURCES should be defined.

Public Data
HttpdOpSys contains no publically accessible data members.

HttpdTcpSocket Reference

Introduction
The HttpdTcpSocket class provides an implementation of the required interface for a transport
abstraction. It inherits the interface defined by HttpdSocketInterface. In particular, the TCP protocol is
implemented via this interface.

Seminole does not provide its own TCP/IP stack. It is expected to be part of the host operating system
or support package. Thus, this class is not defined as part of Seminole proper. Rather, it is part of the
portability layer.

HttpdSslSocket Reference

Introduction
The HttpdSslSocket class provides an implementation of the required interface for a transport
abstraction. It inherits the interface defined by HttpdSocketInterface. In particular, the SSL protocol is
implemented via this interface.

Seminole does not provide its own SSL stack. Thus, this class is not defined as part of Seminole proper.
Rather, it is part of the portability layer.

On most platforms, the OpenSSL [http://www.openssl.org/] library is used. The HttpdSslSocket
interface uses the primitives of the OpenSSL™ library to manage secure connections.

Unlike normal TCP traffic, SSL traffic requires lots of configuration information. In particular, digital
certificates and keys must be provided to the SSL engine. These are passed through the pp_options
parameters to the Listen and Connect methods.

For OpenSSL™ implementations of HttpdSslSocket the following parameters can be specified:

Table 4.3. OpenSSL Socket Options

key:filename Specify the RSA keys. This key is used for the
certificate validation as well as encryption of the
session if ephemeral keying is not used. The key file
should be in the PEM format.

cert:filename Specify the digital certificate used to identify the
server. The “common name” field of the certificate
should be the hostname that the server is addressed
by. The certificate file should be in the PEM format.

http://www.openssl.org/
http://www.openssl.org/

Portability Layer Reference

139

pem:filename Specify a PEM file containing both the RSA keys
and the certificate.

cipher:cipher selection Specify the suite of ciphers to use. This
is the list parsed by the OpenSSL™
SSL_CTX_set_cipher_list function.

dh-512:filename For ephemeral keying the Diffie-Hellman key-
agreement protocol is used. This protocol
requires some specific random numbers that are
computationally intensive to generate. This option
loads the 512-bit version of the parameters from the
specified PEM file.

dh-1024:filename This specifies the 1024-bit version of the Diffie-
Hellman key used for ephemeral keying of the
session.

dh-reuse: Reuse Diffie-Hellman keys. This adds security at
the expense of CPU time. In most cases the added
security benefits out weigh the additional overhead.
However this option may be specified on especially
low-end processors to quicken response times.

rand-egd:EGD socket path Load entropy (randomness) from a socket managed
by an EGD daemon. This is only supported on
POSIX platforms.

rand-file:size,filename Load entropy from a file. The size (and comma) are
optional. If specified only that many bytes will be
read from the file. If the size is not specified the
contents of the entire file are analyzed.

A good example for the use of the size would be the
/dev/urandom device available on some POSIX
systems. This device generates an endless source
of entropy so the size must be specified or else the
server will never start.

Although the configuration of SSL may seem daunting at first, the makecert tool automatically generates
most of the files needed to support SSL

HttpdMutex Reference
Introduction

Instances of HttpdMutex are used to protect shared objects from the effects of being accessed by multiple
threads.

Note

The implementation of HttpdMutex is provided by the portability layer. It is important to
keep in mind that under some operating systems mutexes may not be “recursive.”

A recursive mutex (also called a “counting” mutex) is one that can be taken by a thread
that already owns the mutex without deadlocking. Seminole does not require that mutexes
are recursive — however the target platform may only provide for recursive mutexes. For

Portability Layer Reference

140

maximum portability code that makes use of HttpdMutex objects should not assume they
can be taken recursively.

Public Methods

HttpdMutex

HttpdMutex::HttpdMutex (void);

This initializes the mutex object. The mutex object is not usable though until the Create method is called.

~HttpdMutex

HttpdMutex::~HttpdMutex (void);

Release all associated resources with the mutex object. It is important that the mutex not be obtained when
it is destroyed.

Create

int HttpdMutex::Create (void);

This method should be called once after construction of the object. It registers the mutex object with the
operating system and must be called before the Lock or Unlock methods are called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Lock

void HttpdMutex::Lock (void);

This method requests exclusive access to the mutex (and the object protected by the mutex). Only one
thread at a time will return from this call. The rest will remain queued until the mutex is unlocked.

Unlock

void HttpdMutex::Unlock (void);

This method releases exclusive access to the mutex. If other threads are pending on access, another thread
should be allowed to take the mutex as this thread releases it. It is up to the scheduling policy of the host
operating system to determine when threads are allowed to obtain the mutex.

If the host operating system provides per-mutex selectable scheduling policies then in general a FIFO
scheduling policy is the best for Seminole. Priority inversion protection is also not really required and may
be disabled on mutexes used by Seminole if it provides a performance boost.

HttpdEventSemaphore Reference

Introduction
Instances of HttpdEventSemaphore is used to allow one thread to wait for a signal from another
thread.

Portability Layer Reference

141

Note

This class only exists if the portability layer defines HTTPD_HAVE_THREADS to a non-
zero value.

Public Methods

HttpdEventSemaphore

HttpdEventSemaphore::HttpdEventSemaphore (void);

This initializes the semaphore object. The semaphore object is not usable though until the Create method
is called.

~HttpEventSemaphore

HttpdEventSemaphore::~HttpdEventSemaphore (void);

Release all associated resources with the semaphore. No threads should be waiting on the semaphore when
it is destroyed.

Create

int HttpdEventSemaphore::Create (void);

This method should be called once after construction of the object. It registers the semaphore object with
the operating system and must be called before the Wait or Signal methods are called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Wait

void HttpdEventSemaphore::Wait (void);

This method suspends the calling thread until the semaphore object is signaled (via the Signal method).
Only one thread at a time should wait on the semaphore object.

Once released the semaphore is reset to a non-signaled state.

Wait (with timeout)

int HttpdEventSemaphore::Wait (unsigned long msec);

This method suspends the calling thread until the semaphore object is signaled (via the Signal method)
or msec milliseconds have elapsed. Only one thread at a time should wait on the semaphore object.

Once released the semaphore is reset to a non-signaled state.

Upon success, 0 is returned. If the wait times out, the value
HttpdEventSemaphore::ERR_TIMEOUT is returned. If an operating system error prevents the
operation from succeeding, then a system dependent error value is returned (see Table 4.1, “OS Abstraction
Layer Error Codes”).

Portability Layer Reference

142

Signal

int HttpdEventSemaphore::Signal (void);

This method allows the waiting thread to continue executing. If a thread is not yet waiting on the semaphore
object then the semaphore object is marked as signaled and the thread will not be suspended during the
Wait method.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

143

Chapter 5. Generating Dynamic
Content with Templates
Understanding the Template Engine
Why Templates?

Although other methods exist for generating dynamic content they are often difficult to modify and bulky.
Templates enforce a strict separation between content and code. This separation is especially important
when the content developer is not the same person as the engineer writing the code backing the application.

Some template systems make the mistake of providing almost a complete programming language. This
gives template authors too many freedoms and often results in a large amount of the program logic
within the template. The Seminole template system provides only three constructs: substitution, conditional
inclusion, and iteration. This keeps the content developers “honest” by forcing the actual program logic
to reside in the application layer.

Sometimes it is okay to break the rules. For these cases Seminole includes many pre-built template
commands that are quite flexible and generic. The penalty for breaking the rules and using these pre-built
commands is twofold. First, there is the increase in code size brought about by the generic code. Second
is the increased CPU overhead used during formatting. It is up to the designer of the content to determine
if the tradeoff is worthwhile.

Compiled Templates
For efficiency and reliability reasons, templates in Seminole are compiled. The template-specific
markup is processed by SCPG and encoded into a binary form. The binary form is then executed by
HttpdTemplateProcessor and its supporting classes.

This results in much more efficient template execution because the portions of the template skipped due to
conditional evaluation do not have to be parsed. In traditional template systems that process the template
file, all portions (even those that are in the false part of a conditional) must be parsed.

Template Syntax
Template directives are denoted by the %{ opening token and the }% closing token. These directives can
appear anywhere in the template file. Therefore they can even be used inside of quoted HTML attributes
without problems.

Table 5.1. Template Directives

Directive Description

eval This is the most basic directive. It is used like a
function call in procedural languages. The C++ code
can substitute any string for this directive. Of course,
it can also be used to perform an operation and
substitute the empty string for this directive. The
directive must be followed by a symbol name to
identify the operation:

Generating Dynamic
Content with Templates

144

Directive Description

 Hello user %{eval:username}%.<p>

loop This directive is used to repeat a body of the
template zero or more times. The loop body can
contain text and any other directives.

 <h2>User names</h2>

 %{loop:usertable}%
 %{eval:username}%
 %{endloop}%

Loops are often used in conjunction with eval
directives because loops can bind certain variables
(such as username above) as a loop index.

if Templates can have conditionals with the if
directive:

 The system stores data on a flash chip
 %{if:has_hard_disk}%and hard disk%{endif}%.

Conditionals can also have if-else blocks as well:

 You must connect a the system to
 %{if:ethernet_model}%
 an ethernet
 %{else}%
 a token ring
 %{endif}%
 network uplink.

If-else chains can even be done:

 You must connect the system to
 %{if:ethernet_model}%
 an ethernet
 %{elseif:token_ring_model}%
 a token ring
 %{elseif:bri}%
 an ISDN basic rate
 %{else}%
 a magical
%{endif}%
 network uplink.

Generating Dynamic
Content with Templates

145

Directive Description

ifnot This conditional executes the contents of its body if
the specified condition is not true:

 The system is %{ifnot:ready}% busy%{endif}%.

No else clause can be used with this statement.

Some template directives can contain name/value attribute pairs just like an HTML tag. In these cases the
syntax and quoting rules are similar to HTML. The following tags can have attributes:

• eval

• loop

• if

• else

• elseif

For example:

 Your password is %{eval:password
 set_insecured = 1
 comment = "the magic word"
 tagtype = "<a href>"
 salt = "ABC"}%

There are four attributes associated with the eval of password. Notice that HTML quoting rules apply.
However, only a small subset of entity names are allowed:

• "

• <

• >

• &

• &#XXX (Character XXX)

Programming Template Interfaces
All of the definitions for the template processor are in the sem_template.h. This file automatically
includes seminole.h if it has not been included already.

All of the names referenced in template directives must eventually reference some application specific
code in C++. Each of these directives get instantiated into an object when interpreted. This “command
object” is then passed to a method in the class HttpdSymbolTable. There is one receiver method for
each command type, HandleEval, HandleLoop, HandleCond for each symbol table. These various
methods are overridden in subclasses to implement the specific operations that templates can employ.

Generating Dynamic
Content with Templates

146

Rather than maintain one instance of HttpdSymbolTable (or subclass), the template processor
maintains a stack of them. This provides a simple scoping mechanism that is especially useful for loops.
A particular name is sent to each instance starting from the most recently added to the least recently added
until it is properly handled.

Each symbol table in the chain is given a chance to either handle the symbol, fail the request with a fatal
error or let outer symbol tables attempt to resolve the symbol. If no symbol table resolves the symbol
processing of the template is halted and an error is returned.

To handle a symbol implementations of HandleEval or HandleLoop should
return 0 while HandleCond should return either HTTPD_TEMPLATE_FALSE_CASE or
HTTPD_TEMPLATE_TRUE_CASE. To stop any further searches for the name and fail the template
processing any of the symbol table methods can return HTTPD_TEMPLATE_UNKNOWN_NAME.
If a symbol table method wishes to continue the search to outer symbol scopes
HTTPD_TEMPLATE_NOT_HANDLED should be returned.

The name in the template file can also be prefixed with one or more carets (^) to indicate previous levels of
lexical scope. For example, if the current loop defines an evaluation label of username and we are nested
in this loop three times then we can get to the username of the first loop with a ^^:

 %{loop:user_table}%
 …
 %{loop:user_table}%
 …
 %{loop:user_table}%
 …
 The current top-level user is %{eval:^^username}%.
 …
 %{endloop}%
 …
 %{endloop}%
 …
 %{endloop}%

Referencing previous scopes can be helpful when more than one scope handles the same name.

The stack of symbol tables is maintained by a helper class called HttpdTemplateScope. This
class uses constructors and destructors to keep the template scope in sync with C++ lexical scope.
Another helper class, HttpdSymbolMap provides easy access to select C++ variables from templates.
A combination of these two classes, HttpdScopedSymbolMap provides the combined functionality of
HttpdTemplateScope and HttpdSymbolMap.

The error code HTTPD_TEMPLATE_UNKNOWN_NAME should be returned by the top-most symbol
table if the named action does not exist. Although if no symbol table handles the request an error of
HTTPD_TEMPLATE_UNKNOWN_NAME will be returned.

Returning HTTPD_TEMPLATE_UNKNOWN_NAME causes the template engine to stop searching any
further for a symbol table willing to handle the symbol. The HTTPD_TEMPLATE_NOT_HANDLED return
code indicates that a symbol table does not handle this name however the search should also be applied
to previous scopes.

When using templates with the HttpdFileHandler request handler, the top-most symbol table is
already implemented with a few bonuses as well. This HttpdFSTemplateShell handles file service
requests and provides processing for include files.

Generating Dynamic
Content with Templates

147

HttpdFSTemplateShell also provides a static helper routine, called Execute that can be called
from the DoFile phase of HttpdFileHandler. This helper handles all of the setup work necessary
to execute a template from a subclass of HttpdFileHandler.

The demonstration code (main.cpp) provides a good example of subclassing HttpdFileHandler to
add both authentication and template processing. The MIME type x-server-internal/template
should be used to identify files that require template processing. However, this is only a convention and it
can be circumvented if necessary. In fact, the entire symbol table can be made different based upon MIME.

HttpdSymbolTable Reference

Introduction
The HttpdSymbolTable class is a base class that accepts template commands and executes them. The
default implementation simply returns HTTPD_TEMPLATE_NOT_HANDLED for all commands.

This class is designed to be subclassed and to handle application specific actions during template
processing. Only the methods for the commands that must be handled need to be overridden.

The typical method for implementing one of the handler methods is to call the Name method of the supplied
command pointer and then determine if this is one of the names that should be handled. It is probably best
to implement this as a simple chain of if-else statements:

 int MySymbolTable::HandleEval(HttpdEvalCommand *p_eval)
 {
 const char *p_name = p_eval->Name();

 if (strcmp(p_name, "user_name") == 0)
 return (DoUserName(p_eval));
 else if (strcmp(p_name, "home_dir") == 0)
 return (DoHomeDir(p_eval));
 else
 return (HTTPD_TEMPLATE_NOT_HANDLED);
 }

Because overriding this class for each scope can cause quite a few classes to be defined, for the simple cases
of accessing a variable the HttpdSymbolMap helper class can be used instead of subclassing this class.

Public Methods

HandleEval

int HttpdSymbolTable::HandleEval (HttpdEvalCommand *p_eval);

An eval command needs to be executed by the template engine. The command should be analyzed by this
method and handled if appropriate. If not appropriate, the value HTTPD_TEMPLATE_NOT_HANDLED
should be returned.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”).

Generating Dynamic
Content with Templates

148

HandleLoop

int HttpdSymbolTable::HandleLoop (HttpdLoopCommand *p_loop);

An loop command needs to be executed by the template engine. The command should be analyzed by this
method and handled if appropriate. If not appropriate, the value HTTPD_TEMPLATE_NOT_HANDLED
should be returned.

The function Iterate method of p_loop should be called each time the body of the loop should be
evaluated. It is also very useful to add a new lexical scope during the iterations for variables that change
as the loop progresses.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”).

HandleCond

int HttpdSymbolTable::HandleCond (HttpdConditionalCommand *p_cond);

A conditional command needs to be executed by the template engine. There are three possible outcomes
for processing a conditional command:

• The condition is true, indicated by returning HTTPD_TEMPLATE_TRUE_CASE

• The condition is false, indicated by returning HTTPD_TEMPLATE_FALSE_CASE

• The operation failed or should not be handled, indicated by returning the appropriate error code.

Note

This method should never return 0. This is an ambiguous result to the template engine.

ReturnBool

int HttpdSymbolTable::ReturnBool (bool value);

This helper function maps the value to the appropriate return value for handling template conditionals.

HttpdPrefixSymbolTable Reference

Introduction
The HttpdPrefixSymbolTable class is a small wrapper that adds functionality for named prefixes
to the HttpdSymbolTable abstract interface.

With many symbol tables active simultaneously it can be difficult to differentiate between them. The
HttpdPrefixSymbolTable class allows command names to be given an easily recognizable prefix.
There is no additional implementation to the command handlers from HttpdSymbolTable.

The registered prefix can then be used to address all commands. For example:

 %{eval:buffer-show}%

Generating Dynamic
Content with Templates

149

would match an object with a prefix of buffer and the string show would be returned from the Command
method.

Public Methods

HttpdPrefixSymbolTable

HttpdPrefixSymbolTable::HttpdPrefixSymbolTable (const char *p_prefix);

This initializes a HttpdPrefixSymbolTable object. The lifetime of the p_prefix string must be
equal to or exceed the lifetime of this class as it is not copied internally.

Prefix

const char * HttpdPrefixSymbolTable::Prefix (void);

This method returns the prefix that was used to initialize the object.

Command

const char * HttpdPrefixSymbolTable::Command (const
HttpdTemplateCommand *p_command);

Given a command object this function determines if it matches the prefix of this object. If so the remaining
portion of the command object (following the prefix) is returned. Otherwise, NULL is returned and no
further processing should be performed.

HttpdTemplateCommand Reference
Introduction

HttpdTemplateCommand serves as the base class for all of the command classes:

• HttpdEvalCommand

• HttpdLoopCommand

• HttpdConditionalCommand

The public methods in this class are available from any command and should be called in one of the handler
methods of HttpdSymbolTable derivatives.

Public Methods

Name

const char * HttpdTemplateCommand::Name (void);

Returns the name of the of the command. For example, in a template directive such as:

 %{eval:user_name_string}%

the returned value would be the string user_name_string.

Generating Dynamic
Content with Templates

150

Note

This method will never fail or return NULL by the time the command is passed to a a handler
method. Therefore it is safe for callers to always assume a valid name.

Attribute

const char * HttpdTemplateCommand::Attribute (const char *p_name);

If the specified attribute of the command exists, its value is returned. Otherwise NULL is returned.

Attributes

HttpdCgiParameter * HttpdTemplateCommand::Attributes (void);

Returns a list of the parsed attributes. For example, in a template directive such as:

 %{eval:user_name_string class = "logged-in"
 mode = local
 id = 65 }%

the parameters get encoded by SCPG when the template is compiled. This method reads the encoded
attributes (via the AttributeString method) and parses them out into a HttpdCgiParameter list.

If no attributes exist or there is an error loading the attributes the value NULL is returned.

Caution

The returned list must not be released by the caller. It is owned by the command object and
will be released when command processing is completed. Do not keep pointers to the nodes
of the list or the strings contained within them; make a copy if necessary.

Output

HttpdWritable * HttpdTemplateCommand::Output (void);

Returns the associated output object that is the results of the template. This is commonly needed when
processing eval commands. For example:

 int MySymbolTable::HandleEval(HttpdEvalCommand *p_eval)
 {
 if (strcmp(p_eval->Name(), "user_name") == 0)
 return (p_eval->Output()->Printf("user%d", userId));
 else
 return (HTTPD_TEMPLATE_NOT_HANDLED);
 }

Note

There is always an output stream; therefore this method will never return NULL.

Generating Dynamic
Content with Templates

151

Processor

HttpdTemplateProcessor * HttpdTemplateCommand::Processor (void);

This method returns a pointer to the associated template processor object.

HttpdEvalCommand Reference

Introduction
An HttpdEvalCommand represents an evaluation command in the template. It is derived from
HttpdTemplateCommand and possesses its public interface. See Template Command Objects.

Note

This class is never instantiated in application code. It is created during template execution
and passed to the various HandleEval methods of the symbol tables.

Public Methods

Format

int HttpdEvalCommand::Format (const char *p_string);

There are many different rules for escaping strings when dealing with HTTP and HTML. This helper
routine will format a string with support for some basic attributes that help deal with the quoting issues.
The following attributes are supported:

• The quote attribute will perform quoting in the specified order using one of the following tokens:

html Characters that are HTML tokens such
as & or < are escaped using the
HttpdUtilities::HtmlQuote routine.

uri The string is encoded using the
HttpdUtilities::UriEncode routine.

unuri The string is decoded using the
HttpdUtilities::UriDecode routine.

unuri+ The string is decoded using the
HttpdUtilities::UriDecode routine.
With the plus_xlat parameter set to true.

c-ascii The string is encoded using the section called
“CQuoteString” with the STR_QUOTE_C
mode. Enclosing quotation marks are not
automatically appended.

js-utf8 The string is encoded using the section called
“CQuoteString” with the STR_QUOTE_JSON
mode. Enclosing quotation marks are not
automatically appended. This mode is especially
useful for placing strings within JavaScript
functions or encoding data in JSON format.

Generating Dynamic
Content with Templates

152

• The remove-chars attribute causes any characters in its value to be removed from the formatted
string.

• The filter-chars attribute causes any characters not in its value to be removed from the formatted
string.

• The trim-front attribute causes leading whitespace to be removed.

• The trim-rear attribute causes trailing whitespace to be removed.

• The trunc attribute limits the maximum number of output characters.

For example to HTML-quote and remove all trailing and leading whitespaces for a table field limiting the
output to a maximum of 32 characters use the following template directive:

 <td>%{eval:symbol quote="html"
 trunc="32"
 trim-front trim-rear}%</td>

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

FormatInteger

int HttpdEvalCommand::FormatInteger (long value);

int HttpdEvalCommand::FormatUnsigned (unsigned long value);

This function performs flexible formatting of value. Most of the standard mechanisms of the printf()
family of functions can be employed with the appropriate attributes. In addition to the common attributes
the following type-specific attributes may be used:

hex The converted value is output in hexadecimal using
lower-case alphabetic characters.

HEX The converted value is output in hexadecimal using
upper-case alphabetic characters.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

FormatFloat

int HttpdEvalCommand::FormatFloat (double value);

This function performs flexible formatting of value. Most of the standard mechanisms of the printf()
family of functions can be employed with the appropriate attributes. In addition to the common attributes
the following type-specific attributes may be used:

format = X This specifies the formatting style (as per
printf()) where X is one of f, g, G, e, or E.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Generating Dynamic
Content with Templates

153

Note

This method is only available if the target porting layer defines the
HAVE_FLOATING_POINT preprocessor symbol to a non-zero value.

Common Formatting Attributes

Attribute Effect

width = value Sets the minimum field width (in characters). If
the converted value has fewer characters than the
field width, it will be padded according to the other
formatting attributes.

prec = value An optional precision. If this attribute is omitted,
the precision is taken as zero. This value gives the
minimum number of digits to appear for integral
conversions, the number of digits to appear after
the decimal point for scientific notation, or the
maximum number of significant digits for floating
point values.

alt If this attribute is present then an “alternative” form
is used for the value. This is identical to using
the “#” modifier with the printf() functions.
For hexadecimal output this results in a leading 0x
prefix. For floating point conversions typically a
decimal point is always printed.

zero If this attribute is present then zero padding rather
than space padding is used: The converted value is
padded with zeros rather than blanks.

left The presence of this attribute indicates the converted
value is to be left justified: The converted value is
padded on the right instead of the left.

blank This attribute specifies that a blank should be left
before a positive number. This attribute is analogous
to a space in a printf() style format string.

plus This attribute causes a sign to always be placed
before a the produced number.

HttpdLoopCommand Reference

Introduction
An HttpdLoopCommand represents a loop command in the template. It is derived from
HttpdTemplateCommand and possesses its public interface. See Template Command Objects. In
addition, this class has additional methods that handlers can use during the processing of this command.

Note

This class is never instantiated in application code. It is created during template execution
and passed to the various HandleLoop methods of the symbol tables.

Generating Dynamic
Content with Templates

154

Public Methods

Iterate

int HttpdLoopCommand::Iterate (void);

This method causes the body of the loop to be evaluated. It may be called as many times as the loop body
needs to be executed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If the return value of this method is not 0 then the return value should
be returned without modification from the handler method.

Counter

unsigned long HttpdLoopCommand::Counter (void); const

During the execution of the loop the HttpdLoopCommand object keeps a counter of the number of
iterations executed. The counter starts at 0 and is incremented by one for each iteration. This method
returns the counter value.

HttpdConditionalCommand Reference

Introduction
An HttpdConditionalCommand represents an conditional command in the template. It is derived
from HttpdTemplateCommand and possesses its public interface. See Template Command Objects.

Note

This class is never instantiated in application code. It is created during template execution
and passed to the various HandleCond methods of the symbol tables.

Public Methods

Test (String Version)

int HttpdConditionalCommand::Test (const char *p_command, const char
*p_string);

This method implements a series of standard tests on p_string depending on the value of p_command.
The following tests are supported:

• The empty condition is true if p_string is empty.

• The blank condition is true if there are no non-whitespace characters in p_string.

• The length condition is used for comparing the length of p_string to the value in the attribute
len. The attribute is can be one of < (less than), > (greater than), or = equal to.

• For numbers represented as strings the number symbol can be used to perform rudimentary
comparisons. As with the length a relational operator is specified in the is attribute. A value

Generating Dynamic
Content with Templates

155

attribute holds the value being compared against and the base attribute holds the base of the numbers
being compared. If a base of 0 is specified then the base of the numbers is determined using the standard
C syntax for numbers.

• For more complex string matching the match symbol can be used. A pattern attribute is used to
apply the string to the HttpdUtilities::MatchPattern method. If the attribute not is present then the test is
considered true if the pattern does not match. Otherwise the test is considered true if the pattern matches
the string.

The return value of this function should be returned from the HandleCond method.

Test (Integer version)

int HttpdConditionalCommand::Test (const char *p_command, long value);

This method implements a series of standard tests on value depending on the value of p_command. An
attribute with a name of to gives the value to compare against. The following tests are supported:

• The lt condition is true if value is less than the value of the to attribute.

• The le condition is true if value is less than or equal to the value of the to attribute.

• The eq condition is true if value is equal to the value of the to attribute.

• The ne condition is true if value is not equal to the value of the to attribute.

• The gt condition is true if value is greater than the value of the to attribute.

• The ge condition is true if value is greater than or equal to the value of the to attribute.

• The div condition is true if value is divisable by the value of the to attribute. If the rem attribute is
provided then this condition is true if the remainder is the value of that attribute.

The return value of this function should be returned from the HandleCond method.

Test (Unsigned version)

int HttpdConditionalCommand::Test (const char *p_command, unsigned long
value);

This method implements a series of standard tests on value depending on the value of p_command. All
of the test of the signed version (see above) are supported as well as an additional test of bits. This test
requires an additional attribute, mask. The bits that are set in mask are compared with the value of the
to attribute for equality. If equal then the condition is considered true.

The return value of this function should be returned from the HandleCond method.

Test (Floating-point version)

int HttpdConditionalCommand::Test (const char *p_command, double value);

This method implements a series of standard tests on value depending on the value of p_command.
The following tests are supported:

• The whole condition is true if value is a whole number.

Generating Dynamic
Content with Templates

156

• The lt condition is true if value is less than the value of the to attribute.

• The le condition is true if value is less than or equal to the value of the to attribute.

• The eq condition is true if value is equal to the value of the to attribute. Because comparing floating-
point values for equality is not well defined an additional attribute, prec, may set the epsilon value
that defines the tolerance of equality.

• The ne condition is true if value is not equal to the value of the to attribute. An optional attribute,
prec, may set the epsilon value that defines the tolerance of inequality.

• The gt condition is true if value is greater than the value of the to attribute.

• The ge condition is true if value is greater than or equal to the value of the to attribute.

The return value of this function should be returned from the HandleCond method.

Note

This method is only available if the target porting layer defines the
HAVE_FLOATING_POINT preprocessor symbol to a non-zero value.

HttpdTemplateScope Reference

Introduction
HttpdTemplateScope is a very interesting class. It has no methods beyond its constructor and
destructor. Its purpose is to temporarily add a lexical scope to the current template processor. The
constructor inserts the new scope and the destructor removes it.

This behavior means that the lexical scope of the templates (roughly) follows the lexical scope of the C+
+ handler code. The most common use for this class is to temporarily add additional symbols during the
evaluation of a loop. A typical construct might be:

 int MySymbolTable::HandleLoop(HttpdLoopCommand *p_loop)
 {
 if (strcmp(p_loop->Name(), "session_table") == 0)
 {
 AppLoopVariables vars;
 HttpdTemplateScope loop_scope(p_loop->Processor(), &vars);

 while (!vars.Done())
 {
 int rc = p_loop->Iterate();
 if (rc != 0)
 return (rc);
 }
 }
 else
 return (HTTPD_TEMPLATE_NOT_HANDLED);
 }

Generating Dynamic
Content with Templates

157

In the above example the scope becomes active when the if body is entered. The scope is removed when
the block is exited. If another loop were to be executed during the call to Iterate (even the same loop
again) then additional scopes can be entered. The caret (^) can be used to access obscured variables in
previous scopes.

Public Methods

HttpdTemplateScope

HttpdTemplateScope::HttpdTemplateScope (HttpdTemplateProcessor
*p_proc, HttpdSymbolTable *p_symbols);

The constructor of this class opens a new lexical scope in the chain of symbol tables in the template
processor. The first parameter, p_proc is typically obtained by calling the Processor method of
a command object. The second parameter, p_symbols is a pointer to the symbol table that is to be
temporarily installed. The symbol table must be unique per scope and is typically instantiated as a local
variable along with this object.

HttpdTemplateProcessor Reference

Introduction
HttpdTemplateProcessor is the engine that reads a template file, parses the contents, instantiates
the command objects and calls the various handler methods of the various symbol tables.

Of course, the most important function HttpdTemplateProcessor must do is to keep track of all the
things that are internal to the template processor. Thus, a pointer to this object is almost always required
(explicitly or implicitly through another object) when performing any template operations.

There should be one instance of HttpdTemplateProcessor for each template file being processed. In
the case of include files a mechanism is provided for cloning a new processor object from an existing one.

In the case of a newly created (non-cloned) template processor the symbol scope is empty and (at
a minimum) a top-level symbol table must be installed before processing a template file. The top-
level symbol table must never return the value HTTPD_TEMPLATE_NOT_HANDLED from the handler
methods. Additionally, more scopes (in addition to the top scope) may be installed before starting template
processing, if necessary.

HttpdTemplateProcessor Internals
The template processor uses what is often called the “visitor pattern”. The compiled template file is divided
into blocks. Each block begins with a byte called the “op code”. The value of the op code determines the
remaining format of the block.

When a template is to be executed, the processor starts processing the blocks in the file sequentially starting
at the beginning of the file. The op code is analyzed and processed. When a block that represents an
encoded command is to be processed a “visitor” object is constructed and is then asked to process the
remainder of the block.

The visitor objects are used to encapsulate the transient information for processing a command. The visitor
objects are the objects that are passed to the handler methods of the symbol tables. There is a unique
handler method for each type of command object so there is little extra overhead at runtime for dispatching
different commands to the same “name”.

Generating Dynamic
Content with Templates

158

Public Methods

HttpdTemplateProcessor (Clone constructor)

HttpdTemplateProcessor::HttpdTemplateProcessor (HttpdTemplateProcessor
*p_clone, bool isolate);

This constructor initializes a template processor using an already existing object (p_clone) as a base.
The constructed object can process a new template file but can use a related scope.

If isolate is false then the newly constructed object has the exact same lexical scope available to it
as p_clone. If isolate is true then the new object only shares the top-level (first installed) symbol
table with its predecessor. In either case, the newly created object does not need a top-level symbol table
installed.

StartProcessing

int HttpdTemplateProcessor::StartProcessing (HttpdFile *p_input,
HttpdWritable *p_output);

This method invokes the processing of the input file specified by p_input. The output is sent to
p_output.

If the object was not constructed with the clone constructor then a top-level symbol table must be inserted
(with the help of the HttpdTemplateScope class) before StartProcessing can be called.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”).

Note

During the execution of this method (such as in the symbol tables), the
HttpdTemplateProcessor object may be casted to a HttpdWritable * type to obtain
the output pointer.

Top

HttpdSymbolTable * HttpdTemplateProcessor::Top (void);

This method returns the top-level symbol table, regardless of lexical scope. Often the first lexical scope
contains important state information that may be useful to other symbol tables.

Caution

This method should only be called after at least one lexical scope level has been established.

HttpdFSTemplateShell Reference

Introduction
HttpdFSTemplateShell is a top-level symbol table designed to be used when subclassing
HttpdFileHandler. This class has several duties:

Generating Dynamic
Content with Templates

159

• Act as an anchor to the HttpdFileHandler::RequestState object.

• Handle an evaluation command called include_file that can be used for pre-canned headers and
footers.

• Catch symbols that undefined by returning HTTPD_TEMPLATE_UNKNOWN_NAME for unknown
names.

This class is typically created during the DoFile method of HttpdFileHandler subclasses. The
example main provided demonstrates handling template object with HttpdFSTemplateShell.

By default the MIME type for the expanded content is always text/html. This can be
overridden if the INC_TEMPLATE_MIME_TYPES feature is enabled. When enabled files carrying the
expanded_mime_type attribute will use the value of that attribute as the MIME type.

Public Methods

HttpdFSTemplateShell

HttpdFSTemplateShell::HttpdFSTemplateShell
(HttpdFileHandler::RequestState &state);

Constructor for HttpdFSTemplateShell. A reference to state is kept inside the shell object. It is
therefore important that the lifetime of the shell is a subset of the lifetime of the file request.

Note

After construction the shell can be inserted into a template processor via a
HttpdTemplateScope. This is rarely necessary, however, because the entire
functionality of processing a template is implemented in the Execute (static) method of
this class.

State

HttpdFileHandler::RequestState & HttpdFSTemplateShell::State (void);

This method returns the stored reference to the request state. This is really a convenience mechanism so
that any handler in the chain can obtain a reference to the per-request state.

TopState

HttpdFileHandler::RequestState & HttpdFSTemplateShell::TopState (void);

Given a pointer to a template command obtain the request state object. Subclasses of
HttpdFileHandler can use the mpData member to store application-specific data. This helper allows
easy access to that pointer from the command object.

Note

This is a static method and does not require an instance of HttpdFSTemplateShell.

Caution

This method should only be called after at least one lexical scope level has been established.

Generating Dynamic
Content with Templates

160

Execute

int HttpdFSTemplateShell::Execute (HttpdFileHandler::RequestState
&state, HttpdSymbolTable *p_symbols);

This method handles all of the setup work involved in processing a request from the DoFile of
HttpdFileHandler. It creates a template processor object, sets up the input and output, installs a top-
level symbol table, places p_symbols in the scope list, and finally executes the template.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”).

Note

This is a static method and does not require an instance of HttpdFSTemplateShell.

HttpdFSTemplateRequest Reference

Introduction
The HttpdFSTemplateRequest class is subclass of HttpdTemplateProcessor. The purpose
of the class is to provide a simple way of using the HttpdFSTemplateShell class with handlers
subclassed from HttpdFileHandler.

When a request for a template comes in to a subclass of HttpdFileHandler an instance of this class can
be associated with the HttpdFileHandler::RequestState object. Once associated symbol table
instances may be attached to the HttpdFSTemplateRequest as necessary. Finally, the Execute
method is called to evaluate the associated template.

All of the machinery for opening the template file, creating the shell scope and handling errors is wrapped
up inside the methods of this class. If only one symbol table is needed then an even easier approach may
be used: Simply call the static HttpdFSTemplateShell::Execute method.

Public Methods

HttpdFSTemplateRequest

HttpdFSTemplateRequest::HttpdFSTemplateRequest
(HttpdFileHandler::RequestState &state);

Constructor for HttpdFSTemplateRequest. A reference to state is kept inside the request object.
It is therefore important that the lifetime of the request is a subset of the lifetime of the file request.

Execute

int HttpdFSTemplateRequest::Execute (void);

This method actually executes the template. It is assumed that all initial symbol tables have been attached
to the HttpdFSTemplateRequest object before calling this method.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”).

Generating Dynamic
Content with Templates

161

HttpdConstantSymbolTable Reference
Introduction

This class introduces a simple way to map string constants into templates. It is useful to avoid the
proliferation of many nearly identical template files.

A simple mapping of evaluation name to string constant is specified during object construction via an
array of HttpdPair structures.

Public Methods

HttpdConstantSymbolTable

HttpdConstantSymbolTable::HttpdConstantSymbolTable (const HttpdPair
*p_table, size_t num_pairs);

Initialize the constant symbol table to use the symbols and values specified by p_table. No copy
of the table is made, therefore the lifetime of the table must meet or exceed the lifetime of the
HttpdConstantSymbolTable object.

Note

The table specified by p_table is searched using a binary search algorithm. The table must
be in sorted order.

HttpdSymbolMap Reference
Introduction

Constructing code to handle fetching of variables for templates that do reporting can become tedious and
result in code bloat. HttpdSymbolMap acts as a generic symbol table implementation for dealing with C
or C++ structures. When constructed it is passed an array of HttpdSymbolEntry structures that define
the layout of the fields in an application specific structure.

Note

Because a binary search is used on the HttpdSymbolEntry array, the elements must be
sorted on the name field.

HttpdSymbolEntry associates a field name with a byte offset to locate the data item in question and
function pointers for processing the commands. Because it uses function pointers to handle the actions it
can be extended easily without subclassing. The HttpdSymbolMap class contains several static methods
that handle most common data types.

Table 5.2. HttpdSymbolMap Default Handlers

Method Template Directive Data Type Description

EvalString eval const char * A pointer to a
NUL-terminated string
is formatted “as is”
excluding the NUL byte.

Generating Dynamic
Content with Templates

162

Method Template Directive Data Type Description

EvalStringBuffer eval const char array An array of characters
(NUL-terminated string)

EvalUlong eval unsigned long The value is displayed
as decimal with as many
digits as required.

EvalHexUlong eval unsigned long The value is displayed
as hexadecimal with as
many digits as the
maximum possible value
would take.

EvalLong eval long The signed value is
displayed in decimal
with as many digits as
required. An optional
leading minus indicates a
negative value.

CondBool All conditional directives bool A C++ bool value is
examined and used as
the basis for the template
condition.

Given the following example object from an application using Seminole:

 struct UserInfo
 {
 UserInfo *next;
 const char *name;
 unsigned long userid;
 long balance;
 bool logged_on;
 };

The following array of HttpdSymbolEntry objects describes the above structure:

 const HttpdSymbolEntry UserInfo_map[] =
 {
 {
 "balance",
 offsetof(UserInfo, balance),
 HttpdSymbolMap::EvalLong, // Evaluation
 NULL, // Looping
 NULL // Conditional
 },

 {
 "logged_on",
 offsetof(UserInfo, logged_on),
 NULL, // Evaluation

Generating Dynamic
Content with Templates

163

 NULL, // Looping
 HttpdSymbolMap::CondBool // Conditional
 },

 {
 "name",
 offsetof(UserInfo, name),
 HttpdSymbolMap::EvalString, // Evaluation
 NULL, // Looping
 NULL // Conditional
 },

 {
 "userid",
 offsetof(UserInfo, userid),
 HttpdSymbolMap::EvalHexUlong, // Evaluation
 NULL, // Looping
 NULL // Conditional
 }
 };

Using the above symbol map we can design a template for displaying user records in an HTML table:

 <table>
 <th>
 <td>Name</td>
 <td>Balance</td>
 <td>User ID</td>
 <td>Logged On</td>
 </th>
 %{loop:user_table}%
 <tr>
 <td>%{eval:name}%</td>
 <td>%{eval:balance}%</td>
 <td>%{eval:userid}%</td>
 <td>%{if:logged_on}%yes%{else}%no%{endif}%</td>
 </tr>
 %{endloop}%

Writing the code to then traverse the user_table loop becomes trivial:

 int MySymbolTable::HandleLoop(HttpdLoopCommand *p_loop)
 {
 if (strcmp(p_loop->Name(), "user_table") == 0)
 {
 UserInfo *ui;

 for(ui = userList; ui->next != NULL; ui = ui->next)
 {
 HttpdSymbolMap map(UserInfo_map,
 HTTPD_NUMELEM(UserInfo_map),

Generating Dynamic
Content with Templates

164

 (const void *)ui);
 HttpdTemplateScope loop_scope(p_loop->Processor(), &map);

 int rc = p_loop->Iterate();
 if (rc != 0)
 return (rc);
 }
 }
 else
 return (HTTPD_TEMPLATE_NOT_HANDLED);
 }

Note

Because the usage of HttpdSymbolMap and HttpdTemplateScope together is so
common, the above example can be simplified with the HttpdScopedSymbolMap that
acts as an automatically scoped HttpdSymbolMap.

Public Methods

HttpdSymbolMap

HttpdSymbolMap::HttpdSymbolMap (const HttpdSymbolEntry *p_table,
size_t num_elem, const void *p_base, int not_found =
HTTPD_TEMPLATE_NOT_HANDLED);

The constructor of this class initializes the symbol table from the sorted table of elements (p_table). The
number of elements in the table should be passed as num_elem. The parameter p_base should point
to the object associated with the symbols.

The optional not_found argument is the result code to return if the symbol is not found. Ordinarily
the default of HTTPD_TEMPLATE_NOT_HANDLED is appropriate. However, if the symbol map is the
terminal symbol table then HTTPD_TEMPLATE_UNKNOWN_NAME should be used to prevent further
searching.

HttpdScopedSymbolMap Reference

Introduction
HttpdScopedSymbolMap is wrapper class for HttpdSymbolMap that automatically inserts and
removes its self from the lexical scope of an instance of HttpdTemplateProcessor.

This class makes certain constructs, such as looping over a list of structures, much easier. The code in the
HttpdSymbolMap example can be simplified down to:

 int MySymbolTable::HandleLoop(HttpdLoopCommand *p_loop)
 {
 if (strcmp(p_loop->Name(), "user_table") == 0)
 {
 UserInfo *ui;

Generating Dynamic
Content with Templates

165

 for(ui = userList; ui->next != NULL; ui = ui->next)
 {
 HttpdScopedSymbolMap map(p_loop->Processor(),
 UserInfo_map,
 HTTPD_NUMELEM(UserInfo_map),
 (const void *)ui);

 int rc = p_loop->Iterate();
 if (rc != 0)
 return (rc);
 }
 }
 else
 return (HTTPD_TEMPLATE_NOT_HANDLED);

Public Methods

HttpdScopedSymbolMap

HttpdScopedSymbolMap::HttpdScopedSymbolMap (HttpdTemplateProcessor
*p_processor, const HttpdSymbolEntry *p_table, size_t num_elem, const
void *p_base);

The constructor of this class initializes the symbol table from the table defined by p_table and
num_elem. The new symbol table is inserted in the top of the scope list of p_processor. The object
is removed from the scope list when it is destroyed.

CGI-template Interfacing

Introduction
There may be cases when repeated HTML forms must be generated for "wizard" like interfaces. In these
situations it may be helpful to propagate CGI parameters into a template. There are three classes with
slightly different interfaces that can be used to accomplish this goal.

• HttpdCgiSymbols provides generic template support for any kind of name-value pair storage.

• HttpdCgiListSymbols provides template support for a singly-linked list of
HttpdCgiParameter objects. These lists are returned from the CGI parser routines. Because the
lists are ordered this class also supports looping directives.

• HttpdCgiHashSymbols provides template support for a HttpdCgiHash object. Unlike linked-
lists, hash objects have quicker lookup performance. However, they are not ordered in any meaningful
way so no looping directives are defined.

All of these classes are derived from HttpdPrefixSymbolTable so that multiple instances can be
active simultaneously with different lists and no ambiguity.

For all of these commands the parameter name is specified with the name attribute. If no name attribute
is specified then the current iteration (if any) position is used.

• The val symbol evaluates to the contents of the specified parameter. If the default attribute is
specified and no parameter exists for that name then the its value is used instead.

Generating Dynamic
Content with Templates

166

• The current symbol is the current iteration point (if any).

• The exists condition is true if the specified variable exists.

• The for-each loop is only available when using the HttpdCgiListSymbols class. It iterates
through each HttpdCgiParameter node in order.

Note

Formatting and conditionals are done using the HttpdEvalCommand::Format and
HttpdConditionalCommand::Test methods. Any behavior those methods support
are supported by these classes.

Public Methods

HttpdCgiSymbols

HttpdCgiSymbols::HttpdCgiSymbols (const char *p_prefix);

This constructs the basic CGI interface class for templates. The class responds to commands with the
specified prefix. This class is an abstract base class and can not be instantiated directly. Instead, it must
be subclassed and the Find method implemented.

HttpdCgiListSymbols

HttpdCgiListSymbols::HttpdCgiListSymbols (HttpdCgiParameter *p_list,
const char *p_prefix = "cgi");

This constructs the CGI interface class that uses a linked-list of HttpdCgiParameter nodes pointed
to by p_list.

HttpdCgiHashSymbols

HttpdCgiHashSymbols::HttpdCgiHashSymbols (HttpdCgiHash &hash, const
char *p_prefix = "cgi");

This constructs the CGI interface class that uses a hash table implemented by HttpdCgiHash.

Protected Methods

Find

HttpdCgiParameter *HttpdCgiSymbols::Find (const char *p_key);

This method should return a pointer to a HttpdCgiParameter object where the mpKey member is
equal to the string in p_key. If no such parameter exists then this routine may return NULL.

HttpdLoopCounterSymbols Reference
Introduction

This class is a simple helper that can be used to expose the loop counter of a HttpdLoopCommand object
to templates. The principle use of this class is for numbering rows of a table or highlighting alternating
entries of a list.

Generating Dynamic
Content with Templates

167

The typical usage for this class is to allocate it on the stack during the handling of a loop command. This
class automatically stacks itself on the symbol scope of the associated loop command. For example:

 int SomeSymbolTable::HandleLoop(HttpdLoopCommand *p_loop)
 {
 HttpdLoopCounterSymbols lcs(p_loop);

 …
 }

Public Methods

HttpdLoopCounterSymbols

HttpdLoopCounterSymbols::HttpdLoopCounterSymbols (const
HttpdLoopCommand *p_loop, const char *p_prefix = mDefaultPrefix);

This method constructs the loop-counter symbol table and installs it in the scope of the p_loop command.
For the duration of this object (which must be less than the lifetime of the HttpdLoopCommand object)
the loop counter may be accessed within the loop body.

The p_prefix function specifies the prefix used for accessing the loop counter. The default value is
loop-counter. Evaluating this symbol results in formatting the numerical value of the loop counter.
If the attribute bias is present then this value is added to the counter before formatting. See the integer
formatter reference for details.

The loop counter can also be tested by using template conditionals on the prefix string followed by a
relational test as specified in the unsigned value conditionals section.

For example to number a list of entries in a table (starting at 1) and having every other row use an alternate
background color consider the following fragment:

 %{loop:table-objects}%
 <tr
 %{if:loop-counter-div to=2}%
 bgcolor="#555555"
 %{else}%
 bgcolor="#bbbbbb"
 %{endif}%
 >
 <td>%{eval:loop-counter bias=1}%</td>
 <td>%{eval:some-symbol}%</td>
 </tr>
 %{endloop}%

Public Data
The HttpdLoopCounterSymbols defines a static data member called mDefault with the following
definition:

Generating Dynamic
Content with Templates

168

 static const char mDefault[] = "loop-counter";

This variable is used as the default command prefix for the symbols of the
HttpdLoopCounterSymbols symbol table.

169

Chapter 6. Processing XML
“Streamy” Processing of XML

Seminole includes a set of classes to assist in parsing XML documents. Unlike some parsers
HttpdXmlParser is not a validating parser. The parser also operates in a “streamy” fashion. This means
that the document can be pumped piecemeal into the parser as it arrives. The HttpdXmlParser is
derived from HttpdFifo. This allows POST requests to easily drive the parser with HttpdReceiver or
HttpdBoundaryReader objects.

There are two different models of processing XML. The first model, implemented by HttpdXmlParser,
calls various overridable methods of the parser as syntax is recognized. The second model, implemented
by HttpdXmlDomBuilder, converts the entire document into an in-memory structure.

In memory constrained environments or when dealing with very large documents the callback-driven
approach is preferrable as there is no intermediate representation stored in memory. If the document can
not be processed until the entire document is parsed then the latter approach makes more sense. In fact it is
only natural that HttpdXmlDomBuilder is implemented using HttpdXmlParser as its base class.
The events trigger the construction of the tree structure.

The XML framework is defined in a header file called sem_xml.h. In order to use any of these classes
or methods, this header file must be included.

HttpdXmlAttribute Reference

Introduction
This class represents an attribute on HttpdXmlNode and HttpdXmlDomNode objects.

Public Methods

FreeList

void HttpdXmlAttribute::FreeList (HttpdXmlAttribute *p_list);

Destroys a HttpdXmlAttribute list, and frees its resources.

Find

HttpdXmlAttribute *HttpdXmlAttribute::Find (HttpdXmlAttribute *p_list,
const char *p_name);

Find the named attribute the specified node forward. Typically this method is called from the first node in
the list but it can be used to walk a list with multiple parameters of the same name.

On success this method returns a pointer to the found node. NULL is returned on error.

FindValue

const char *HttpdXmlAttribute::FindValue (const HttpdXmlAttribute
*p_list, const char *p_name);

Processing XML

170

Find the named parameter from the current node forward.

On success this method returns the value of the found node. NULL is returned if the node can not be found.

FindValue (Namespace version)

const char *HttpdXmlAttribute::FindValue (const HttpdCgiParameter
*p_list, const char *p_name, const char *p_namespace);

Find the the parameter named p_name that belongs to the namespace p_namespace.

On success this method returns the value of the found node. NULL is returned if no node satisfies the
search criteria.

Note

This method is only present if the INC_XML_NAMESPACES feature is enabled.

CopyList

int HttpdXmlAttribute::CopyList (HttpdXmlHost &host, HttpdXmlAttribute
*&p_result, const HttpdXmlAttribute *p_src);

This static method copies all of the nodes pointed to by p_src into a new list. The pointer to the first
node in the list is placed into p_result if successful.

The host object provided should be the same one used for the XML document that will be holding this
attribute list.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Public Data

mpNext

HttpdXmlAttribute *mPair;

This member points to the next attribute if any or NULL if there are no attributes.

mpName

char *mpName;

This is the name of the attribute.

mpValue

char *mpValue;

This is the value of the attribute.

mpNamespace

const char *mpNamespace;

Processing XML

171

This member is the namespace of the attribute. This member is only present if INC_XML_NAMESPACES
is enabled.

mpSelector

char *mpSelector;

This member is the name of the selector used to give this attribute its namespace. It may be NULL if there
is no selector used. This member is only present if INC_XML_NAMESPACES is enabled.

HttpdXmlHost Reference

Introduction

The HttpdXmlHost class contains infrastructure needed to manage the lifetime of an XML document.
It is important that the lifetime of the HttpdXmlHost meets or exceeds the lifetime of any XML data
structures.

A single HttpdXmlHost object may be shared between multiple XML data structures. In fact this is
more efficient in terms of memory usage.

HttpdXmlTokenizer Reference

Introduction

The HttpdXmlTokenizer class is used for tokenizing XML style documents. This pure abstract class
is derived from HttpdFifo and calls various methods when tokens are written to the FIFO. This class
is typically not used directly. Rather it serves as a base for the HttpdXmlParser class.

Public Methods

HttpdXmlTokenizer

HttpdXmlTokenizer::HttpdXmlTokenizer (size_t initial_buffer_size = 0,
size_t max_buffer_size = infinity);

This method constructs the tokenizer. The initial_buffer_size and max_buffer_size
arguments control the size of the HttpdFifo buffer.

Finish

int HttpdXmlTokenizer::Finish (void);

This method should be called when no more data is written to the tokenizer. It validates that all of the
written data that has been digested.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). The returned value is obtained from the Error method which may be
overridden for additional error reporting.

Processing XML

172

Protected Methods

TranslateEntity

virtual int HttpdXmlTokenizer::TranslateEntity (const char *p_entity,
HttpdWritable *p_target);

This method is called to process entity references. The value of the entity named in p_entity should
be written to p_target.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

StartText

virtual int HttpdXmlTokenizer::StartText (void);

This method is called when non-tag content is encountered. It should set the protected data
membermpTarget to a writable object that will receive the content. The default implementation selects
the null sink as the target.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

FinishText

int HttpdXmlTokenizer::FinishText (void);

This method is called at the end of non-tag content. It may clean up any action done by StartText. The
default implementation does nothing.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

BeginDoctype

virtual int HttpdXmlTokenizer::BeginDoctype (void);

This method is called when the special <!DOCTYPE tag is opened. Subclasses must ensure they call the
default implementation at some point to keep the tokenizer state consistent.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

EndDoctype

virtual int HttpdXmlTokenizer::EndDoctype (void);

This method is called when the special <!DOCTYPE tag is closed. Subclasses must ensure they call the
default implementation at some point to keep the tokenizer state consistent.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Processing XML

173

ParameterEntity

virtual int HttpdXmlTokenizer::ParameterEntity (const char *p_entity);

This method is called when a parameter entity reference (i.e. %entity;) is tokenizer.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Token

virtual int HttpdXmlTokenizer::Token (char ch);

This pure virtual method is called for various single character separator tokens. At a minimum <, >, =, /,
and in some cases ?, [and] tokens are detected.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

String

virtual int HttpdXmlTokenizer::String (const char *p_string);

This pure virtual method is called when a quoted string is tokenized.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

TakeQuotedString

char *HttpdXmlTokenizer::TakeQuotedString (void);

This method may be called within String to obtain a dynamically allocated (via HttpdOpSys::Malloc)
copy of the quoted string. Calling this method may in some cases be more efficient than copying the string
directly.

Upon success a pointer to the quoted string is returned. Upon failure NULL is returned.

Identifier

virtual int HttpdXmlTokenizer::Identifier (const char *p_id);

This pure virtual method is called when an identifier within a tag is tokenized.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Error

virtual int HttpdXmlTokenizer::Error (int error_type, …);

This method is called for malformed input. The error_type parameter determines how many string
parameters follow.

Processing XML

174

Error Type Additional Parameters

XML_ERR_EXPECTED What was tokenized followed by what was
expected.

XML_ERR_UNEXPECTED The unexpected item.

XML_ERR_UNKNOWN_ENTITY The undefined entity name.

XML_ERR_EARLY_EOF None.

XML_ERR_DUP_NS_SELECTOR Selector name.

XML_ERR_UNKNOWN_NS_SELECTOR_ON_ATTRSelector name followed by attribute name.

XML_ERR_EMPTY_NS_SELECTOR Attribute name.

XML_ERR_UNKNOWN_NS_SELECTOR_ON_NODESelector name followed by tag name.

XML_ERR_RESERVED_SELECTOR Selector name followed by namespace.

XML_ERR_UNCLOSED_TAG Tag name

The default implementation returns HttpdOpSys::ERR_BADPARAM and ignores the additional
parameters. The protected data member mLineNumber is the current line number within the document
where the error occured.

HttpdXmlParser Reference

Introduction
The HttpdXmlParser class is used for processing XML documents. It is subclassed (via
HttpdXmlTokenizer) from HttpdFifo and shares the same public interface for receiving data. Only
the additional methods are documented here.

Public Methods

HttpdXmlParser

HttpdXmlParser::HttpdXmlParser (HttpdXmlHost &host, HttpdUint8 flags =
0, size_t initial_buffer_size = 0, size_t max_buffer_size = infinity);

This method constructs the parser. The initial_buffer_size and max_buffer_size arguments
control the size of the HttpdFifo buffer.

If flags has the HttpdXmlParser::XML_OPT_ANONYMOUS_CLOSE bit set then the SGML close-
tag shortcut (</>) optimization is supported.

The host object is used to manage resources during the parse. Any objects that remain after the parse
(such as nodes and attribute lists) refer to memory allocated within this object. As such it is important to
ensure that the lifetime of host is greater than any objects that survive the parsing operation.

The object can not be used until the Create method is called first.

Create

int HttpdXmlParser::Create (void);

This method creates and initializes the parser.

Processing XML

175

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes”).

Finish

int HttpdXmlParser::Finish (void);

This method should be called after the entire document has been written to the parser. It validates that the
parse has digested all data and that all of the state machines are in their appropriate idle states.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). The returned value is obtained from the Error method which may be
overridden for additional error reporting.

Protected Methods

ProcessingInstruction

virtual int HttpdXmlParser::ProcessingInstruction (const char
*p_instruction, const char *p_attribute, const char *p_value);

This method is called when a processing instruction directive is encountered. For example the following
processing directive:

 <?xml version="1.0" standalone='yes'?>

Would result in two distinct calls to this method. The first call would have the following parameters:

Parameter Value

p_instruction xml

p_attribute version

p_value 1.0

The second call would be as follows:

Parameter Value

p_instruction xml

p_attribute standalone

p_value yes

The default behavior of this method is to simply return 0 (success).

RootBody

virtual int HttpdXmlParser::RootBody (HttpdWritable *&p_target);

This method is called when textual content is present for the root of the document. Under normal
circumstances this is considered invalid XML However to allow XML fragments to be parsed this method
may optionally place the address of a writable object in p_target.

Processing XML

176

The default behavior of this method is to set p_target to HttpdNullSink::Null() and return 0
(success).

CloseRootBody

virtual int HttpdXmlParser::CloseRootBody (void);

This method is called to complete the processing of textual content at the root of the document. Subclasses
may use it to complete any actions performed in RootBody.

The default behavior of this method is simply to return 0 (success).

AllocateNode

virtual int HttpdXmlParser::AllocateNode (const char *p_tag,
HttpdXmlNode *&p_node);

This method is called to allocate a new node when an opening tag construct is seen. The default
implementation allocates an instance of HttpdXmlNode. Subclasses may override this method to return
subclasses of HttpdXmlNode with specialized behavior. This is how “event driven” parsing works.
Subclasses of HttpdXmlNode are defined to handle each particular state. This factory method returns
the appropriate object depending on the tags seen. These subclasses then handle the parse of the entire
tag as necessary.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

InnermostNode

HttpdXmlNode *HttpdXmlParser::InnermostNode (void);

This method returns the innermost node currently being parsed. This method may be called during
AllocateNode to get additional context if needed. The return value is never NULL. Additionally it is
invalid to call this method during RootBody and CloseRootBody.

IsPath

bool HttpdXmlParser::IsPath (const char *p_path);

This method tests if the current state of the document matches p_path. Just like a filesystem path the
components of the path are separated with /. The path can either be relative or absolute if it begins with
a leading /.

Just like the InnermostNode method this method is intended to be called primarily from
implementations of AllocateNode. Consider the following document:

 <a>

 <c>
 <d>foo</d>
 </c>

Processing XML

177

If we are constructing node d then the absolute path would be /a/b/c. A matching relative path would
be b/c.

If the path matches the current point of the parse true is returned. Otherwise false is returned.

HttpdXmlNode Reference

Introduction
The HttpdXmlNode class represents a tag, its attributes, and content. Instances of this class are created
by HttpdXmlParser::AllocateNode.

Once the parser creates the node it calls various methods to process the content of the tag. The default
implementation of HttpdXmlNode records attributes and throws away the contents of the tag. However
this behavior can be altered via subclassing.

Public Methods

HttpdXmlNode

HttpdXmlNode::HttpdXmlNode (const char *p_tag, int &rc);

This constructs the node and saves a copy of p_tag internally. Upon success rc is set to 0; otherwise
rc is set to a system dependent error value (see Table 4.1, “OS Abstraction Layer Error Codes”).

Tag

const char *HttpdXmlNode::Tag (void);

This method returns a pointer to the tag name of this node.

Note

The return value can never be NULL.

Namespace

const char *HttpdXmlNode::Namespace (void);

This method returns a pointer to the namespace of this node. It never returns NULL.

Note

This method is only available if the INC_XML_NAMESPACES feature is enabled.

Selector

const char *HttpdXmlNode::Selector (void);

This method returns a pointer to the selector used to assign the namespace of this node. If no selector was
used this method returns NULL.

Processing XML

178

Note

This method is only available if the INC_XML_NAMESPACES feature is enabled.

Protected Methods

BodySink

virtual int HttpdXmlNode::BodySink (HttpdXmlParser *p_parser,
HttpdWritable *&p_target);

This method is called to obtain a writable object to process the body contents of this tag. If it returns
success then p_target should point to an object that can receive the tag contents.

The default behavior of this method is to assign HttpdNullSink::Null() to p_target and return
0 (success).

CloseBodySink

virtual int HttpdXmlNode::CloseBodySink (void);

This method is called to complete the processing of the textual content of the node. Subclasses may use
it to complete any actions performed in BodySink.

The default behavior of this method is simply to return 0 (success).

Attribute (First Pass)

virtual int HttpdXmlNode::Attribute (HttpdXmlParser *p_parser, const
char *p_name, const char *p_value);

This method is called for each attribute as it is parsed. The attribute data can be processed however
is desired. However if this method returns HTTPD_ERR_SAVE_ATTRIBUTE then the attribute is
converted into a HttpdXmlAttribute object and passed to the AttributesComplete method
that takes the list of saved attributes. Returning this value is possibly more efficient than constructing the
HttpdXmlAttribute directly in this method.

The default implementation of this method simply returns HTTPD_ERR_SAVE_ATTRIBUTE in all cases.

If 0 is returned the attribute is considered processed and no HttpdCgiParameter object is constructed;
otherwise a system dependent error value may be returned (see Table 4.1, “OS Abstraction Layer Error
Codes”).

Note

Even if the INC_XML_NAMESPACES feature is enabled there is no namespace
information available when this method is called. If the namespace of an attribute is important
the default implementation of this method should be used and processing should be done in
the AttributesComplete method.

AttributesComplete

virtual int HttpdXmlNode::AttributesComplete (HttpdXmlParser *p_parser,
HttpdXmlAttribute *p_saved_attribs);

Processing XML

179

This method is called after all of the attributes for this tag have been processed. After this method is called
no further calls to the Attribute method will be made.

The default implementation simply returns 0 (success).

Close

virtual int HttpdXmlNode::Close (HttpdXmlParser *p_parser);

This method is called after a tag is entirely processed. No further calls will be made to any of the other
virtual methods of this object after this method is called. If this method returns the special status code
HTTPD_ERR_DELETE_NODE the parser will automatically delete this object. If 0 is returned then some
other object must eventually delete this object.

The default implementation simply returns HTTPD_ERR_DELETE_NODE since by default the nodes are
not kept after they are processed.

HttpdXmlDomBuilder Reference

Introduction
The HttpdXmlDomBuilder class is derived from HttpdXmlParser to construct a tree of
HttpdXmlDomNode objects representative of the document. Unlike HttpdXmlParser this class is
not intended to be subclassed; rather it provides a simple interface to consume a whole document.

The document is converted to an in-memory tree representing the content of the document. This data
structure, called a DOM or Document Object Model, is composed of a collection of one or more
HttpdXmlDomNode objects. The tree can be manipulated and then seralized back to XML with the the
section called “HttpdXmlDomWriter Reference” class.

Public Methods

HttpdXmlDomBuilder

HttpdXmlDomBuilder::HttpdXmlDomBuilder (HttpdXmlHost &host, HttpdUint8
flags = 0, size_t initial_buffer_size = 0, size_t max_buffer_size =
infinity);

This method constructs the parser. The initial_buffer_size and max_buffer_size arguments
control the size of the HttpdFifo buffer.

The flags argument is passed to the HttpdXmlParser constructor.

The host object is used to manage resources for the resulting DOM tree. during the parse. As such it is
important to ensure that the lifetime of host is greater than the DOM tree.

The object can not be used until the Create method is called first.

Create

int HttpdXmlDomBuilder::Create (void);

This method creates and initializes the builder.

Processing XML

180

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes”).

Root

HttpdXmlDomNode *HttpdXmlDomBuilder::Root (void);

This method returns a pointer to the root node of the document.

Lookup

const char *HttpdXmlDomBuilder::Lookup (const char *p_path);

This method gets the content of the requested node. Just like a filesystem path the components of p_path
are separated with / characters. The path is always absolute to the root of the document and should not
begin with a / unless the root node of the document is being requested.

By default the body contents of the node is returned. However an attribute value may be selected with a &
suffix. If the path does not reference a node in the tree then NULL is returned.

Consider the following document:

 <a>
 <b status="enabled">
 <c id="mynode"/>
 <c id="othernode">Some Data</c>
 <d>This is node D!</d>
 <c>Final node</c>

Consider the following queries:

Query Value

a/b/d This is node D!

a/b&status enabled

a/b/c&id mynode

a/b/c&id mynode

a/b/c>1 Some Data

a/b/c>1&id othernode

a/b/c>2 Final node

If the INC_XML_NAMESPACES option is enabled then there is an additional syntax to restrict a
particular tag to a namespace. If no namespace is specified then the namespace is ignored. Consider the
following XML document with namespace designations:

 <a xmlns:A="alpha:" xmlns:B="beta:">

Processing XML

181

 <A:b status="enabled">
 <c id="mynode"/>
 <B:c id="othernode">Some Data</B:c>
 <d>This is node D!</d>
 <c>Final node</c>
 </A:b>

To select the node c that is in the beta: namespace the path would be a/(alpha:)b/(beta:)c.

LookupNode

HttpdXmlDomNode *HttpdXmlDomBuilder::LookupNode (const char
*p_xml_path);

This method returns a pointer to the node specified by p_xml_path similar to the Lookup method.
However the & specifier for attributes is not allowed in the path string.

If the node can not be found NULL is returned.

Set

int HttpdXmlDomBuilder::Set (const char *p_xml_path, const char
*p_value);

This method sets the element specified by p_xml_path to p_value. Both node bodies and attributes
can be set with this method.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdXmlDomNode Reference

Introduction
Instances of HttpdXmlDomNode are created and arranged into a tree structure by the related
HttpdXmlDomBuilder class. This class is not mean to be subclassed but rather the tree of objects
traversed as needed. This class is derived from HttpdXmlNode and supports its public interface.

Each node contains the tag, its attributes, the body content of the tag, and a list of child nodes. The tree is
formed because every child node can have a list of zero or more children. A special node is created for the
root of the tree. The root node always has no attributes and has a tag name of <root>. The body contains
any text that is outside the root tags during the parse and the list of children contain the top-level tags.

Public Methods

Children

HttpdList &HttpdXmlDomNode::Children (void);

This method returns a reference to the list of child nodes contained within this node.

Processing XML

182

Parent

HttpdXmlDomNode *HttpdXmlDomNode::Parent (void);

This method returns a pointer to the parent of this node. If this is the root node of the document then
NULL is returned.

Attributes

HttpdXmlAttributes *HttpdXmlDomNode::Attributes (void);

This method returns a pointer the list of attribute pairs for this node.

Body

HttpdStringSink &HttpdXmlDomNode::Body (void);

This method returns a reference to the string sink that is used to store the tags body content.

BodySignificant

bool HttpdXmlDomNode::BodySignificant (void);

This method returns true if the body of this node contains any non-whitespace characters. Because XML
uses nodes both as containers of data and as structural elements often it is useful to detect structural nodes.
This method can be used to help determine if the body of a node is relevant.

CopyToHead

int HttpdXmlDomNode::CopyToHead (HttpdXmlHost &host, HttpdXmlDomNode
*p_parent);

This method copies the node (and all of its children). The new subtree is inserted as the first child of
p_parent.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). This operation is atomic: either the entire tree is copied or no portion
of the copy remains.

CopyToTail

int HttpdXmlDomNode::CopyToTail (HttpdXmlHost &host, HttpdXmlDomNode
*p_parent);

This method copies the node (and all of its children). The new subtree is inserted as the last child of
p_parent.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). This operation is atomic: either the entire tree is copied or no portion
of the copy remains.

Lookup

const char *HttpdXmlDomNode::Lookup (const char *p_path);

This method gets the content of the requested node relative to this node. See
HttpdXmlDomBuilder::Lookup for a description of p_path.

Processing XML

183

LookupNode

HttpdXmlDomNode *HttpdXmlDomNode::LookupNode (const char *p_xml_path);

This method returns a pointer to the node specified by p_xml_path similar to the Lookup method.
However the & specifier for attributes is not allowed in the path string.

If the node can not be found NULL is returned.

Set

int HttpdXmlDomNode::Set (const char *p_xml_path, const char *p_value);

This method sets the element specified by p_xml_path to p_value. Both node bodies and attributes
can be set with this method.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

AddAttribute (namespace version)

int HttpdXmlDomNode::AddAttribute (HttpdXmlHost &host, const char
*p_name, const char *p_value, const char *p_namespace);

This method adds an attribute to the node. The host argument should be the host object used during the
parse of the document containing this node. p_namespace must not be NULL.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

AddAttribute

int HttpdXmlDomNode::AddAttribute (HttpdXmlHost &host, const char
*p_name, const char *p_value);

This method adds an attribute to the node. The host argument should be the host object used during the
parse of the document containing this node.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

RemoveAttribute

bool HttpdXmlDomNode::RemoveAttribute (HttpdXmlAttribute *p_attr);

This method removes the specified attribute object from the node.

If the attribute was present then true is returned. Otherwise false is returned.

InsertLastChild

int HttpdXmlDomNode::InsertLastChild (HttpdXmlHost &host, const char
*p_tag, HttpdXmlDomNode *&p_new, const char *p_namespace = "");

This method adds a new node as the last child of the current node. The host argument should be the host
object used during the parse of the document.

Processing XML

184

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful then p_new will point to the newly created node.

InsertFirstChild

int HttpdXmlDomNode::InsertFirstChild (HttpdXmlHost &host, const char
*p_tag, HttpdXmlDomNode *&p_new, const char *p_namespace = "");

This method adds a new node as the first child of the current node. The host argument should be the host
object used during the parse of the document.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful then p_new will point to the newly created node.

InsertBefore

int HttpdXmlDomNode::InsertBefore (HttpdXmlHost &host, const char
*p_tag, HttpdXmlDomNode *&p_new, const char *p_namespace = "");

This method adds a new node as a sibling prior to the current node. The host argument should be the
host object used during the parse of the document.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful then p_new will point to the newly created node.

InsertAfter

int HttpdXmlDomNode::InsertAfter (HttpdXmlHost &host, const char *p_tag,
HttpdXmlDomNode *&p_new, const char *p_namespace = "");

This method adds a new node as a sibling of the current node. The host argument should be the host
object used during the parse of the document.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful then p_new will point to the newly created node.

HttpdXmlDomWriter Reference

Introduction
The HttpdXmlDomWriter utility class can be used to write HttpdXmlDomNode trees out as XML.
The intent of using this class is as a temporary object to walk a tree of nodes and outputting the XML
representation to a HttpdWritable object.

When created the HttpdXmlDomWriter can be configured with a variety of options to affect the
generated XML.

Public Methods

HttpdXmlDomWriter

HttpdXmlDomWriter::HttpdXmlDomWriter (HttpdWritable *p_target, unsigned
int indent = 2, unsigned int base_indent = 0, HttpdUint8 flags = 0,
unsigned short recursion_limit = USHRT_MAX);

Processing XML

185

This method constructs the writer object to generate XML to p_target. Nodes will be written out with an
initial indent of base_indent spaces. Nested nodes will be indented by an additional indent spaces.

The flags parameter can be set to any combination of the following options:

Flag Meaning

XML_OPT_ANONYMOUS_CLOSE A shortcut for terminating leaf nodes </> will be
used to reduce space.

XML_OPT_TRIM_LEADING_WS Leading whitespace on the text content of nodes will
be removed during writing.

XML_OPT_TRIM_TRAILING_WS Trailing whitespace on the text content of nodes will
be removed during writing.

XML_OPT_ALWAYS_WRITE_BODY Always causes the text content of nodes to be
written out. Ordinarilly the writer attempts to
discern structural nodes from nodes containing
content. Nodes that appear to be structural are not
written out. Setting this option disables this check -
increasing the size of the written XML.

XML_OPT_NO_NEWLINES Causes newlines normally omitted for formatting to
be omitted. This results in more compact, but less
readable output. This option is most effective when
setting the indent and base_indent to 0.

XML_OPT_USE_CDATA Causes CDATA[] encoding to be used if it would
result in a smaller representation. This option is
ignored if INC_XML_DOM_WRITE_CDATA is
zero. Enabling this option consumes more CPU time
during writing.

XML_OPT_DEFAULT_NS_USED Indicates that the XML being written is a fragment
within a larger document. The outer document may
have assigned the default namespace to something
besides the null default. In this case this option
should be set so that the default namespace is
assigned to null if it is needed. This option is ignored
if INC_XML_NAMESPACES is non-zero.

XML_OPT_IGNORE_SELECTORS This option causes the XML to be serialized
without attempting to use the selectors from the
source document for more readable XML. This
option is useful if the XML being written is
a fragment within a larger document and it is
important to avoid namespace selector collisions
with other content. This option is ignored if
INC_XML_NAMESPACES is non-zero.

The recursion_limit is used to control stack space consumption. Writing an XML document from
a DOM tree is a recursive process. This parameter limits the depth of the recursion. Attempts to write a
document that requires more recursion than this limit will fail.

WriteMarkup

int HttpdXmlDomWriter::WriteMarkup (const HttpdXmlDomNode *p_node);

This method writes p_node and its children.

Processing XML

186

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WriteChildren

int HttpdXmlDomWriter::WriteChildren (const HttpdXmlDomNode *p_node);

This method writes the children of p_node.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WriteDom

int HttpdXmlDomWriter::WriteDom (const HttpdXmlDomBuilder *p_builder);

This method writes the document held by p_builder.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

187

Chapter 7. Processing JSON
“Streamy” Processing of JSON

Seminole includes a set of classes to assist in parsing, storing, and serializing JSON data. The parser also
operates in a “streamy” fashion. This means that the document can be pumped piecemeal into the parser
as it arrives. Additionally is a way to efficiently “patch in” external data into a JSON data structure. Like
HttpdXmlParser, HttpdJsonTokenizer is derived from HttpdFifo. This allows POST requests
to easily drive the parser with HttpdReceiver or HttpdBoundaryReader objects.

JSON analysis is implemented in layers. The first layer, HttpdJsonTokenizer is an abstract
class that calls methods as tokens are recognized. On top of this HttpdJsonParser subclasses
HttpdJsonTokenizer to maintain state and validate the token stream against the JSON grammar.
Finally HttpdJsonBuilder subclasses HttpdJsonParser and builds a data structure as parsing
progresses representing the JSON input.

Additionally the JSON toolkit contains a number of classes that represent the datatypes present in JSON.
These objects can serialize themselves in JSON format to an HttpdWritable.

The JSON framework is defined in a header file called sem_json.h. In order to use any of these classes
or methods, this header file must be included.

HttpdJsonTokenizer Reference

Introduction
The HttpdJsonTokenizer class is used for tokenizing JSON. This pure abstract class is derived from
HttpdFifo and calls various methods when tokens are written to the FIFO. This class is typically not
used directly. Rather it serves as a base for the HttpdJsonParser class.

Public Methods

HttpdJsonTokenizer

HttpdJsonTokenizer::HttpdJsonTokenizer (size_t initial_buffer_size = 0,
size_t max_buffer_size = infinity);

This method constructs the tokenizer. The initial_buffer_size and max_buffer_size
arguments control the size of the HttpdFifo buffer.

Finish

int HttpdJsonTokenizer::Finish (void);

This method should be called when no more data is written to the tokenizer. It validates that all of the
written data that has been digested.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). The returned value is obtained from the Error method which may be
overridden for additional error reporting.

Processing JSON

188

Protected Methods

Keyword

virtual int HttpdJsonTokenizer::Keyword (int kw);

This method is called when a keyword is encountered. The kw parameter identifies the keyword and takes
on one of the following values:

• KW_FALSE for the false keyword.

• KW_TRUE for the true keyword.

• KW_NULL for the null keyword.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Identifier

virtual int HttpdJsonTokenizer::Identifier (const char *p_identifier);

This method is called for a non-quoted string that is not a keyword.

The buffer pointed to by p_identifier is only valid for the duration of the method call. If a
dynamically allocated copy is required then use HttpdJsonTokenizer::CopyString rather than
HttpdUtilities::SaveString to make a heap resident copy.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

QuotedString

virtual int HttpdJsonTokenizer::QuotedString (const char *p_string);

This method is called when a quoted string is recognized.

The buffer pointed to by p_string is only valid for the duration of the method call. If a
dynamically allocated copy is required then use HttpdJsonTokenizer::CopyString rather than
HttpdUtilities::SaveString to make a heap resident copy.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Token

virtual int HttpdJsonTokenizer::Token (char ch);

This pure virtual method is called for the following single character tokens: {, }, :, ,, [and].

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Error

virtual int HttpdJsonTokenizer::Error (int error_type, …);

Processing JSON

189

This method is called for malformed input. The error_type parameter determines how many string
parameters follow.

Error Type Additional Parameters

JSON_ERR_EXPECTING What was expected.

JSON_ERR_UNEXPECTED The unexpected item.

JSON_ERR_EARLY_EOF None.

JSON_ERR_BAD_STR_ESCAPE The invalid escape sequence.

JSON_ERR_BAD_UNICODE The invalid hexadecimal sequence following a \u.

The default implementation returns HttpdOpSys::ERR_BADPARAM and ignores the additional
parameters. The protected data member mLineNumber is the current line number within the document
where the error occured.

HttpdJsonParser Reference

Introduction
The HttpdJsonParser class is used for processing JSON documents. It is subclassed (via
HttpdJsonTokenizer) from HttpdFifo and shares the same public interface for receiving data.
Only the additional methods are documented here.

Public Methods

HttpdJsonParser

HttpdJsonParser::HttpdJsonParser (HttpdUint8 flags = 0, size_t
initial_buffer_size = 0, size_t max_buffer_size = infinity);

This method constructs the parser. The initial_buffer_size and max_buffer_size arguments
control the size of the HttpdFifo buffer.

If flags has the HttpdJsonParser::FLAG_QUOTED_KEYS_ONLY bit set then object keys must
be quoted strings and not identifiers; as required by the JSON specification.

The object can not be used until the Create method is called first.

Create

int HttpdJsonParser::Create (void);

This method creates and initializes the parser.

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes”).

Finish

int HttpdJsonParser::Finish (void);

This method should be called after the entire document has been written to the parser. It validates that all
of the JSON has been digested and that all of the state machines are in their appropriate idle states.

Processing JSON

190

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). The returned value is obtained from the Error method which may be
overridden for additional error reporting.

Protected Methods

TrueValue

virtual int HttpdJsonParser::TrueValue (void);

This method is called when a primitive value of true is parsed.

FalseValue

virtual int HttpdJsonParser::FalseValue (void);

This method is called when a primitive value of false is parsed.

NullValue

virtual int HttpdJsonParser::NullValue (void);

This method is called when a primitive value of null is parsed.

StringValue

virtual int HttpdJsonParser::StringValue (const char *p_string);

This method is called when a string value is parsed. If a heap resident copy of
p_string is desired then the HttpdJsonTokenizer::CopyString method rather than the
HttpdUtilities::SaveString should be used.

NumericValue

virtual int HttpdJsonParser::NumericValue (const char *p_num);

This method is called when a numeric value is parsed.

Push

virtual int HttpdJsonParser::Push (int building);

This method is called when a complex object is entered to push the current state on a stack to concentrate on
the newly discovered container object. The building parameter can be either JSON_BUILD_ARRAY
or JSON_BUILD_OBJECT depending on what is being built.

The mpContext member variable may be used to hold the current context to track the complex object
being assembled. If this member is used to store a pointer to dynamically allocated storage then the
overridden Pop method must free this storage before calling Pop in this (the base) class.

Pop

virtual int HttpdJsonParser::Pop (void);

This method is called when a complex object is completed to pop the previous build state from the stack.

Processing JSON

191

HttpdJsonBuilder Reference

Introduction
The HttpdJsonBuilder class is used for building data structures from JSON documents. It is
subclassed (via HttpdJsonParser and then HttpdJsonTokenizer) from HttpdFifo and shares
the same public interface for receiving data. Only the additional methods are documented here.

Public Methods

HttpdJsonBuilder

HttpdJsonBuilder::HttpdJsonBuilder (HttpdUint8 flags = 0, size_t
initial_buffer_size = 0, size_t max_buffer_size = infinity);

This method constructs the builder. The initial_buffer_size and max_buffer_size
arguments control the size of the HttpdFifo buffer.

The flags argument supports all of the options in HttpdJsonParser.

The object can not be used until the Create method is called first.

Create

int HttpdJsonBuilder::Create (void);

This method creates and initializes the builder.

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes”).

Finish

int HttpdJsonBuilder::Finish (void);

This method should be called after the entire document has been written to the builder. The data structure
built should not be accessed until this method is called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). The returned value is obtained from the Error method which may be
overridden for additional error reporting.

Datum

HttpdJsonDatum *HttpdJsonBuilder::Datum (void); const

This method returns a pointer the datum representing the parsed JSON. The datum is owned by the builder
and it will be destroyed when the builder is destroyed.

TakeDatum

HttpdJsonDatum *HttpdJsonBuilder::TakeDatum (void);

Processing JSON

192

This method takes ownership of the datum representing the parsed JSON. The datum must be destroyed
by the caller when it is no longer needed.

Note

This method may only be called once and only after Finish() has been called.

HttpdJsonDatum Reference

Introduction
The HttpdJsonDatum class is the abstract base class that represents JSON data elements.

Note

This class should not be subclassed outside the JSON toolkit. For efficiency the base class
must know about its derived types. Therefore the primary use of this type is as a pointer to
JSON data.

Public Methods

WriteQuotedString

static int HttpdJsonDatum::WriteQuotedString (HttpdWritable *p_target,
const char *p_string);

This static method writes p_string to p_target surrounded with double quotes escaping any
characters that the JSON standard requires.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Destroy

static int HttpdJsonDatum::Destroy (const HttpdJsonDatum *p_datum);

For efficiency some subclasses of HttpdJsonDatum are allocated using specialized mechanisms.
Instances of HttpdJsonDatum should only be destroyed with this static method. The delete operator
should never be applied to this class or its subclasses.

Type

virtual int HttpdJsonDatum::Type (void);

This method returns an identifier of the type of this datum.

Constant Actual Class Description

TYPE_UNDEFINEDHttpdJsonUndefined Unlike null the undefined object type represents a value
that is not possibly encoded in JSON. This type is often
returned from methods to indicate that no such value exists.

TYPE_NULL HttpdJsonNull This value represents a null in JSON.

Processing JSON

193

Constant Actual Class Description

TYPE_STRINGHttpdJsonString This value represents a string value.

TYPE_TRUE HttpdJsonTrue This value represents the value true.

TYPE_FALSEHttpdJsonFalse This value represents the value false.

TYPE_LONG HttpdJsonLong This value represents a non-fractional number within the
range of the long type.

TYPE_DOUBLEHttpdJsonDouble This value represents a number within the range of the
double type.

TYPE_ARRAYHttpdJsonArray This value represents an array of values.

TYPE_OBJECTHttpdJsonObject This value represents a map of string to values.

TYPE_ABSTRACTHttpdAbstractJson This value represents an artificially inserted JSON body.

Serialize

virtual int HttpdJsonDatum::Serialize (HttpdWritable *p_target);

This method serializes this object in JSON notation to p_target.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Get (by key)

virtual HttpdJsonDatum *HttpdJsonDatum::Get (const char *p_key);

This method returns the object associated with p_key. If no value is present or this value is not a container
then a pointer to the undefined object is returned.

Get (by index)

virtual HttpdJsonDatum *HttpdJsonDatum::Get (size_t index);

This method returns the value at index. If no value is present or this value is not a container then a pointer
to the undefined object is returned.

Copy

HttpdJsonDatum *HttpdJsonDatum::Copy (void);

This method returns copies this value (and any values it contains, recursively) and returns the copy. If
there is insufficient memory then NULL is returned. Upon success the returned value should be destroyed
(via Destroy()) when it is no longer needed.

IsUndefined

bool HttpdJsonDatum::IsUndefined (void); const

This method returns true if this value is undefined.

IsNull

bool HttpdJsonDatum::IsNull (void); const

Processing JSON

194

This method returns true if this value is JSON null.

IsTrue

bool HttpdJsonDatum::IsTrue (void); const

This method returns true if this value is JSON true.

IsFalse

bool HttpdJsonDatum::IsFalse (void); const

This method returns true if this value is JSON false.

IsString

bool HttpdJsonDatum::IsString (void); const

This method returns true if this value is a string.

IsArray

bool HttpdJsonDatum::IsArray (void); const

This method returns true if this value is an array.

IsObject

bool HttpdJsonDatum::IsObject (void); const

This method returns true if this value is a JSON object.

IsDouble

bool HttpdJsonDatum::IsDouble (void); const

This method returns true if this value is a double value and floating point JSON support is enabled.

IsLong

bool HttpdJsonDatum::IsLong (void); const

This method returns true if this value is a long value.

IsNumber

bool HttpdJsonDatum::IsNumber (void); const

This method returns true if this value is a number value of either long or double type.

GetLong

bool HttpdJsonDatum::GetLong (long &l); const

Processing JSON

195

If the value can be stored in a long then this method stores the value in l and returns true. Otherwise
false is returned.

GetDouble

bool HttpdJsonDatum::GetDouble (double &d); const

If the value can be stored in a double then this method stores the value in d and returns true. Otherwise
false is returned.

Note

This method is only available if INC_JSON_FLOATING_POINT is enabled.

GetString

const char *HttpdJsonDatum::GetString (void); const

If the value is a string then the string value is returned. Otherwise NULL is returned.

HttpdJsonUndefined Reference

Introduction
Rather than returning NULL to represent a missing value the HttpdJsonUndefined helps avoid lots
of checks for NULL because queries into the undefined object always result in a pointer to the undefined
object.

For example to get the "name" of the first object in the array named "people" in a JSON object the
following code may be used:

HttpdJsonDatum *p_name = p_obj->Get("people")->Get(0)->Get("name");
if (p_name->IsUndefined())
 …; // On error.
else
 … // On success.

Because the Get methods never return NULL and the HttpdJsonUndefined object always returns
undefined for any queries no extraneous error checking is necessary until the final step.

Note

This value will never be the result of parsing JSON using HttpdJsonBuilder.

Public Methods

Undefined

static HttpdJsonDatum *HttpdJsonUndefined::Undefined (void);

This method returns a pointer to the undefined object. It never returns NULL.

Processing JSON

196

HttpdJsonNull Reference

Introduction
A singleton instance of this class represents all null JSON values.

Public Methods

Null

static HttpdJsonDatum *HttpdJsonNull::Null (void);

This method returns a pointer to the null object. It never returns NULL.

HttpdJsonTrue Reference

Introduction
A singleton instance of this class represents all true JSON values.

Public Methods

True

static HttpdJsonDatum *HttpdJsonTrue::True (void);

This method returns a pointer to the true object. It never returns NULL.

HttpdJsonFalse Reference

Introduction
A singleton instance of this class represents all false JSON values.

Public Methods

False

static HttpdJsonDatum *HttpdJsonFalse::False (void);

This method returns a pointer to the false object. It never returns NULL.

HttpdJsonString Reference

Introduction
This object represents a JSON string.

Processing JSON

197

Public Methods

Create

static HttpdJsonString *HttpdJsonString::Create (const char *p_string);

This method creates an object containing the specified string value. Upon success a pointer to the object
is returned. When no longer needed the object should be destroyed via the Destroy() method. Upon
failure NULL is returned.

An internal copy of p_string is made.

Wrap

static HttpdJsonString *HttpdJsonString::Wrap (char *p_string);

This method creates an object pointing to p_string. Therefore p_string must be allocated on the
heap. Additionally this method takes ownership of the string. It will be freed when the datum is destroyed.

Upon success a pointer to the object is returned. When no longer needed the object should be destroyed
via the Destroy() method. Upon failure NULL is returned.

Note

If this method fails and returns NULL then p_string is automatically freed.

String

const char *HttpdJsonString::String (void);

This method returns the string value of this datum. This method never returns NULL.

Set

int HttpdJsonString::Set (const char *p_string);

This method sets the value of this string object to p_string.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdJsonLong Reference

Introduction
This object represents a number that can fit into a C++ long.

Public Methods

Create

static HttpdJsonLong *HttpdJsonLong::Create (long value);

Processing JSON

198

This method creates an object containing the specified value. Upon success a pointer to the object is
returned. When no longer needed the object should be destroyed via the Destroy() method. Upon
failure NULL is returned.

Long

long HttpdJsonLong::Long (void);

This method returns the value of this datum.

Set

void HttpdJsonLong::Set (long value);

This method sets the value of this string object to value.

HttpdJsonDouble Reference

Introduction
This object represents a number that can fit into a C++ double. This class is only for parsing JSON if
INC_JSON_FLOATING_POINT is enabled.

Public Methods

Create

static HttpdJsonDouble *HttpdJsonDouble::Create (double value);

This method creates an object containing the specified value. Upon success a pointer to the object is
returned. When no longer needed the object should be destroyed via the Destroy() method. Upon
failure NULL is returned.

Double

double HttpdJsonDouble::Double (void);

This method returns the value of this datum.

Set

void HttpdJsonDouble::Set (double value);

This method sets the value of this string object to value.

HttpdJsonArray Reference

Introduction
This object represents an array of JSON values.

Processing JSON

199

Public Methods

Create

static HttpdJsonArray *HttpdJsonArray::Create (void);

This method creates an empty array (of length 0). Upon success a pointer to the object is returned. When no
longer needed the object should be destroyed via the Destroy() method. Upon failure NULL is returned.

Set

int HttpdJsonArray::Set (size_t pos, HttpdJsonDatum *p_obj);

This method sets the value of array position pos to p_obj. If pos is beyond the end of the array then
the intermedia array positions are filled with HttpdJsonUndefined. These entries will not not be
serialized.

This method always takes onwership of p_obj. In the event of an error p_obj is destroyed. Any object
previously in the slot is destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Count

size_t HttpdJsonArray::Count (void);

This method returns the number of elements (including undefined slots) in the array.

Contents

HttpdJsonDatum **HttpdJsonArray::Contents (void);

This method returns a pointer to the array of contained values. The returned pointer is only valid until the
array is modified or destroyed. The returned array should be considered to only contain Count() pointers.

This method can be used to efficiently iterate over the contents of the array (as opposed to calling Get()
for each element). Additionally this array may be modified provided this is done with regards to proper
object ownership and lifetime.

HttpdJsonObject Reference

Introduction
This object represents a container of JSON values indexed by string. Internally the mapping is maintained
in HttpdJsonObject::Tuple which has the following structure:

Members of HttpdJsonObject::Tuple

Type: char *
Name: mpKey
Description: The name of the value.

Processing JSON

200

Type: HttpdJsonDatum *
Name: mpValue
Description: The value associated with this name.

Public Methods

Create

static HttpdJsonObject *HttpdJsonObject::Create (void);

This method creates an object with no members. Upon success a pointer to the object is returned. When no
longer needed the object should be destroyed via the Destroy() method. Upon failure NULL is returned.

Set

int HttpdJsonObject::Set (const char *p_key, HttpdJsonDatum *p_obj);

This method stores p_obj under the name p_key. If there is a previous value stored under that key it
is destroyed.

This method always takes onwership of p_obj. In the event of an error p_obj is destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Insert

int HttpdJsonObject::Set (char *p_key, HttpdJsonDatum *p_obj);

This method stores p_obj under the name p_key. This method is not valid if a value already exists under
that name. However this method is more efficient than Set() which does handle this case.

This method always takes onwership of both p_obj and p_key. In the event of an error they are
destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Count

size_t HttpdJsonObject::Count (void);

This method returns the number of elements in the object.

Remove

HttpdJsonDatum *HttpdJsonObject::Remove (const char *p_key);

This method removes the value from the object. If the value is found then a pointer to the removed value
(which must be freed if not used elsewhere) is returned. If the value is not found then NULL is returned.

GetTuple

HttpdJsonObject::Tuple *HttpdJsonObject::GetTuple (size_t index);

Processing JSON

201

This method returns the containing object for the specified position. Typically this method is used to
enumerate the contents of the object by iterating the index from 0 to one less than the return value of
Count().

HttpdAbstractJson Reference

Introduction
There may be certain circumstances where a large amount of data needs to be serialized in JSON format
in certain positions in a data structure. However the wrapping of scalar values as HttpdJsonDatum
objects can consume a large amount of memory. Instances of subclasses of the HttpdAbstractJson
abstract base class can be inserted into a JSON data structure and generate serialized data on the fly.

Use of this class is a performance optimization that should be avoided unless necessary.

Public Methods

Copy

virtual HttpdJsonDatum *HttpdAbstractJson::Copy (void);

This method should return a copy of this object in whatever manner the subclass deems necessary. In the
event of failure NULL should be returned.

DeleteAfterDestroy

virtual bool HttpdAbstractJson::DeleteAfterDestroy (void);

This method is called when this object is passed to HttpdJsonDatum::Destroy. If it returns true
then this object is deleted. Otherwise it is assumed that no further action must be taken.

202

Chapter 8. WebDAV Extensions
WebDAV

The HttpdFileHandler implements the HEAD and GET methods on top of an HttpdFileSystem.
The HttpdWebDAVHandler class extends HttpdFileHandler with WebDAV support.

WebDAV stands for “Web-based Distributed Authoring and Versioning.” It is a set of extensions to the
HTTP protocol which allows users to collaboratively edit and manage files via HTTP.

HttpdWebDAVHandler is only available if Seminole is compiled with the prerequisite features:

INC_XML_NAMESPACES
INC_MODIFIABLE_FILESYSTEMS

The WebDAV API is available in the sem_webdav.h header file.

Most general purpose operating systems provide a way to mount a WebDAV-compliant HTTP server as
a networked file system. This allows easy manipulation of content exposed via the HttpdFileSystem
interface.

HttpdWebDAVHandler Reference

Introduction
The HttpdWebDAVHandler class extends the HttpdFileHandler class with the WebDAV
protocol.

Public Methods

HttpdWebDAVHandler

HttpdWebDAVHandler::HttpdWebDAVHandler (const HttpdWebDAVConfiguration
*p_config, HttpdFileSystem *p_filesys, const char *p_root =
HttpdUtilities::mRoot, const char *p_prefix = HttpdUtilities::mRoot,
HttpdUint8 flags = 0);

This method constructs the handler. With the exception of p_config the other parameters behave
identically to their HttpdFileHandler counterparts. The WebDAV components are configured
with the HttpdWebDAVConfiguration structure. At least one instance of that structure must exist and
p_config must point to it.

The HttpdWebDAVConfiguration structure must have a lifetime equal to or greater than the
HttpdWebDAVHandler.

Create

int HttpdWebDAVHandler::Create (void);

This method initializes the handler and must be called before requests may be applied to it. An error code
from Table 4.1, “OS Abstraction Layer Error Codes” is returned. If the return is unsuccessful then the
handler may not be used.

WebDAV Extensions

203

LockSessions

HttpdSessionManager &HttpdWebDAVHandler::LockSessions (void);

WebDAV locks are managed internally by an instance of HttpdSessionManager. This method allows
access to the session manager. If extra security is desired then reference returned by this method may be
used to set scrubbing parameters before Create is called.

This method is only available if the INC_WEBDAV_LOCKING feature is enabled.

Protected Methods

GetLockCredentials

bool HttpdWebDAVHandler::GetLockCredentials (RequestState &state,
HttpdDAVLockCredentials &creds);

This method called when a WebDAV lock is placed on a resource. It allows authorization data to be
extracted from the request in state and encoded in a form that can be validated later. The creds
argument can be used to hold this encoded data.

If true is returned then the credentials were successful encoded (and implicitly permission was granted
to take the lock). If false is returned then the HttpdWebDAVHandler object will not perform the lock
request or respond to the client. Therefore, if false is returned then a proper response must be sent to the
client.

The HttpdDAVLockCredentials is an alias for HttpdParameter and can be used to store a scalar of most
types.

This method is only available if the INC_WEBDAV_LOCKING feature is enabled. The default
implementation of this method simply returns true.

DestroyLockCredentials

void HttpdWebDAVHandler::DestroyLockCredentials
(HttpdDAVLockCredentials &creds);

This method is called each time GetLockCredentials returns true. This gives subclasses a chance to
clean up any memory or resources that may have been allocated and stored in creds.

This method is only available if the INC_WEBDAV_LOCKING feature is enabled. The default
implementation of this method simply returns.

LockActionAllowed

int HttpdWebDAVHandler::LockActionAllowed (const RequestState &state,
int action, LockRecord *p_lock);

This method is called when a WebDAV lock is referenced by a client. It can be overridden
to perform custom authorization checks on the credentials gathered at lock creation time by
GetLockCredentials.

When called action is one of the following constants indicating the desired action:

LOCK_ACT_UNLOCK: Remove (destroy) a lock

WebDAV Extensions

204

LOCK_ACT_USE: Reference the lock when modifying a locked object.
LOCK_ACT_REFRESH: Refresh a lock timer so that it does not expire.

The p_lock parameter is a pointer to the lock object. This object has a data member, mCredentials
that is the HttpdDAVLockCredentials that was set by GetLockCredentials. Subclasses can check
this member and determine if action is allowed.

If the action is allowed then HTTPD_RESP_OK should be returned. If access is not allowed then the
returned HTTP status code is sent to the requestor.

This method is only available if the INC_WEBDAV_LOCKING feature is enabled. The default
implementation of this method simply returns HTTPD_RESP_OK.

HttpdWebDAVConfiguration Reference

Introduction
The HttpdWebDAVConfiguration struct is used to configure instances of
HttpdWebDAVHandler. Because this configuration structure is a passive entity there are no methods.
Instead the members are accessed directly as needed.

Public Data

mCapabilities

 … mCapabilities;

This member controls the capabilities clients have when accessing the WebDAV resource. It is a
combination of the following bit flags:

HTTPD_WEBDAV_CAN_CREATE: Create new resources
HTTPD_WEBDAV_CAN_DELETE: Delete existing resources
HTTPD_WEBDAV_CAN_MKCOL: Create collection (directory) resources
HTTPD_WEBDAV_CAN_CHANGE: Change existing file resources
HTTPD_WEBDAV_ALLOW_INFINITE_LOCK: Allow locks to be taken with an infinite timeout
HTTPD_WEBDAV_READ_WRITE is shorthand for: HTTPD_WEBDAV_CAN_CREATE,
HTTPD_WEBDAV_CAN_DELETE, HTTPD_WEBDAV_CAN_MKCOL,
HTTPD_WEBDAV_CAN_CHANGE

mMaxInfiniteDepth

 unsigned int mMaxInfiniteDepth;

The WebDAV protocol allows clients to specify the how recursive filesystem hierarchies are operated
upon. The depth is specified in the protocol as either 0, 1, or infinity. Because these file operations
are carried out by recursive routines a depth of infinity is impractical — especially on systems with little
stack space.

This member is the maximum depth that the HttpdWebDAVHandler is willing to recurse when the
client specifies a depth of infinity.

WebDAV Extensions

205

mPutTimeout

 unsigned int mPutTimeout;

This parameter controls the timeout, in seconds, for reading the entity body during a PUT request.

mMaxLocks

 size_t mMaxLocks;

This parameter controls the maximum number of lock objects that may be taken for this handler. This
member is only present if INC_WEBDAV_LOCKING is enabled.

mMaxLockLifetime

 long mMaxLockLifetime;

This parameter controls the maximum duration a lock may exist in seconds. If mCapabilities
contains HTTPD_WEBDAV_ALLOW_INFINITE_LOCK then this value also governs the duration used
for infinite lock timeouts as well. This member is only present if INC_WEBDAV_LOCKING is enabled.

206

Chapter 9. Error Logging and
Reporting
Introduction

Many embedded devices are distant from the people that administrate them. This makes serial consoles
as the only method of error reporting impractical.

Seminole provides an optional component for logging messages and then displaying those logged messages
on demand. The HttpdConsoleLog (and the associated HttpdConsoleHandler class) provide a
virtual serial console that is accessible via HTTP.

All of the definitions for the console mechanism are in the sem_console.h. This file automatically
includes seminole.h if it has not been included already.

The HttpdConsoleHandler class is optional, if desired, a more complex mechanism involving
templates can also be constructed.

HttpdConsoleLog Reference

Introduction
The interface of the HttpdConsoleLog class is generic enough to also allow the display of the console
data through other mechanisms (such as a serial port). It uses the HttpdWritable interface as a destination
for the console data.

The console data is kept in a circular, fixed-size buffer. This means that even in the face of total memory
exhaustion the console can still be used to record events that can be accessed later when memory pressure
is reduced.

Thread Safety
This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

Create

int HttpdConsoleLog::Create (size_t sz);

Initialize the console log. Before Log or Dump can be called, the object must be initialized with this
method. The parameter sz is the number of bytes that this console should use.

On success a 0 should be returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes”).

Log

void HttpdConsoleLog::Log (const char *p_str);

Error Logging and Reporting

207

Add an entry to the log. The string p_str is added with no additional formatting to the log. Older messages
are deleted as necessary.

Dump

int HttpdConsoleLog::Dump (HttpdWritable *p_target, DumpMode mode =
DUMP_ALL);

This method dumps the contents of the log to the stream pointed to by p_target.

Because the HttpdConsoleLog is a circular buffer of variably-sized messages it is possible that the
oldest message may be partially overwritten by the tail end of the newest message. The mode parameter
selects if the partial message should be omitted. If mode is DUMP_ALL then even partially overwritten
messages will be displayed. Otherwise, if mode is DUMP_CLEAN only full messages will get written.

On success a 0 should be returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes”).

Public Data
HttpdConsoleLog contains no publically accessible data members.

HttpdConsoleHandler Reference

Introduction
The HttpdConsoleHandler class is derived from the generic handler (HttpdHandler) which can
be inserted into an Httpd object.

This handler simply sends out the contents of the console with a MIME type of text/plain. There is
a virtual method, Authorized that can be overridden for access control.

Public Methods

HttpdConsoleHandler

HttpdConsoleHandler::HttpdConsoleHandler (const char *p_prefix,
HttpdConsoleLog *p_log, HttpdConsoleLog::DumpMode mode = DUMP_ALL);

The constructor associates the handler with a URL prefix of p_prefix. The p_log parameter must
point to a HttpdConsoleLog object that is initialized before the handler object is inserted in the server.

The optional mode parameter controls if partial log entries should be shown (DUMP_ALL) or not
(DUMP_CLEAN).

Protected Methods

Authorized

bool HttpdConsoleHandler::Authorized (HttpdRequest *p_request);

This method determines if the request should be processed. The default implementation of this method
simply returns true. But subclasses may wish to override this method to provide authentication.

Error Logging and Reporting

208

If this method returns false then no further action is performed by HttpdConsoleHandler.

Public Data
HttpdConsoleLog contains no publically accessible data members.

209

Chapter 10. The Application
Framework
Introduction

Seminole provides a powerful framework that handles most of the grunt work of producing intuitive web
interfaces. This framework is based on the Model-View-Controller (MVC) paradigm. The framework is
highly customizable and relies upon almost all of the core Seminole API's.

Overview
Developing applications using HTML and CGI is a complex task. The HTTP protocol is stateless; browsers
require regeneration of an entire page on each form submission; form input objects support only the most
rudimentary data types. All of these problems require careful management of state and very complex event
flow. The Seminole application framework handles all of the complex machinery for a fully-functional
web application.

The application framework is similar in some ways to traditional graphical interfaces: a tree of widgets
(displayable objects) receives events from a dispatching mechanism and uses a rendering mechanism to
update their visible state. In a traditional graphical interface, the widget tree and event handlers (and related
“invisible” objects) are contained in a desktop. Some GUI's allow more than one desktop to exist at the
same time; all isolated from one another.

In the application framework model the desktop is called a “session”. Depending on the method of state
tracking used there can be one single shared session or multiple independent ones. Each session contains
a tree of widgets that represent portions of an HTML document. Some of the widgets can be merely for
structuring purposes; others can be input controls or data displays. The most important characteristic of
widgets is that they maintain their state on the server side. This allows what the browser is showing to be
redisplayed easily without passing large amounts of state between the browser and the server.

Rendering of widgets is done using the template engine. Starting with the root object, each widget is
responsible for displaying itself as well as any children it may contain. Most often each widget is rendered
using a template dedicated to that particular widget. Rather than there being a single large template for
a page, content generated by the application framework is generated using the output of many small
templates sewn together.

Web applications are event driven. The browser must send a request to the server before state updates
can be seen; although the state of widgets can be updated at any time. When a request comes in from a
browser the request is analyzed. The parameters on the incoming request are analyzed to find the event
that triggered the transaction. Once the event is found, it is sent through the dispatcher. After the event is
processed the root widget is painted to send updated content back to the browser.

The dispatcher acts as a registry for objects that are interested in events. Handlers register for the event
stream of a session using a priority number. When a session is first created, the dispatcher has a handler
installed that finds the widget that the event is targeted for and delivers the event to that widget. Other
handlers can be registered as needed.

For example, dialogs listen on the event stream for any HTML field values that may be sent back from
the client. This allows a partially edited dialog to update its fields with any changes the user made even
if the event was not related to the dialog box. This behavior keeps the widgets as up-to-date as possible.
Other handlers can register for events at an even lower priority to perform cleanup duties after the event
has been dispatched to its target.

The Application Framework

210

Widgets are identified by two different names. A short and simple string name (called a “local identifier”)
is for widgets to be identified by their relatives. The most common use of the local identifier is for templates
to reference the painting of child widgets. Widgets also possess a global identifier that is a number. While
the local identifier only has to be unique with respect to siblings, the global identifier is unique amongst
all of the widgets in a particular session.

The global identifier is designed to be compact as well as efficiently mapped to a particular widget handle.
The global identifier is used in generated HTML to attach events to their target widgets. Unlike the
local identifier, the global identifier is generated automatically by the widget manager when a widget is
constructed.

Application developers can write their own widgets as well as utilizing a library of pre-defined widgets for
developing interfaces. Often times an entire application can be built by writing a small amount of “glue
code” on top of the widgets included with Seminole. Usually even the glue code for applications can be
generated from a small specification file using the specgen tool.

HttpdStringProvider Reference

Introduction
To support interfaces with different languages it is important that user-visible strings are not scattered
throughout application code. The HttpdStringProvider provides an interface to a catalog of
“localized” strings. The strings are indexed by a numeric identifier. The origins of the identifier are
dependent on the particular mechanism used to catalog the strings.

The type HttpdStringId is the scalar type to be used for identifying strings in a catalog. Implementations
of the HttpdStringProvider interface should ensure that all valid values of this particular type
(unsigned int) are handled.

Public Methods

Read (static buffer version)

int HttpdStringProvider::Read (HttpdStringId id, char *p_buf, size_t
buflen);

This method reads the string identified by id into the buffer provided pointed to by p_buf. If the string
is longer than buflen an error of HttpdOpSys::ERR_LIMITRCHD is returned.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”).

Read (dynamic buffer version)

int HttpdStringProvider::Read (HttpdStringId id, const char *&p_buf);

This method reads the string identified by id into the buffer that is managed by the implementation of the
string provider. The address of the string is placed into the p_buf parameter.

When the string is no longer needed the address in the p_buf should be passed to the
HttpdStringProvider::Free method.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”) and the value of p_buf is undefined.

The Application Framework

211

Note

The address placed into p_buf upon success isn't necessarily a dynamically allocated buffer.
The contents of the buffer should never be modified.

Free

void HttpdStringProvider::Free (const char *p_buf);

This method releases any memory associated with a string read using the dynamic version of
HttpdStringProvider::Read (the one which takes only two parameters).

HttpdStringBundle Reference

Introduction
The class HttpdStringBundle implements the string provider interface storing strings in a catalog
file generated by the msgcmp tool.

Note

Only additional methods are described here. This class implements the abstract methods in
the HttpdStringProvider class.

Public Methods

Open

int HttpdStringBundle::Open (HttpdFile *p_file);

This method associates the file pointed to by p_file with the string bundle.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”).

Note

This function must be called and succeed before any of the HttpdStringProvider
methods are called.

HttpdStringTable Reference

Introduction
The HttpdStringTable class implements the string provider interface with a lower code-size footprint
than the HttpdStringBundle class. Rather than use external files, the strings are dispensed from a
statically initialized array.

For systems where code is executed directly from flash memory and there is free flash memory this
implementation of HttpdStringProvider is also much faster. Unlike HttpdStringBundle it is
also harder to translate the strings or localize particular builds because a recompile is necessary (rather
than just replacing a file).

The Application Framework

212

Note

Only additional methods are described here. This class implements the abstract methods in
the HttpdStringProvider.

Public Methods

HttpdStringTable

int HttpdStringTable::HttpdStringTable (const char **pp_table, size_t
count);

This method initializes the string table object. The pp_table parameter points to an array of pointers to
the strings. The size of the table is limited to count strings.

When fetching strings the identifier is the index into the array. It is up to the programmer to maintain
appropriate symbolic constants for each string.

HttpdWidgetConfig Reference

Introduction
The HttpdWidgetConfig acts as an interface to a collection of objects that are used to visually
represent a web application. This provides a single mechanism to change the entire look and feel of an
application.

Resources are most often templates but can be any data stored in files. Resources are identified by string
names (which may or may not map to file names). Implementors of the HttpdWidgetConfig interface
can be chained so that the newest addition to the chain has the first chance of resolving the resource
identifier to a valid file.

This nesting allows some widgets to be given a different look and feel easily. The interface specified by
the HttpdWidgetConfig always returns loaded HttpdFileInfo objects. To increase performance
some implementations of the HttpdWidgetConfig can cache these objects to save expensive
filesystem searches.

Public Methods

Resource

HttpdFileInfo * HttpdWidgetConfig::Resource (const char
*p_resource_name, HttpdWidgetConfig *&p_config);

This method finds the resource identified by the name p_resource_name. The object that this method is
applied to is searched first, if the resource is not there, each parent in the chain of HttpdWidgetConfig
objects is searched until a resource is found.

If no resource can be found by that name, NULL is returned. If a resource is found, p_config is set to
point to the configuration object that found the resource.

Release

void HttpdWidgetConfig::Release (HttpdFileInfo *p_resource);

The Application Framework

213

Once a resource is found using the Resource method, it should be released by calling this method on
the object that found the resource (which is available from the p_config parameter of the Resource
method).

The default implementation of this method simply returns. Implementations of the
HttpdWidgetConfig interface can override this method if cleanup on the returned HttpdFileInfo
object is required.

Note

This method should only be called for objects returned in the p_config parameter of the
HttpdWidgetConfig::Resource method.

Strings

int HttpdWidgetConfig::Strings (const char *p_resource,
HttpdStringBundle &bundle);

This method initializes the string bundle bundle from the file identified by the resource name
p_resource. If successful, the file object associated with the string bundle must be closed explicitly
before the string bundle object is destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Protected Methods

HttpdWidgetConfig

HttpdWidgetConfig::HttpdWidgetConfig (HttpdWidgetConfig *p_parent);

This constructor initializes the base class and sets the parent widget configuration to p_parent. If there
is no parent to this configuration, then p_parent should be set to NULL.

FindResource

HttpdFileInfo * HttpdWidgetConfig::FindResource (const char
*p_resource_name);

This pure virtual method must be implemented by subclasses. When invoked, the current object should
search for a resource p_resource_name in the objects list of resources. If the resource is found, a
pointer to the HttpdFileInfo object should be returned.

If the named resource could not be found, this method should return NULL. By returning NULL the
HttpdWidgetConfig::Resource method will continue searching in other objects.

HttpdResourceMap Reference

Introduction
HttpdResourceMap implements the HttpdWidgetConfig interface using a sorted table that maps
resource identifiers to file names. This class also caches all of the HttpdFileInfo objects upon
initialization, making access to resources (when using some filesystems) much faster.

The Application Framework

214

Public Types

 struct ResourceMap
 {
 const char *mpResourceName;
 const char *mpFileName;
 };

Public Methods

HttpdResourceMap

HttpdResourceMap::HttpdResourceMap (HttpdWidgetConfig *p_parent);

This method initializes the HttpdResourceMap object and assigns p_parent as the objects parent.
The object can not be used for resolving resources until the HttpdResourceMap::Load method is
called and completes successfully.

Load

int HttpdResourceMap::Load (const ResourceMap *p_map, size_t sz,
HttpdFileSystem *p_fsys);

This method prepares the resources in the table specified by p_map. The sz parameter specifies the
number of entries in the p_map table. All of the pathnames in the p_map table should reside in the
filesystem specified by p_fsys.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdAppTemplateEnvironment Reference

Introduction
HttpdAppTemplateEnvironment is the top-level symbol table used when painting widgets. It
serves two fundamental purposes. First it provides a standard set of directives that widget templates can
use. Second, it serves as an anchor for other symbol tables to find the widget and HttpdAppPainter
objects.

The HttpdAppTemplateEnvironment is created by instances of
HttpdAppTemplateProcessor. During painting the symbol table objects of widgets can obtain a
pointer to the HttpdAppTemplateEnvironment from the top symbol table pointer:

 HttpdAppTemplateEnvironment *p_env =
 (HttpdAppTemplateEnvironment *)p_command->Processor()->Top();

Template Directives
The HttpdAppTemplateEnvironment class provides many symbols for widget templates.

The Application Framework

215

Table 10.1. Evaluation Directives

tag This evaluates to a unique identifier for this widget
that can be used for CGI parameters.

event This evaluates to a unique identifier for this widget
that when sent from the browser results in an event
being dispatched to this widget. Generally this is
used to name submit buttons.

url This is the URL of the current application.

localid This evaluates to the local identifier of the widget.

session/name This calls the session objects Attribute method
with a parameter of name. This mechanism acts as
an escape for the session object to be used for any
widget template if so desired.

Table 10.2. Conditional Directives

is-hidden This evaluates to true if the
HTTPD_WIDGET_HIDDEN flag is set for this
widget.

is-disabled This evaluates to true if the
HTTPD_WIDGET_DISABLED flag is set for this
widget.

Public Methods

Widget

HttpdWidget * HttpdAppTemplateEnvironment::Widget (void);

This method returns a pointer to the widget currently being painted. The return value can never be NULL.

Painter

HttpdAppPainter & HttpdAppTemplateEnvironment::Painter (void);

This method returns a reference to the current painter object. The painter object is responsible for painting
all widgets during a particular request from the browser.

HttpdAppTemplateProcessor Reference

Introduction
HttpdAppTemplateProcessor is a subclass of HttpdTemplateProcessor that is used for
painting widgets. Each widget gets its own instance of HttpdAppTemplateProcessor during the
particular paint cycle. This is true assuming the widget has not overridden HttpdWidget::Paint to
paint the widget using an alternative mechanism.

This class also has several static helper methods for painting operations. These methods
should only be called when template commands are being processed by an instance of

The Application Framework

216

HttpdAppTemplateProcessor. Although, it is not necessary to pass the pointer to the template
processor around, it can be obtained easily from any of the command objects.

Unlike its base class, a HttpdAppTemplateProcessor automatically installs an instance of
HttpdAppTemplateEnvironment as the first entry in the template symbol table.

Public Methods

HttpdAppTemplateProcessor

HttpdAppTemplateProcessor::HttpdAppTemplateProcessor (HttpdAppPainter
&painter);

The constructor takes a reference to the current painting object and initializes the processor for the
current painting cycle. Once constructed, the StartProcessing method should be called to initiate
the painting cycle.

StartProcessing

int HttpdAppTemplateProcessor::StartProcessing (const char *p_resource,
HttpdWidget *p_widget);

Process a template specified by the resource name p_resource for the widget p_widget. Symbols
should be associated with the template processor before this method is called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WriteResourceString

int HttpdAppTemplateProcessor::WriteResourceString
(HttpdTemplateCommand *p_command, HttpdStringId string);

This static method writes the localized string identified by string to the output associated with
p_command.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

GetPainter

HttpdAppPainter * HttpdAppTemplateProcessor::GetPainter
(HttpdTemplateCommand *p_command);

This static method returns a pointer to the painter object that is managing the current paint cycle.
GetPainter should not be called if the current template command is not associated with a
HttpdAppTemplateProcessor object. This method will never return NULL.

GetWidget

HttpdWidget * HttpdAppTemplateProcessor::GetWidget
(HttpdTemplateCommand *p_command);

The Application Framework

217

This static method returns a pointer to the widget that is being painted. GetWidget should not be called if
the current template command is not associated with a HttpdAppTemplateProcessor object. This
method will never return NULL.

HttpdAppStringConstants Reference

Introduction
The HttpdAppStringConstants structure represents a table of strings (which may or may not be
localized) indexed by name.

A common use for this class is to handle HTTPD_DLG_TEMPLATE_EVAL events in dialog widgets.
This allows widgets to substitute different strings depending on their runtime state.

Although the tables to describe the strings can be built manually, using specgen to generate the tables is
the preferred method.

Public Methods

WriteConstant

int HttpdAppStringConstants::WriteConstant (HttpdTemplateCommand
*p_command, const char *p_label);

This method writes the string identified by p_label in place of the template command identified by
p_command.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If the string identified by p_label is not in the table, ERR_NOTFOUND
is returned.

Public Data

mpIndex

This is a pointer to an array of StringIndex records. This array maps the symbolic string names to the
correct string identifier or constant string offset.

Note

The table must be sorted so that the labels are in ascending order; a binary search is used
to find the target record.

mCount

This is the number of records pointed to by mpIndex.

mppStrings

This is a table of non-localized strings. The first byte of each label string in mpIndex is byte that
determines if the associated HttpdStringId is a localized string identifier or a non-localized string. If the

The Application Framework

218

byte is zero, then a non-localized string is assumed. In that case the string identifier is an index into this
table.

HttpdWidget Reference

Introduction
HttpdWidget is the base class for all widgets in the application framework. Although the
HttpdWidget is not abstract it is designed to be sub-classed. Widgets are arranged in a hierarchy and,
with the exception of the root widget, all widgets have a parent widget. Widgets are always stored on
the heap and should only be stored in memory allocated via HttpdOpSys::Malloc. To keep the widget
tree consistent widgets should never be destroyed using delete; instead call the Destroy method to
destroy a widget.

By default an instance of HttpdWidget can not respond to a painting request correctly. Subclasses
must either override HttpdWidget::PaintingResource or HttpdWidget::Paint to handle
painting requests. If PaintingResource is overridden then the widget will handle painting requests
using the template mechanism. Otherwise, the Paint method can be overridden to handle painting using
any method the implementor desires.

Public Methods

HttpdWidget

HttpdWidget::HttpdWidget (const char *p_local_id, HttpdWidgetContainer
*p_parent, int &rc);

Construct a widget object. The p_local_id parameter can be NULL if this widget should not have a
local identifier. To create a top-level widget p_parent should be set to the address of the root widget,
obtained by calling HttpdAppSession::Root.

If widget construction fails this constructor sets rc to an error value (see Table 4.1, “OS Abstraction
Layer Error Codes”). Subclasses should check for success (rc equals zero) to avoid further construction.
In addition, constructors of subclasses can return their own error codes in rc.

Note

It is important that subclasses handle failed construction gracefully. Code that creates a
widget should check if the value in rc is non-zero. If so, the Destroy method should
be invoked on the partially constructed widget. Therefore, if construction fails the widgets
destructor is still invoked and should handle the partial construction case.

Destroy

void HttpdWidget::Destroy (void);

This method handles graceful destruction of a widget. Widgets should never be destroyed any other way.
This ensures that a widget can properly clean-up after its self before its virtual destructor gets invoked.
Once a widgets virtual destructor is invoked, no more virtual methods can be called on the widget. The
Destroy method handles cleaning up the widget and eventually releasing its memory.

Subclasses of HttpdWidget should override Destroy to handle cleanup. Overridden versions should
always call the Destroy method of the superclass as the very last operation.

The Application Framework

219

LocalId

const char * HttpdWidget::LocalId (void);

Returns a pointer to the local identifier of the widget. If the widget does not have a local identifier then
NULL is returned.

Config (Getter)

HttpdWidgetConfig * HttpdWidget::Config (void);

This method returns a pointer to the resource manager associated with the widget. The resource manager
is responsible for setting the look-and-feel policy for the widget. By default, the HttpdWidgetConfig
pointer is inherited from the parent widget.

This method can never return NULL.

Config (Setter)

void HttpdWidget::Config (HttpdConfig *p_config);

This method sets the current resource manager of the widget to p_config. It is up to the caller to ensure
that the lifetime of the resource manager specified by p_config exceeds the lifetime of the widget.

Flags (Getter)

HttpdWidgetFlags HttpdWidget::Flags (void);

Each widget has a small scalar value that keeps a variety of flag bits. The meaning of some bits are common
to all widgets. Others are free for subclasses to use. This method returns the current value of the flags
for the widget.

Table 10.3. Widget Flags

Flag Name Description

HTTPD_WIDGET_CONTAINER This flag is set if the widget is the subclass
HttpdWidgetContainer. Only container
widgets should set this flag.

HTTPD_WIDGET_HIDDEN If this flag is set the widget should not output any
content during a painting cycle.

HTTPD_WIDGET_DISABLED A widget in the disabled state should not respond to
external events.

HTTPD_WIDGET_STATIC_STATE This flag only applies to child widgets of a
HttpdWidgetDialog widget. If set, controls
will not receive updates during the manipulation of
the dialog.

HTTPD_WIDGET_DEFUNCT This flag can be set to have the event dispatcher
automatically destroy a widget when the current
event dispatching cycle is over. This is useful when
a widget may still need to exist further on during the
event handling chain but must be cleaned up before
the painting cycle.

The Application Framework

220

Flag Name Description

HTTPD_WIDGET_USER_FLAG This flag (and all of the remaining space) are
available for subclasses to use freely.

Flags (Setter)

void HttpdWidget::Flags (HttpdWidgetFlags flags);

This sets the widget flags to the value of flags. The previous state of all flags is erased and replaced
with the flags set in flags.

GlobalId

HttpdWidgetId HttpdWidget::GlobalId (void);

This method obtains the global identifier assigned to the widget during construction.

Parent

HttpdWidgetContainer * HttpdWidget::Parent (void);

This method returns a pointer to the parent widget of this widget.

Session

HttpdAppSession * HttpdWidget::Session (void);

This method returns a pointer to the session that owns this widget.

Event

int HttpdWidget::Event (HttpdAppEvent &event);

Process an event for this widget. Events dispatched to this widget are handled by this virtual method.
Subclasses should override this method if they are expecting to handle events.

Implementations of this method should return 0 upon success or an error value (see Table 4.1, “OS
Abstraction Layer Error Codes”).

ActionVa

int HttpdWidget::ActionVa (unsigned int req, va_list va);

This virtual method functions as a “catch-all” point for various miscellaneous services a widget can
provide. Rather than defining additional virtual methods and type-casting HttpdWidget pointers,
the operation can be posted to ActionVa (or by using the HttpdWidget::Action wrapper) and
send to the widget. If the requested action, specified by req can not be performed by this widget,
HttpdOpSys::ERR_WRONGTYPE is returned. Other operations should return an appropriate status
code.

Subclasses of HttpdWidget can override this method and handle specific requests. Requests that are
not understood should be passed to the ActionVa method of the superclass.

The Application Framework

221

Action

int HttpdWidget::Action (unsigned int req, …);

This method is a wrapper for invoking the ActionVa method of HttpdWidget. The variable argument
list is packaged into a va_list before ActionVa is called and cleaned up after it returns.

Paint

int HttpdWidget::Paint (HttpdAppPainter &paint);

The default implementation of this method is to paint the widget using templates. If a different approach
to painting a widget is to be employed subclasses can override this method.

Key

void HttpdWidget::Key (char *p_key, const char prefix = 't');

This method computes a unique prefix for this particular widget. The prefix is based upon the global
identifier and as such is unique across all widgets in a particular session. This prefix is useful for naming
CGI parameters that are specific to this particular widget.

The p_key parameter must point to a buffer of at least HTTPD_WIDGET_KEY_LEN characters. The
prefix character determines the type of prefix generated. Certain characters have special meaning. The
character e identifies the string as an event. The default character, t is commonly used to identify data
parameters such as field values.

If a widget needs multiple prefixes an additional identifier should be concatenated to the result in p_key
rather than altering prefix.

Key

void HttpdWidget::Key (char *p_key, const char *p_suffix, const char
prefix = 't');

This method generates a unique identifier for the particular widget. The two-parameter version of Key is
used to create a prefix which is then prepended to p_suffix. The result is placed in the buffer pointed
to by p_key which must be HTTPD_WIDGET_KEY_LEN characters longer than the length of the string
pointed to by p_suffix.

Protected Methods

PaintingResource

const char * HttpdWidget::PaintingResource (void);

If subclasses do not override the HttpdWidget::Paint method they should override this method to
return the resource name of the template file that should be used when painting this widget.

Implementations of this method should never return NULL from this method. Only a pointer to the name
of a valid file resource should be returned.

ExecuteTemplate

int HttpdWidget::ExecuteTemplate (HttpdAppTemplateProcessor &proc);

The Application Framework

222

Subclasses that use template-based painting can override this method to add additional template symbols
to the template processor. This method should declare any additional symbol tables and link them to the
template processor using instances of HttpdTemplateScope.

After all the appropriate symbols are bound to proc the ExecuteTemplate should call
ExecuteTemplate in its super class.

The return value from the call to the superclass ExecuteTemplate should be returned to the caller. If
painting is successful, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes”).

HttpdWidgetContainer Reference

Introduction
The HttpdWidgetContainer is a subclass of HttpdWidget and behaves as a widget that can also
contain child widgets. An instance of HttpdWidgetContainer can also contain children derived from
HttpdWidgetContainer resulting in a tree of widgets.

All of the protected and public methods described in the documentation for HttpdWidget can be
overridden in subclasses of HttpdWidgetContainer as well with the expected behavior. The only
catch is to ensure that when HttpdWidgetContainer is used as the class name when calling superclass
methods such as Destroy or ExecuteTemplate.

Template Directives
Templates for HttpdWidgetContainer and its subclasses can use additional directives for managing
child widgets.

Table 10.4. Evaluation Directives

child/xxxx This paints a the child widget identified by the local
identifier xxxx.

child When inside a children loop, this is directive
paints the currently iterated child.

Table 10.5. Conditional Directives

has-children This evaluates to true if the widget has any children.

Table 10.6. Loop Directives

children This iterates the body for each of the child widgets.
The child evaluation directive paints the currently
iterated child.

Public Methods

HttpdWidgetContainer

HttpdWidgetContainer::HttpdWidgetContainer (const char *p_local_id,
HttpdWidgetContainer *p_parent, int &rc);

The Application Framework

223

Construct a the container widget. The parameters are identical to the parameters of the HttpdWidget
constructor.

DestroyAllChildren

void HttpdWidgetContainer::DestroyAllChildren (void);

This method destroys all of the child widgets. The parent widget is not destroyed. This method is implicitly
called when the parent is destroyed.

FindByLocalId

HttpdWidget * HttpdWidget::FindByLocalId (const char *p_id);

Find the child widget identified by the local identifier p_id. If the child widget is found then a pointer to
it is returned. If the child widget could not be found then NULL is returned.

Children

HttpdList & HttpdWidgetContainer::Children (void);

This method returns a reference to the HttpdList that holds references to the child widgets. The list
can be iterated using an instance of HttpdListIterator where the owner pointer is a direct pointer
to the widget.

Protected Methods

RemovingChild

void HttpdWidgetContainer::RemovingChild (HttpdWidget *p_widget);

This virtual method is called when a child widget of this widget is destroyed. This can be either because
the container widget itself is being destroyed or any one of its children are being destroyed. In the former
case RemovingChild is called for each widget being removed.

Subclasses of HttpdWidgetContainer can override this method to perform additional processing
when a child is destroyed.

HttpdAppEvent Reference

Introduction
The HttpdAppEvent structure wraps up an event that is dispatched to HttpdWidget::Event
methods. There are no public methods in this structure. It functions as a wrapper for the current state during
event dispatching to avoid passing around lots of parameters.

Public Data Members

mpPath

The Application Framework

224

 const char *mpPath

The mpPath member is the result from the dispatcher calling HttpdHandler::IsMyPath. It is never
NULL but can be the empty string.

mpEvent

 const char *mpEvent

The mpEvent member is the event name from the dispatched event. The event names come from key
values generated by the HttpdWidget::Key methods. Like mpPath this member can not be NULL.

mpRequest

 HttpdRequest *mpRequest

mpEvent is a pointer to the current HTTP request object. This member variable can never be NULL.

mpTarget

 HttpdWidget *mpTarget

This is the target widget for this event. It is possible for this member to be NULL if the widget that was
sent the event was deleted on the server side before the request from the client side was processed.

mpHandler

 HttpdHandler *mpHandler

This is a pointer to the handler object processing the request. The mpHandler member can never be
NULL or else events couldn't even be processed.

mpSession

 HttpdAppSession *mpSession

This is the session object associated with this event. Events are never processed unless a valid session
exists for them; therefore this member can never be NULL.

mParameters

The Application Framework

225

 HttpdCgiHash mParameters

This is a collection of all of the parameters provided as part of the request. This includes both parameters
that are part of the URI query string as well as any data associated with the POST method.

Note

As a general rule widgets should only access or generate parameters with names that were
created using one of the HttpdWidget::Key methods. This provides each widget with
its own name space and prevents widgets from interfering with one another.

mPerformPaint

 bool mPerformPaint

This data member is initialized to true by the handler before it is dispatched. It should be set to false
if a widget determines that a paint cycle should not be requested after event processing.

In general setting this flag to false should only be used for extreme failures or for cases where a widget
is performing very specialized painting. “Normal” applications in general should not modify this member.

HttpdAppPainter Reference

Introduction
The HttpdAppPainter structure is created during a painting cycle to hold information that is shared
by all widgets during a painting cycle. A reference to this structure is passed to HttpdWidget::Paint
methods.

Public Data Members

mpEvent

 HttpdAppEvent *mpEvent

The mpEvent member points to the current event that initiated a painting cycle.

mpOutput

 HttpdDynamicOutput *mpOutput

This is an instance of HttpdDynamicOutput that is used to send content out to the client. By the time
the HttpdWidget::Paint method is called the header phase is complete and only the Body method
should be called on mpOutput.

The Application Framework

226

HttpdAppEventHandler Reference

Introduction
When an request becomes an event inside HttpdAppHandler it is dispatched through a set of
handlers that are all given a chance to handle the message. Each of these handlers is a subclass of
HttpdAppEventHandler. A per-session instance of HttpdAppDispatcher maintains a list of
HttpdAppEventHandler objects.

Public Methods

HttpdAppEventHandler

HttpdAppEventHandler::HttpdAppEventHandler (HttpdAppDispatchPriority
pri);

The constructor initializes the event handler object and sets its priority to pri. The type
HttpdAppDispatchPriority is a scalar value that is used to define a priority value relative to other event
handlers.

Absolute values should never be specified for pri. Instead, offsets relative to a known priority should be
used. Event dispatching to widgets functions at HTTPD_APP_DEFAULT_PRI priority. The final cleanup
of events is handled at HTTPD_APP_CLEANUP_PRI. Normal event handlers should be positioned
anywhere from HTTPD_APP_DIALOG_PRI to just below HTTPD_APP_CLEANUP_PRI.

The numerically higher the priority number the lower the priority of the event handler. The lower the
priority of the event handler the later (in time) the handler gets its turn to handle the event.

Note

HttpdAppEventHandler objects should always be stored in storage
obtained from HttpdOpSys::Malloc. Storage for the object is released by the
HttpdAppEventDispatcher object when the handler is no longer needed. Calling the
Release method queues an event handler for destruction when it is no longer in use.

HandlerNode

HttpdListNode * HttpdAppEventHandler::HandlerNode (void);

Instances of HttpdAppEventHandler are tracked in a HttpdList object. This method returns a
pointer to the internal HttpdListNode that links this event handler into the list. The owner pointer of
the node should always point to the HttpdAppEventHandler object.

Release

void HttpdAppEventHandler::Release (void);

To ensure the event handler is never removed before it may be needed the delete operator should not be
used to destroy the object. The HttpdAppEventDispatcher handles destruction of the event handler
object when it is safe.

Calling this method marks the event handler for pending deletion.

The Application Framework

227

HandleEvent

int HttpdAppEventHandler::HandleEvent (HttpdAppEvent &event, bool
&cont);

This pure virtual method must be overridden by subclasses to perform the specialized action during an
event. The event is passed in as the parameter event. If no further event processing should be performed
the cont should be set to false.

Unless this is the lowest priority (highest numerically) event handler or the cont parameter is set to
false the return value of this method is ignored.

If this instance is the lowest priority handler or if cont is set to false then the return value is returned
from the HttpdAppDispatcher::HandleEvent method.

HttpdAppEventDispatcher Reference

Introduction
The HttpdAppEventDispatcher class contains a list of HttpdAppEventHandler objects.
When an event comes in from a browser, the HttpdAppEvent is given to each
HttpdAppEventHandler object for processing.

By default the HttpdAppEventDispatcher object has an internal handler that dispatches an event
to the HttpdWidget::Event method (called the “default event handler”). Other handlers can be
installed to hook the event stream. The most important use of this feature is the mechanism that
HttpdWidgetDialog uses to keep its control widgets in sync with the updates from the browser.

The HttpdAppEventDispatcher object also contains a low-priority “cleanup event handler” which
executes after the default event handler to perform housekeeping tasks for the event dispatcher itself.

Public Methods

List

HttpdList & HttpdAppEventDispatcher::List (void);

Instances of HttpdAppEventHandler are tracked in a HttpdList object. This method returns a
pointer to the internal HttpdList that tracks the event handlers.

Insert

void HttpdAppEventDispatcher::Insert (HttpdAppEventHandler *p_handler);

Insert inserts the event handler identified by p_handler into the dispatcher.

Note

Event handlers should be inserted using this method and not by inserting directly into the
list returned by the List method.

Default

HttpdAppEventHandler * HttpdAppEventDispatcher::Default (void);

The Application Framework

228

This method returns a pointer to the default event handler.

HandleEvent

int HttpdAppEventHandler::HandleEvent (HttpdAppEvent &event);

This method dispatches event through the handlers. The return value is the return value of the
HandleEvent method of the last HttpdAppEventHandler object that processed the event.

HttpdAppSession Reference

Introduction
A session object represents all of the data identifying the state of a particular user interface. An application
consists of one or more session objects. In turn, each session object contains a unique tree of widgets and
event dispatcher. Each user of a web application gets their own unique instance of HttpdAppSession.

Application session objects are not related to HttpdSessionObject objects. Application session
objects exist without reguard to their attachment to a particular client browser. This policy is set by
subclasses of the application handler object HttpdAppHandler.

However, HttpdSessionObject objects can be used to manage multiple HttpdAppSession
objects if desired. For simple devices where only one user will be accessing the device at a time a single
session can be used to reduce code size.

Public Methods

HttpdAppSession

HttpdAppSession::HttpdAppSession (HttpdWidgetConfig *p_config,
HttpdStringProvider *p_strings);

The p_config parameter points to an instance of the HttpdWidgetConfig class. This is the default widget
configuration that is inherited for all widgets contained in this session.

The session object also holds a pointer to a string provider passed in as p_strings. This string provider
is consulted by the widget painting code to obtain replaceable strings when needed.

Both the configuration object and the string provider work together to ensure application code does not
contain any user-visible strings. This behavior makes it easy to allow multiple sessions for users of different
languages to coexist simultaneously.

Note

The constructor does not perform a complete initialization. The Create method should be
called after object construction to perform additional initialization.

Root

HttpdWidgetRoot * HttpdAppSession::Root (void);

This method returns a pointer to the root widget of the session. The root widget is an instance of a class
called HttpdWidgetRoot and is a subclass of HttpdWidgetContainer. The returned pointer can
never be NULL.

The Application Framework

229

Dispatcher

HttpdAppDispatcher & HttpdAppSession::Dispatcher (void);

Each session has a unique instance of HttpdAppDispatcher to route events through interested
handlers. This method returns a reference to the dispatcher object.

Mutex

HttpdMutex & HttpdAppSession::Mutex (void);

Event processing for a session is synchronized using a mutex object. In normal operation the
HttpdAppHandler object will lock the mutex during the time an event is being dispatched to a session.
This prevents simultaneous requests from arriving (possibly on different worker threads) and causing data
structure corruption within the session or widget tree.

Note

Application code that is not running under the context of an incoming request for this session
should lock this mutex while performing any operations with the session or its associated
widgets.

Strings

HttpdStringProvider * HttpdAppSession::Strings (void);

This method returns the pointer to the string provider object that was passed in at object construction time.
Unlike the widget configuration only the session manager maintains a pointer to the string provider.

When needed by widget painting code the string provider should obtained using this method.

Create

int HttpdAppSession::Create (void);

This method performs further initialization on the session object. After construction this method should
be called before the session is allowed to process an event. If this method returns failure the object should
be destroyed and the request should be failed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Attribute

int HttpdAppSession::Attribute (HttpdWritable *p_out, const char
*p_attr, HttpdTemplateCommand *p_command);

This virtual method is called when the template tag session/xxxx is evaluated. The string after the
forward slash is placed in p_attr and the command being executed is placed in p_command and this
method is called.

Subclasses of that wish to provide global data to widget templates should override this method and write
output to p_out. If the string in p_attr is not an attribute the subclass is interested in control should
be passed to the Attribute method of the super-class.

The Application Framework

230

Upon success, this method should return 0; otherwise a system dependent error value should be returned
(see Table 4.1, “OS Abstraction Layer Error Codes”).

HttpdAppHandler Reference

Introduction
The HttpdAppHandler class is a subclass of HttpdHandler that manages the dispatching of events
to sessions. HttpdAppHandler is an abstract class and requires that subclasses provide a session
management policy.

Protected Methods

GetSession

HttpdAppSession * HttpdAppHandler::GetSession (HttpdAppEvent &ev);

This abstract method should be implemented by subclasses. For the incoming event, ev the associated
session object should be found and returned.

If NULL is returned then the handler assumes that GetSession detected an error condition and sent an
appropriate response. It is important that in the event of returning NULL the GetSession always issues
a call to Respond on the mpRequest member of ev.

ReleaseSession

void HttpdAppHandler::ReleaseSession (HttpdAppSession *p_session);

This abstract method is called after the handler has dispatched an event to p_session. Subclasses should
perform any cleanup work on the session during this method.

HttpdAppHandler will never call this method with a p_session value of NULL.

ContentType

void HttpdAppHandler::ContentType (HttpdAppPainter &painter);

This method is called to generate the Content-Type MIME header for a normal painting cycle response.
Subclasses can override this method to send out additional headers or send out a different Content-
Type header.

This method is called during the header phase of the response. Headers should be submitted using the
Header method of the mpOutput member of painter.

HttpdSingleSessionApplication Reference

Introduction
HttpdSingleSessionApplication is a subclass of HttpdAppHandler that implements a
simple policy for session management. Every request for the application shares a single session. This class
is most appropriate for very low-end hardware with little memory and is only administrated by one person
at a time.

The Application Framework

231

Because of its simplicity this application handler also presents the simplest interface to the programmer.
The session object is created or statically declared in the application-specific code and a given to the
HttpdSingleSessionApplication object during its construction.

Public Methods

HttpdSingleSessionApplication

HttpdSingleSessionApplication::HttpdSingleSessionApplication (const
char *p_prefix, HttpdAppSession *p_session);

Construct a single session application handler. The handler assigned p_prefix as the URL prefix of the
application. The memory pointed to by p_prefix should have a lifetime greater than or equal to the
lifetime of the HttpdSingleSessionApplication object.

Writing Single-Session Application Specifications
When using the specgen tool the app package can be used to automatically generate the initialization
machinery of an application. This machinery is in the form of a generated function that initializes the
application handler object.

For example, assuming the following specification fragment:

 application myApp : single
 {
 menu mnuMain;
 prefix "/app";
 resources resEnglish;
 string resource "US-en";
 };

It is assumed these objects are defined elsewhere.

the application can be instantiated with the following code fragment in the startup of the system:

 Httpd *p_webserver = …
 HttpdFileSystem *p_fs = …
 HttpdAppHandler *p_handler;

 int rc = myApp(p_handler, p_fs);
 if (rc != 0)
 {
 printf("Error starting application: %d\n", rc);
 return;
 }

 p_webserver->Install(p_handler);

The myApp routine is generated as a result of the myApp specification. The generated routine always
takes two arguments. The first is a reference to the pointer that is to receive the handler address and
the second is the HttpdFileSystem that is used to initialize the resources.

The Application Framework

232

Note

The generated function should only be called once during the startup of the system.

The menu statement is optional and if not specified then no desktop widget will be created in the session.
The string statement can also take a different form to specify an instance of HttpdStringTable
that is declared with the stringtable specification:

 string provider strProvider;

HttpdSessionApplication Reference

Introduction
A HttpdSessionApplication uses the HttpdSessionManager to support multi-session
applications. In this configuration multiple users can use an application at the same time without interfering
with one another. Multi-session applications are also localizable; meaning that different sessions can use
different resources and string providers simultaneously.

HttpdSessionApplication is an abstract class and does not institute a policy for how session
identification is passed. Seminole provides two subclasses that implement a passing policy. The
HttpdFormSessionApplication class uses hidden form variables to pass the session identifier
while the HttpdCookieSessionApplication class uses cookies.

Each approach has its advantages and disadvantages. Passing the session identifier in hidden form values
does not require cookies (which some users find distasteful) although the session can be easily lost if the
user navigates outside the application. Cookies are more robust and are the preferred method of keeping
state with HTTP. Although using cookies means that user can only log in once to a particular application
with a particular browser.

Session objects in multi-session applications must be an instance of
HttpdSessionApplication::Session or one of its subclasses. This class combines the
HttpdAppSession with the HttpdSessionObject class.

Because of the added complexity of session construction and deletion,
HttpdSessionApplication objects are configured using an instance of a stand-alone structure,
HttpdSessionApplication::Config. The Config structure includes a pointer to a “logon
procedure.” This function pointer is called when a new session is to be created. This allows the application
program to perform security checks or other operations at login time.

Thankfully this complexity is normally hidden when using the app package with the specgen tool.

Using HttpdSessionApplication handlers requires that several static HTML pages for handling
user logon. The URI's for these pages are stored in the Config structure.

Public Methods

HttpdSessionApplication

HttpdSessionApplication::HttpdSessionApplication (const Config
*p_config);

The Application Framework

233

This constructs a HttpdSessionApplication object. The p_config parameter points
to a configuration structure which must have an equal or greater lifetime than the
HttpdSessionApplication object.

Note

This method only performs a partial initialization. In addition the
HttpdSessionApplication::Create method must be called before the object can
be used as a handler.

Create

int HttpdSessionApplication::Create (size_t max_sessions);

This method completes the initialization of the HttpdSessionApplication object. The
max_sessions parameter determines the maximum number of session objects that can be tracked by
the application.

On failure an error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned; otherwise 0
is returned.

Insert

int HttpdSessionApplication::Insert (HttpdAppEvent &event, Session
*p_session);

This static method inserts the session object identified by p_session in the application. Once inserted the
session object is managed by the application automatically. The event parameter is the event object that
resulted in the sessions creation. This method is typically called from a logon procedure after successful
creation of the session.

On failure an error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned; otherwise 0
is returned.

The Config Structure
The configuration structure is the set of parameters that initialize multi-session applications. The
declaration is as follows:

 struct Config
 {
 const char *mpLogonPageUrl;
 const char *mpLogoffPageUrl;
 const char *mpLogonFailedUrl;
 const char *mpLogonExpiredUrl;
 Session *(*mpLogonProc)(HttpdAppEvent &event, bool &redirect);

 #if defined(HTTPD_INC_BACKGROUND_SESSION_PURGE)
 int mMaxSessionAge;
 size_t mScrubbingBatchSize;
 unsigned long mCycleTime;
 #endif
 };

The Application Framework

234

Configuration Fields

mpLogonPageUrl This is the URL or absolute path of the HTML document that should be
presented to a user who is not logged in.

mpLogoffPageUrl The user is redirected to this URL or absolute path when they request to
log out of an application.

mpLogoffPageUrl The user is redirected to this URL or absolute path when they request to
log out of an application.

mpLogonFailedUrl The user is redirected to this URL or absolute path when the request to
login is denied by the logon procedure.

mpLogonFailedUrl The user is redirected to this URL or absolute path when the request to
login is denied by the logon procedure.

mpLogonExpiredUrl The user is redirected to this URL or absolute path when the user was
logged in but their session had since expired.

mpLogonProc This is the address of the logon procedure for the application.

mMaxSessionAge If background session scrubbing is enabled then this is parameter is used as
the argument when the HttpdSessionManager::MaxSessionAge
method is called.

mScrubbingBatchSize If background session scrubbing is enabled then this
is parameter is used as the argument when the
HttpdSessionManager::ScrubbingBatchSize method is
called.

mCycleTime If background session scrubbing is enabled then this is parameter is used
as the argument when the HttpdSessionManager::CycleTime
method is called.

If desired all of the various logon URI's members can be pointed to the same HTML document if no details
feedback about logon should be given.

The Logon Procedure
The logon procedure is responsible for examining any parameters that may have been submitted with from
the various logon forms (pointed to by the Config structure). If the parameters, such as user-name and
password, are correct then a session object and its corresponding desktop widget should be created.

Once created the logon procedure should call HttpdSessionApplication::Insert to insert the
newly created session into the applications' session manager. If successful a pointer to the newly created
session object should be returned.

If any kind of fatal error is encountered then the redirect should be set to false, a fatal response
should be sent, and NULL should be returned:

 if (fatal_error)
 {
 redirect = false;
 event.mpRequest->Respond(HTTPD_RESP_SRV_ERROR);
 return (NULL);
 }

The Application Framework

235

For the case of an incorrect logon (which is not a fatal error) the redirect should be left alone
and NULL should be returned. In this scenario no response should be sent by the logon procedure.
The logic in HttpdSessionApplication will redirect the user in this case to the URI in the
mpLogonFailedUrl field of the Config structure.

Writing Multi-Session Application Specifications
The specgen tool with the app package is the preferred way to develop a multi-session application. There
are two basic approaches to defining a multi-session application. The first approach, non-localized relies
on a single resource map and a single string provider. The second and more complicated approach allows
multiple resource maps and string providers to be used with a set being chosen at logon time.

The non-localized approach is as follows:

 application myApp : session
 {
 menu mnuMain;
 prefix "/app";
 resources EnglishResources;
 string resource "US-en";
 type cookie;
 max_users 256;
 new_session CreateAppSession;
 logon <-
 {
 HttpdCgiParameter *p_param = event.mParameters.Find("username");
 if (p_param == NULL)
 return (NULL);

 const char *p_username = p_param->mPair.mpValue;

 p_param = event.mParameters.Find("password");
 if (p_param == NULL)
 return (NULL);
 const char *p_password = p_param->mPair.mpValue;

 if ((strcmp(p_password, "password") != 0)
 || (strcmp(p_username, "user") != 0))
 return (NULL);

 return (CreateAppSession(event, redirect));
 };

 logon_url "/login/login.html";
 logoff_url "/login/login.html";
 logon_failed_url "/login/login_failed.html";
 logon_expired_url "/login/login_expired.html";

 scrubbing
 {
 max_age 86400; # Seconds

The Application Framework

236

 batch_size 8; # Sessions
 cycle_time 720; # Seconds
 };
 };

This statement determines the way in which the session identifier is passed. It can be cookie to use
cookies or form to use hidden form fields.
If specified, the new_session directive requests that a function be created to create the session.
This is strictly a convenience as this could be done manually. Its main purpose is to simplify the
logon code fragment in the logon directive.
To create and insert the session object the logon code can simply call the helper routine created with
new_session.
This optional statement sets the scrubbing parameters of the session. If not specified the values shown
here are used as defaults.

Note

The string, menu, and resources directives behave like their single-session
counterparts.

As with single-session applications this results in a function called myApp that performs the initialization
of the application. The code for starting the application using this function is identical to the single-session
version.

The localized version shares most of the directives of the non-localized version except the string and
resources directives are replaced with a list of the various locales the application supports:

 # Replace 'string' and 'resources' for multiple locales:
 locales
 {
 # Locale Resources String bundle resource name

 "US-english" : EnglishResources, "US-en";
 "GB-english" : EnglishResources, "GB-en";
 "German" : GermanResources, "DE-de";
 };

Resources do not have to be distinct (and neither do string bundles). Here we can see both British
and US locales share EnglishResources but use different string bundles.

When the locales keyword is used the function generated by the new_session directive will look at
the CGI parameters in the event for a value named locale. The locale with the selected name will be used.

Menus

Introduction
A menu is a collection of buttons that invoke an event to a particular widget. Menus are managed
with three different objects. An HttpdMenuItem describes a particular menu choice. An HttpdMenu
instance is usually owned by a widget that wishes to present a menu. When painting, an instance of
HttpdMenuSymbols is used to add template symbols for the particular menu.

The Application Framework

237

Menu definitions can be build automatically using the specgen tool and the menus package. They can
also be constructed by hand if necessary.

HttpdMenu Reference

Public Methods

HttpdMenu

HttpdMenu::HttpdMenu (const HttpdMenuItem *p_items, size_t count);

The constructor initializes a menu object to contain a the items described by p_items. The count
parameter specifies how many HttpdMenuItem elements p_items points to.

Note

After construction the HttpdMenu object must be initialized further with the Create
method. The call to Create is often done in the owning widgets constructor.

Create

int HttpdMenu::Create (void);

This method performs final initialization of the menu object. By default all of the options are marked as
enabled.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Dispatch

int HttpdMenu::Dispatch (HttpdAppEvent &event);

Widgets that own menus should pass their events to this method. If the event is the result of a menu action
this method will call the appropriate call-back for the menu item selected.

If event is a menu event the return value is the return value from the menu action call-back. This is
typically 0 on success or system dependent error value (see Table 4.1, “OS Abstraction Layer Error
Codes”). If the event is not for the widgets menu then HTTPD_TEMPLATE_NOT_HANDLED is returned.

Note

Unlike widgets, menus have no unique identifier. Instead menus depend on the unique
identifiers of the containing widget to be uniquely identified on the client. Therefore only
one menu can be managed by a widget at a time without extra logic.

Enabled

HttpdBitSet & HttpdMenu::Enabled (void);

Menu items can be enabled or disabled by manipulating the elements in the returned HttpdBitSet. If
the index is present in the set then the item is considered enabled. By default all menu items are enabled.

Count

unsigned int HttpdMenu::Count (void);

The Application Framework

238

This method returns the number of items in the menu.

FindItem

unsigned int HttpdMenu::FindItem (HttpdStringId item);

This method finds a menu item based upon label. If found the zero-based index of the item is returned. If
the item could not be found then the return value is equal to the return value of the Count method.

HttpdMenuItem Reference

Public Data Members

mItem

 HttpdStringId mItem

This field is the string identifier used to paint the label for this entry.

mpAction

 int (*mpAction)
 (
 size_t index,
 HttpdAppEvent &event
)

If this field is not NULL then the function it points to is called when the menu item is invoked. The
event parameter is the event record for the menu selection. The index parameter is the index of the
HttpdMenuItem record in the array that defines the menu.

If this field is NULL then this entry is considered a spacer or category for organizing selections.

HttpdMenuSymbols Reference
HttpdMenuSymbols is provided to paint a menu during template-based widget painting. Menus can
be painted in a variety of ways. Frequently button bars (such as the buttons at the bottom of the standard
dialog) are menus in disguise.

Template Directives

The HttpdMenuSymbols symbol table adds a single looping directive for painting a menu, menu-
items. Within this loop several additional directives are available pertaining to the current menu item.

Table 10.7. Directives available during menu-items

Directive Type Description

enabled Conditional This condition is true if the current
menu item has not been marked as
disabled.

The Application Framework

239

Directive Type Description

heading Conditional This condition identifies the
current menu item as being a
heading entry with no associated
action (mpAction is NULL).

label Evaluation This directive evaluates to the
string label assigned to the current
entry.

link Evaluation This directive evaluates to the tag
that invokes this particular menu
event. This tag should be present
as a CGI parameter during the
submission of the request to the
server.

Public Methods

HttpdMenuSymbols

HttpdMenuSymbols::HttpdMenuSymbols (HttpdMenu *p_menu);

The symbol table is associated with the menu definition of p_menu as well as implicitly with
the current widget being painted. This symbol table should not be used unless an instance of
HttpdAppTemplateProcessor is performing the template execution.

After construction the HttpdMenuSymbols object should be installed in the current symbol scope with
an instance of HttpdTemplateScope.

Writing Menu Specifications
Although the table of HttpdMenuItem can be built by hand the menus package for the specgen tool
processes a elegant syntax for defining a menu.

The menus package adds a new directive called menu for defining a menu. The menu directive is followed
by an identifier that gives a symbolic name for the menu definition. This symbolic name is used to declare
the array of HttpdMenuItem structures and can be used to initialize HttpdMenu objects.

For example, assuming a menu definition with a symbolic name of main_menu a menu object called
menu_object can be declared as follows:

 HttpdMenu menu_object(main_menu, HTTPD_NUMELEM(main_menu));

Note

Notice that the HTTPD_NUMELEM macro is used to determine the number of items in the
main_menu array. This is guaranteed to work because specgen always declares the array
with the number of elements (even in extern declarations).

In addition to declaring an array of structures, the symbolic name of the menu may be useful to other
specgen packages.

The Application Framework

240

Following the symbolic name is the actual message definition block. There are two directives. The
option directive defines a selectable option complete with associated code. The heading directive
defines a menu item with no associated call-back (mpAction is NULL).

For example, assuming the following definition for a menu named main_menu:

menu main_menu
{
 heading MSG_SYSTEM;
 option MSG_REBOOT <- reboot();
 option MSG_SAVECONFIG: SaveConfiguration;

 heading MSG_STATUS;
 option MSG_CPULOAD <- do_cpu_load(event);
 option MSG_ADDRESSING: DisplayAddressing;
};

The MSG_SAVECONFIG and MSG_ADDRESSING options are referencing external routines that are
prototyped to match the type of the mpAction member of HttpdMenuItem. The MSG_REBOOT
and MSG_CPULOAD options are wrapped in anonymous functions prototyped with index and event
parameters.

It is also possible to attach a menu option directly to a dialog box (either modal or non-modal). This still
requires a code fragment because a dialog box needs an object to manipulate although the code fragment
is much simpler.

menu main_menu
{
 heading MSG_CONFIGURATION;
 option MSG_T1BOARD dialog(dlgT1Board, data) <-
 { data = &T1Parameters; };
 option MSG_LANBOARD dialog(dlgT1Board, ethdata) <-
 {
 ethdata = GetLANParameters();
 if (ethdata == NULL)
 return (HttpdOpSys::ERR_OUTOFMEM);
 };
};

The dialog statement associates a particular dialog box with the named variable. The attached code
should assign a valid pointer for the dialog structure to the named variable or return an error code.

Alternatively, the dialog keyword can be replaced with the modal_dialog keyword to invoke a
modal dialog box.

HttpdWidgetDesktop Reference
Introduction

The HttpdWidgetDesktop widget is used to manage a typical application view. Although it is not
a requirement that a desktop widget is used to manage the application some widget types do require it

The Application Framework

241

to be present. Under normal circumstances a desktop widget should always be created. Only under rare
circumstances (such as extreme code size limitations) should the desktop be avoided.

The desktop widget is a container widget and is always a child of the root widget. The most prominent
features of the desktop widget are the menu bar and the status area. The menu bar is an instance of
HttpdMenu and is used to provide a navigational menu for the overall structure of the application. The
status area is a used to display informational messages; often as an indication of success or failure when
performing an action.

An additional feature of the desktop widget is that it works in conjunction with the HttpdAppModal
class to force the user to perform a particular action.

Template Directives

Table 10.8. Evaluation Directives

top This directive paints the current or “top” widget.
This directive should not be invoked unless the
has-top conditional is true.

status Displays the current status message. This directive
should not be invoked unless the has-status
conditional is true.

clear-status Clears the status message if it is set.

Table 10.9. Conditional Directives

menu-hidden This conditional determines if the menu should be
hidden.

has-top This conditional is true if there is a current or “top”
widget.

has-status This conditional is true if a status message is
pending.

Public Methods

HttpdWidgetDesktop

HttpdWidgetDesktop::HttpdWidgetDesktop (const char *p_local_id,
HttpdWidgetContainer *p_parent, const HttpdMenuItem *p_items, size_t
count, int &rc);

Construct a desktop widget. The p_local_id, p_parent, and rc arguments function identically to
the corresponding arguments in the HttpdWidget constructor.

The p_items and count argument define the desktop menu.

MenuHidden

unsigned int & HttpdWidgetDesktop::MenuHidden (void);

This method returns a reference to an internal counter that determines if the application menu is hidden.
The returned reference should never be directly assigned to. Instead the returned reference should be

The Application Framework

242

either incremented and decremented. It is important that the number of increments match the number of
decrements.

The manipulation of the menu hidden counter is automatically handled by the HttpdAppModal class.

Menu

HttpdMenu & HttpdWidgetDesktop::Menu (void);

This method returns a reference to the menu object of the desktop widget. The most common use of this
is to enable or disable specific items in the desktop menu depending on system state.

Top

HttpdWidget *& HttpdWidgetDesktop::Top (void);

The default behavior of the desktop is to consider one widget as the current widget the user is interacting
with. This method returns a reference to the variable that identifies the current widget.

If the current widget is set to NULL then no widget is considered current.

Status

void HttpdWidgetDesktop::Status (HttpdStringId message);

Set a status message to be displayed on the desktop on the next painting cycle. If a previous message was
set to be displayed it is replaced with message.

Desktop

HttpdWidgetDesktop * HttpdWidgetDesktop::Desktop (HttpdWidget
*p_widget);

This static method helps locate the desktop widget by given any valid widget (p_widget). If the desktop
can not be found, NULL is returned. This method should only be called when employing the desktop
widget.

CreateDesktop

int HttpdWidgetDesktop::CreateDesktop (HttpdAppSession *p_session,
const HttpdMenuItem *p_menu, size_t menu_count);

This static method creates a standard desktop widget in the session specified by p_session. The
p_menu and menu_count arguments define the application menu. The current widget is set to NULL.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

HttpdAppModal Reference

Introduction
When using the HttpdWidgetDesktop widget it is often desirable to temporarily suspend the normal
desktop navigation until a certain condition is met. Most commonly the suspension of desktop navigation
is needed for the lifetime of a particular widget.

The Application Framework

243

The HttpdAppModal object can be embedded in a widget to ensure that navigation is disabled for the
life of that widget. This class provides no methods beyond a constructor and destructor. Simply initializing
it in the constructor of a widget is sufficient to make a widget modal.

Public Methods

HttpdAppModal

HttpdAppModal::HttpdAppModal (HttpdWidget *p_widget, int &rc);

This constructor can be called in the initializer list of a widget with this passed in as the value for
p_widget and rc being the same rc reference passed to the constructor of a widget.

Dialogs

Introduction
A dialog is a container widget that holds a collection of “controls.” Controls are widgets that allow the
user to manipulate information. A dialog is defined by a set of data structures called a dialog template.
The dialog template is rather complex but the specgen tool builds the template structure automatically
from a specification.

The information that a dialog box represents is defined by an associated structure where each control
widget manipulates a particular field. Dialog widgets automatically manage the transfer of data between
the structure and the control widgets.

In order for the dialog widget to manage the control widgets it relies on a call-back routine called a manager.
Each field definition has a pointer to a manager procedure. The manager procedure is used to construct the
widget and transfer values from the structure and validation. The manager procedure is flexible; taking a
opcode value that identifies the requested action and a parameter list as a va_list.

Although any widget can be managed inside a dialog box most control widgets are subclasses of
HttpdWidgetField. The HttpdWidgetField widget maintains an error state and provides a
manager procedure that handles a few basic events.

A dialog template is defined by an instance of the HttpdDialogTemplate structure. This structure
points to an array of HttpdDialogField that defines each field. Each HttpdDialogField
structure can point to a “configuration structure” that is specific to the widget or manager of the field.

Data Types

HttpdDialogTemplate Public Data Members

mpName

 const char *mpName

This field identifies the local identifier of the dialog widget.

mpLayout

The Application Framework

244

 const char *mpLayout

This field identifies the resource used as a template to paint the dialog box.

mpFields

 const HttpdDialogField *mpFields

This field points to an array of field descriptors that describe the parameters of the dialog.

mFieldCount

 size_t mFieldCount

This field defines the number of elements in the mpFields array.

mpMenuItems

 const HttpdMenuItem *mpMenuItems

Each dialog box has an associated menu. This field is a pointer to the menu item table.

mMenuCount

 size_t mMenuCount

This field is the number of elements in the mpMenuItems array.

mpInit

 int (*mpInit)
 (
 HttpdWidgetDialog *p_dialog
)

This call-back is called when the dialog box has finished its basic initialization and created all of its control
widgets. Returning a non-zero value from this callback will prevent the dialog from being constructed
with a successful return code.

mpValidate

 int (*mpValidate)
 (
 HttpdWidgetDialog *p_dialog

The Application Framework

245

)

This call-back is a final validation function for the dialog box. Although each field can be validated
independently the job of this validator routine is to ensure that all of the field values make sense as a
whole. This routine should return HTTPD_TEMPLATE_FALSE_CASE if the validation constraints are
not met. Otherwise 0 should be returned. If no overall validation is required this field can be set to
HttpdWidgetDialog::NullProc.

mpOnComplete

 int (*mpOnComplete)
 (
 HttpdWidgetDialog *p_dialog
)

If this field is not NULL the function it points to is called after the dialog structure is updated during the
HttpdWidgetDialog::Complete method.

mpOnCancel

 int (*mpOnCancel)
 (
 HttpdWidgetDialog *p_dialog
)

If this field is not NULL the function it points to is called during the HttpdWidgetDialog::Cancel
method.

mCompletedMsg

 HttpdStringId mCompletedMsg

If the HTTPD_DLG_SET_COMPLETION_MSG flag is set in the mFlags field this message is set in the
status field of the desktop widget when the HttpdWidgetDialog::Complete method is called.

mCancelledMsg

 HttpdStringId mCancelledMsg

If the HTTPD_DLG_SET_CANCELLED_MSG flag is set in the mFlags field this message is set in the
status field of the desktop widget when the HttpdWidgetDialog::Cancel method is called.

mFlags

 unsigned char mFlags

The Application Framework

246

This field contains a set of flags that effect the behavior of dialog box event processing. Several options
can be set in this field.

Table 10.10. Dialog Template Flags

HTTPD_DLG_SET_COMPLETION_MSG The string identified by mCompletedMsg should
be set in the desktop status on dialog completion.

HTTPD_DLG_SET_CANCELLED_MSG The string identified by mCancelledMsg should
be set in the desktop status on dialog cancellation.

HTTPD_DLG_NO_CONSTRAINT_IF_ERROR Do not call the function pointed to by
mpValidate if any of the fields did not pass
validation. Normally the validation function is
called even if some fields are not valid.

HttpdDialogField Public Data Members

mpName

 const char *mpName

This data member identifies the name of the field widget.

mpTemplate

 const char *mpTemplate

This data member identifies the resource name used for painting the widget.

mOffset

 size_t mOffset

This data member is the offset in the dialog structure of where the field data resides.

mpManager

 HttpdFieldManager mpManager

This data member points to a call-back routine to manage basic operation of the field. Rather than rely on
subclassing for each specialized field which is tedious and error prone (as well as a bloaty approach) the
manager procedure acts as a simple adaptor to an underlying instance of a widget.

The typedef HttpdFieldManager is defined as a pointer to the manager with the following prototype:

 typedef int (*HttpdFieldManager)
 (
 const HttpdDialogField *p_field,

The Application Framework

247

 HttpdWidget *p_widget,
 int action,
 va_list va
);

The manager procedure handles many different chores with the action identifying the request.
Arguments are encapsulated in the va argument list.

Table 10.11. Field Manager Procedure Events

HTTPD_DLG_CREATE_WIDGET This event is sent when the control widget is to
be created. The va list contains two additional
parameters. The first is a pointer to the dialog widget
and has a type of HttpdWidgetContainer *. The
second parameter is a pointer that holds the address
of the newly created widget and has a type of
HttpdWidget **.

If success is returned the second parameter must
be set to point to the newly created widget. In
addition, the newly created widget must have the
dialog container widget as its parent.

HTTPD_DLG_INIT_WIDGET This event is sent when after all control widgets have
been set to their initial values but before the template
mpInit routine is called.

HTTPD_DLG_SET_WIDGET This event instructs the control widget to update its
state from the field stored in the dialog structure.
The va list contains a single void * parameter that
is the address of the field in the dialog structure.

HTTPD_DLG_GET_WIDGET This event instructs the control widget to update the
field in the dialog structure with the controls current
value. The va list contains a single void * parameter
that is the address of the field in the dialog structure.

HTTPD_DLG_VALIDATE This event is sent during an update cycle of the
dialog. If the control widget is performing validation
it should use this event as an indication to examine
its current value for invalid data. If the data is found
not to be valid the state of the widget should be
updated appropriately.

HTTPD_DLG_IS_VALID This event is sent by the dialog widget to determine
if the current data of the control is valid during the
last HTTPD_DLG_VALIDATE operation.

If the data is valid then
HTTPD_TEMPLATE_TRUE_CASE should be
returned. Otherwise if the last
validation found erroneous data then
HTTPD_TEMPLATE_FALSE_CASE should be
returned.

HTTPD_DLG_CLEAR_ERROR This event should clear any error determined by
the previous HTTPD_DLG_VALIDATE operation.

The Application Framework

248

Subsequent HTTPD_DLG_IS_VALID requests
should HTTPD_TEMPLATE_TRUE_CASE until
the next validation.

HTTPD_DLG_TEMPLATE_EVAL This operation is called when the template of a
HttpdWidgetField (or one of its subclasses)
encounters a manager/ directive. The va
argument list contains two additional parameters.
The first, of type const char * is the string following
the slash in the directive. The second parameter is a
pointer to the HttpdEvalCommand object.

HTTPD_DLG_USER This constant can be used as the base identifier
for application-specific manager requests. The
application framework never sends requests
with this identifier or any values larger than
HTTPD_DLG_USER.

mLabel

 HttpdStringId mLabel

This data member identifies the string label assigned to the field.

mpConfig

 const void * mpConfig

This data member is a pointer to a field-specific configuration structure. It is available for use by the
manager procedure or the control widget. If no configuration structure is needed then this field should be
set to NULL.

HttpdWidgetDialog Reference
HttpdWidgetDialog is a subclass of HttpdWidgetContainer and manages field widgets using
the dialog template. A dialog widget has a menu and possesses the template directives for painting menus.

Public Methods

HttpdWidgetDialog

HttpdWidgetDialog::HttpdWidgetDialog (HttpdWidgetContainer *p_parent,
const HttpdDialogTemplate *p_template, void *p_data, int &rc);

The constructor initializes a dialog widget. p_parent is the parent of the dialog widget; this is typically
the desktop widget. The address of the dialog template must be passed in p_template. The p_data
argument must be a pointer to an instance of the dialog structure. The lifetime of the dialog structure must
be at least as long as the lifetime of the dialog widget. Failures during widget (or control widget) creation
are identified in the rc argument.

Template

const HttpdDialogTemplate * HttpdWidgetDialog::Template (void);

The Application Framework

249

This method returns a pointer to the template structure that defines this dialog widget. The returned pointer
is never NULL.

Data

void *& HttpdWidgetDialog::Data (void);

This method returns a reference to the pointer to the dialog structure.

Modified

bool HttpdWidgetDialog::Modified (void);

This method queries the control widgets and determines if they contain modified values. Control widgets
that can not report their modified status are ignored when tabulating the results.

The dialog template conditional any-modified evaluates to the same value as this method.

ControlCount

size_t HttpdWidgetDialog::ControlCount (void);

This method returns the number of controls in the dialog.

Control

HttpdWidget * HttpdWidgetDialog::Control (size_t index);

This method returns a pointer to the widget that implements the control for the field identified by index.

Field

const HttpdDialogField * HttpdWidgetDialog::Field (size_t index);

This method returns a pointer to the field descriptor for the field identified by index.

ValidateFields

int HttpdWidgetDialog::ValidateFields (void);

This method calls the field-specific validators for all fields. The mpValidate call-back in the dialog
template is not called. If an error is encountered during the validation no further processing is done and
the error code is returned. Upon success a value of 0 is returned.

AreFieldsValid

int HttpdWidgetDialog::AreFieldsValid (bool &valid);

This method queries the manager procedure of each field to determine if any fields have a pending error.
Upon success, valid is set to reflect the state of the fields and 0 is returned; otherwise a system dependent
error value is returned (see Table 4.1, “OS Abstraction Layer Error Codes”).

ValidateAll

int HttpdWidgetDialog::ValidateAll (bool &valid);

This method first applies the per-field validators to ensure that each field is acceptable. Afterwards, the
template validator function is called to ensure that the relationships between the fields are not violating

The Application Framework

250

any constraints. Upon success, the valid is set to true if all data is valid or false if some constraints
have been violated. Otherwise a system dependent error value is returned (see Table 4.1, “OS Abstraction
Layer Error Codes”).

MoveValues

int HttpdWidgetDialog::MoveValues (int action, void *p_data);

This method moves values between the dialog structure pointed to by p_data and the dialog controls. If
the action argument is HTTPD_DLG_GET_WIDGET then the values from the dialog controls are copied
to the dialog structure. If the action argument is HTTPD_DLG_SET_EVENT then the values from the
dialog structure are propagated to the controls.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Cancel

int HttpdWidgetDialog::Cancel (void);

This method cancels any pending changes in the dialog and marks the dialog widget as defunct: after
processing the current event the dialog widget is destroyed. No changes are made to the dialog structure.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Complete

int HttpdWidgetDialog::Complete (void);

This method attempts to apply any pending changes in the dialog to the dialog structure if the data passes
the validation constraints. If the data is valid then the widget is marked as defunct and the dialog structure
is updated. If the data is not valid then the dialog remains active.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

ManageField

int HttpdWidgetDialog::ManageField (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, …);

This static method calls the manager procedure for the field specified by p_field. The p_widget
argument should be a pointer to the control widget.

ManageField

int HttpdWidgetDialog::ManageField (HttpdFieldManager p_manager, const
HttpdDialogField *p_field, HttpdWidget *p_widget, int action, …);

This static method calls the specified manager procedure with the provided arguments. This method is
normally used to call a different manager method from a manager that only hanldes a few specific events.

Create

int HttpdWidgetDialog::Create (HttpdAppEvent &event, const
HttpdDialogTemplate *p_template, void *p_data);

The Application Framework

251

This static method is a convenience routine for creating dialog boxes in response to events. Typically these
events are menu events although any valid event structure will do.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

InitOptionalField

void HttpdWidgetDialog::InitOptionalField (HttpdWidget *p_widget, bool
present);

This static method should be used when a field is optional and should only be displayed
when certain conditions are met. A field manager routine should call this method during the
HTTPD_DLG_INIT_WIDGET event. The present should be true if the field is required during the
initial display of the dialog.

ShowOptionalField

bool HttpdWidgetDialog::ShowOptionalField (HttpdWidget *p_widget, bool
present, int &rc);

This static method should be used when a field is optional and should only be displayed when certain
conditions are met. A field manager routine should call this method during the HTTPD_DLG_VALIDATE
event. The present should be true if the field is required for the current state of the dialog.

If this method returns true then the event handler should not proceed with any further validation and the
value in rc should be returned from the field manager. If the return value is false then validation should
proceed as normal.

HttpdWidgetField Reference
The HttpdWidgetField class is the base class for control widgets that support the concept of
“validation.” Validation means that when a particular field takes on an unacceptable value the dialog box
will not update the dialog structure.

Template Directives

Table 10.12. HttpdWidgetField Template Directives

Directive Type Description

data-tag Evaluation This directive evaluates to a
unique tag name for the data value
of this field.

error Evaluation This directive evaluates to the
current error message if any is
present.

label Evaluation Each field has an associated
label string, defined in the dialog
template, to identify it. This
directive evaluates to that label
string.

manager/xxx Evaluation This directive calls the fields
manager procedure with a

The Application Framework

252

Directive Type Description

HTTPD_DLG_TEMPLATE_EVAL
request.

has-error Conditional If the field is in an error state this
conditional directive evaluates to
true.

is-modified Conditional If the field has been modified
since its creation then this
directive evaluates to true.

Public Methods

HttpdWidgetField

HttpdWidgetField::HttpdWidgetField (HttpdWidgetContainer *p_parent,
const HttpdDialogField *p_field, int &rc);

This constructor initializes the field widget. The p_parent parameter is a pointer to the dialog widget.
A pointer to the field descriptor should be passed in as p_field. The rc is the error code and has the
same semantics as the rc argument in HttpdWidget's constructor.

SetError (string version)

void HttpdWidgetField::SetError (char *p_error);

This method places the field widget into an “error state” with an error message of p_error. The
p_error parameter must point to a string in storage obtained from HttpdOpSys::Malloc. Once given to
this method the string is owned by the widget and should not be freed by the calling code.

SetError (localized version)

void HttpdWidgetField::SetError (HttpdStringId error_message);

This method places the field widget into an “error state” with an error message of error_message.

ClearError

void HttpdWidgetField::ClearError (void);

This method removes the widget from an error state.

HasError

bool HttpdWidgetField::HasError (void);

This method returns true if this widget is in an error state. Otherwise, false is returned.

Manager

int HttpdWidgetField::Manager (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, va_list va);

This static method is a basic implementation of a field manager procedure. It handles
the HTTPD_DLG_TEMPLATE_EVAL, HTTPD_DLG_IS_VALID, and HTTPD_DLG_CLEAR_ERROR

The Application Framework

253

requests. Subclasses of HttpdWidgetField should call this static method as the default case in any
manager procedures they define.

HttpdWidgetScalar Reference
A HttpdWidgetScalar is a control widget that can take on a string value. The definition of string value
in this context is purposefully broad. Numeric values are also considered strings and can be handled by
a HttpdWidgetScalar. The HttpdWidgetScalar class is a subclass of HttpdWidgetField
and therefore can be validated.

Template Directives

Templates for HttpdWidgetScalar can also take advantage of the directives provided by its base
class, HttpdWidgetField.

Table 10.13. HttpdWidgetScalar Template Directives

Directive Type Description

value Evaluation This directive evaluates to the
current value of the widget. The
value is HTML-escaped.

have-data Conditional This directive is true if the widget
has a value.

Public Methods

HttpdWidgetScalar

HttpdWidgetScalar::HttpdWidgetScalar (HttpdWidgetContainer *p_parent,
const HttpdDialogField *p_field, int &rc);

This constructor initializes the scalar widget. The p_parent parameter is a pointer to the dialog widget.
A pointer to the field descriptor should be passed in as p_field. The rc is the error code and has the
same semantics as the rc argument in HttpdWidget's constructor.

GetValue

const char * HttpdWidgetScalar::GetValue (void);

This method returns a pointer to the value of the widget. If the widget has no value then NULL is returned.

SetValue

int HttpdWidgetScalar::SetValue (const char *p_value);

This method sets the current value of the widget to p_value. NULL can be passed in for p_value to
indicate that the widget has no value.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Manager

int HttpdWidgetScalar::Manager (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, va_list va);

The Application Framework

254

This static method is a skeletal manager procedure for scalar fields. It handles the
HTTPD_DLG_CREATE_WIDGET request in addition to all of the requests handled by the
HttpdWidgetField::Manager procedure.

HttpdWidgetOption Reference
A HttpdWidgetOption is a control widget that selects between a finite set of options. This widget is
typically rendered in HTML as a pulldown menu or a series of radio buttons. The HttpdWidgetOption
class is a subclass of HttpdWidgetField and therefore can be validated.

This widget requires a configuration structure pointed to by the mpConfig member of the field descriptor.
The configuration structure, HttpdWidgetOption::Options is defined as follows:

 struct Options
 {
 const HttpdStringId *mpLabels;
 size_t mCount;
 };

The mpLabels data member of the configuration structure should point to an array of string identifiers
enumerating each of the possible choices for the option. The mCount data member is the number of
elements in the mpLabels array.

Template Directives

Templates for HttpdWidgetOption can also take advantage of the directives provided by its base
class, HttpdWidgetField.

Table 10.14. HttpdWidgetOption Template Directives

Directive Type Description

option/nnn Evaluation This directive evaluates to the
label of a particular identifier. The
component following the slash
(nnn) is an integral constant that
identifies the options index.

option-id Evaluation This directive evaluates to the
current option index when looping
over all of the options. This
directive should only be evaluated
when inside an options loop.

option-label Evaluation This directive evaluates to the
current option label when looping
over all of the options. This
directive should only be evaluated
when inside an options loop.

is-current-selection Conditional This directive is true if the
current option is the selected
item when looping over all of
the options. This directive should

The Application Framework

255

Directive Type Description

only be evaluated when inside an
options loop.

have-current-selection Conditional This directive is true if the widget
has a currently selected object.

options Loop This directive loops over all of the
possible options.

Public Methods

HttpdWidgetOption

HttpdWidgetOption::HttpdWidgetOption (HttpdWidgetContainer *p_parent,
const HttpdDialogField *p_field, const Option *p_options, int &rc);

This constructor initializes the option widget. The p_parent parameter is a pointer to the dialog widget.
A pointer to the field descriptor should be passed in as p_field. The options list (which is normally
stored in the field descriptor) is passed in via p_options. The rc is the error code and has the same
semantics as the rc argument in HttpdWidget's constructor.

GetCurSelection

int HttpdWidgetOption::GetCurSelection (void);

This method returns a the index of the current selection. If the value is currently selected then -1 is returned.

SetCurSelection

void HttpdWidgetOption::SetCurSelection (int index);

This method sets the current selection of the widget to the option identified by the index parameter. If
index is set to -1 no item is considered selected.

Manager

int HttpdWidgetOption::Manager (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, va_list va);

This static method is a skeletal manager procedure for option selection fields. It handles
the HTTPD_DLG_CREATE_WIDGET request in addition to all of the requests handled by the
HttpdWidgetField::Manager procedure.

HttpdWidgetBoolean Reference
A HttpdWidgetBoolean is a control widget that is either on or off. This widget is typically rendered
in HTML as a checkbox. The HttpdWidgetBoolean class is a subclass of HttpdWidgetField
and therefore can be validated.

Template Directives

Templates for HttpdWidgetBoolean can also take advantage of the directives provided by its base
class, HttpdWidgetField.

The Application Framework

256

Table 10.15. HttpdWidgetBoolean Template Directives

Directive Type Description

presence-key Evaluation This directive evaluates to a
widget tag for identifying if this
widget value was even present in
the returned set of CGI values.
The need for this extra field
is due to the fact that when a
checkbox HTML object is no
selected (but present) no value
is returned. Templates should
include a hidden input field with
a non-empty string using this key
name.

is-selected Conditional This directive is true if the state of
the widget is true.

Public Methods

HttpdWidgetBoolean

HttpdWidgetBoolean::HttpdWidgetBoolean (HttpdWidgetContainer
*p_parent, const HttpdDialogField *p_field, int &rc);

This constructor initializes the boolean widget. The p_parent parameter is a pointer to the dialog widget.
A pointer to the field descriptor should be passed in as p_field. The rc is the error code and has the
same semantics as the rc argument in HttpdWidget's constructor.

GetCurState

bool HttpdWidgetBoolean::GetCurState (void);

This method returns a the current state of the widget.

SetCurState

void HttpdWidgetBoolean::SetCurState (bool state);

This method sets the current state of the widget to the state.

Manager

int HttpdWidgetBoolean::Manager (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, va_list va);

This static method is a skeletal manager procedure for boolean fields. It handles the
HTTPD_DLG_CREATE_WIDGET request in addition to all of the requests handled by the
HttpdWidgetField::Manager procedure.

HttpdWidgetMulti Reference
A HttpdWidgetMulti is similar to a HttpdWidgetScalar widget but is designed for multi-
part strings. An example of a multi-part string is an IPv4 address in dotted decimal notation. The
HttpdWidgetMulti widget consists of one or more named scalar values. Typically these widgets are

The Application Framework

257

used with specialized templates to setup a rigid layout for the field. The HttpdWidgetScalar class is
a subclass of HttpdWidgetField and therefore can be validated.

This widget requires a configuration structure pointed to by the mpConfig member of the field descriptor.
The configuration structure, HttpdWidgetMulti::Options is defined as follows:

 struct Options
 {
 const char *const *mpFields;
 size_t mCount;
 };

The mpFields data member of the configuration structure should point to an array of strings naming
each of the components of the multi-field. The mCount data member is the number of elements in the
mpFields array.

Template Directives

Templates for HttpdWidgetMulti can also take advantage of the directives provided by its base class,
HttpdWidgetField.

Table 10.16. HttpdWidgetMulti Template Directives

Directive Type Description

value/index Evaluation This directive evaluates to the
value of a particular field of the
widget. The index string can
either be a field index preceded
by an at sign (@) or the name
of a field. The value is HTML-
escaped.

field-tag/index Evaluation This directive evaluates to a
unique name for this field that
should be used for naming the
form elements. As with the
value directive, the index
string can either be a field index
preceded by an at sign (@) or the
name of a field.

have-value/index Conditional This directive evaluates true if the
field has a value.

value-equals/index Conditional This directive determines if the
value of the specified field is
equal to the attribute of the
value attribute. Alternatively,
the value to compare against can
be specified as a URI-escaped
string in the attribute escaped.

have-field/index Conditional This directive determines if the
specified field is valid.

The Application Framework

258

Public Methods

HttpdWidgetMulti

HttpdWidgetMulti::HttpdWidgetMulti (HttpdWidgetContainer *p_parent,
const HttpdDialogField *p_field, const Options *p_options, int &rc);

This constructor initializes the multi widget. The p_parent parameter is a pointer to the dialog widget.
A pointer to the field descriptor should be passed in as p_field. The options, normally stored in the
field descriptor, should be passed in as p_options. The rc is the error code and has the same semantics
as the rc argument in HttpdWidget's constructor.

Index

bool HttpdWidgetMulti::Index (const char *p_label, size_t &index);

This method obtains the index of the field identified by the label p_label. If such a field exists then
index is set to the index of that field and true is returned. If the field specified by p_label is not a
member of the multi widget then false is returned.

GetValue

const char * HttpdWidgetMulti::GetValue (size_t index);

This method returns a pointer to the value of the widget field specified by index. If the widget has no
value then NULL is returned.

SetValue

int HttpdWidgetMulti::SetValue (size_t index, const char *p_value);

This method sets the current value of the field identified by index to p_value. NULL can be passed
in for p_value to indicate that the field has no value.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Manager

int HttpdWidgetMulti::Manager (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, va_list va);

This static method is a skeletal manager procedure for multi fields. It handles the
HTTPD_DLG_CREATE_WIDGET request in addition to all of the requests handled by the
HttpdWidgetField::Manager procedure.

HttpdFieldManagers Reference
The HttpdFieldManagers structure contains static methods and other definitions that provide
standard behavior for various dialog input fields when using standard data types.

Public Methods

StoreUnsigned

void HttpdFieldManagers::StoreUnsigned (IntegerType type, void *p_dest,
unsigned long value);

The Application Framework

259

This static method is used to update an unsigned integral value pointed to by p_dest with value. The
type argument determines the type of the object pointed to by p_dest. The IntegerType type is an
enumeration defined in the scope of HttpdFieldManagers. It can take on the values of CharType,
ShortType, IntType, or LongType.

StoreSigned

void HttpdFieldManagers::StoreSigned (IntegerType type, void *p_dest,
long value);

This static method is similar to StoreUnsigned except that the target values are assumed to be signed.

FetchUnsigned

unsigned long HttpdFieldManagers::FetchUnsigned (IntegerType type,
const void *p_source);

This static method performs the reverse operation of StoreUnsigned. The unsigned integral value
pointed to by p_source that is of type type is returned.

FetchSigned

long HttpdFieldManagers::FetchSigned (IntegerType type, const void
*p_source);

This static method performs the reverse operation of StoreSigned. The signed integral value pointed
to by p_source that is of type type is returned.

EnumManager

int HttpdFieldManagers::EnumManager (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, va_list va);

This static method is a field manager procedure for enumerations that are explicitly of type int and
enumerated started at 0 and increasing monotonically.

Important

Only widgets that are instances of HttpdWidgetOption should use this manager
procedure.

BoolManager

int HttpdFieldManagers::BoolManager (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, va_list va);

This static method is a field manager procedure for values that are explicitly of type bool.

Important

Only widgets that are instances of HttpdWidgetBoolean should use this manager
procedure.

Public Structures

UnsignedInteger

The UnsignedInteger structure provides a static method, Manager that can be used to manage
unsigned integral input fields based on the HttpdWidgetScalar input widget.

The Application Framework

260

When using this manager procedure the mpConfig member of the field descriptor should point to an
instance of the UnsignedInteger class.

Data member mMinimum

 unsigned long mMinimum;

This member defines the minimum value this field can take on.

Data member mMaximum

 unsigned long mMaximum;

This member defines the maximum value this field can take on.

Data member mBelowMinimum

 HttpdStringId mBelowMinimum;

If the value of the field is below the minimum value the string identified by mBelowMinimum is used
to indicate the error.

Data member mAboveMaximum

 HttpdStringId mAboveMaximum;

If the value of the field is above the maximum value the string identified by mAboveMaximum is used
to indicate the error.

Data member mInvalid

 HttpdStringId mInvalid;

If the value of the field is not a valid number then the string identified by mInvalid is used to indicate
the error.

Data member mType

 IntegerType mType;

This member defines the size of the field. It can take on the values CharType, ShortType, IntType,
or LongType.

Data member mBase

The Application Framework

261

 enum { Hex, Dec } mBase;

This member defines the base used for the string representation of the value.

SignedInteger

Like UnsignedInteger, the SignedInteger structure provides a static method, Manager that can
be used to manage signed integral input fields based on the HttpdWidgetScalar input widget.

When using this manager procedure the mpConfig member of the field descriptor should point to an
instance of the SignedInteger class.

Data member mMinimum

 long mMinimum;

This member defines the minimum value this field can take on.

Data member mMaximum

 long mMaximum;

This member defines the maximum value this field can take on.

Data member mBelowMinimum

 HttpdStringId mBelowMinimum;

If the value of the field is below the minimum value the string identified by mBelowMinimum is used
to indicate the error.

Data member mAboveMaximum

 HttpdStringId mAboveMaximum;

If the value of the field is above the maximum value the string identified by mAboveMaximum is used
to indicate the error.

Data member mInvalid

 HttpdStringId mInvalid;

If the value of the field is not a valid number then the string identified by mInvalid is used to indicate
the error.

Data member mType

The Application Framework

262

 IntegerType mType;

This member defines the size of the field. It can take on the values CharType, ShortType, IntType,
or LongType.

StaticStringBuffer

The StaticStringBuffer structure provides a static method, Manager that can be used to manage
fixed-size zero-terminated string input fields based on the HttpdWidgetScalar input widget.

When using this manager procedure the mpConfig member of the field descriptor should point to an
instance of the StaticStringBuffer class.

Data member mBufferSize

 size_t mBufferSize;

This member defines the size of the buffer that holds the data, including the zero-terminator byte.

Data member mTooLong

 HttpdStringId mTooLong;

If the string value entered by the user can not fit in the buffer this localized string is used to indicate the
error.

TimeDateStamp

The TimeDateStamp structure provides a static method, Manager that can be used to manage input
fields based for the HttpdTimeStamp class.

When using this manager procedure the mpConfig member of the field descriptor should point to an
instance of the TimeDateStamp class.

Data member mInvalid

 HttpdStringId mInvalid;

This member defines the string that should be displayed when the field is in an error state.

Data member mUseAmPm

 bool mUseAmPm;

If true then an extra selection for AM or PM is provided for the time component.

Ipv4Address

The Ipv4Address structure provides a static method, Manager that can be used to manage input fields
that are string-based IPv4 addresses.

The Application Framework

263

When using this manager procedure the mpConfig member of the field descriptor should point to an
instance of the Ipv4Address class.

Data member mInvalid

 HttpdStringId mInvalid;

This member defines the string that should be displayed when the field is in an error state.

Data member mpValidate

 bool (*mpValidate)(const HttpdUint8 *p_octets);

A pointer to a routine that validates the four octets of the address. Two built-in validator routines, Host
and Netmask can be used to validate host addresses and netmasks, respectively.

Dialog Specifications
The specgen tool can be used to generate the HttpdDialogTemplate structure and associated field
descriptors. The dialogs package defines a single directive, dialog that defines a dialog template.
Within the dialog directive other directives define the structure of the dialog:

Table 10.17. Components of a dialog body

struct If specified this names the dialog structure
associated with this dialog. If this directive
is omitted then the struct takes on the name
DialogData, where Dialog is the name of the
dialog.

template This assigns the template resource to the dialog.

menu Associates a menu with a dialog.

fields Defines the set of fields in the dialog.

complete Defines a completion handler for the dialog.

cancel Defines a cancellation handler for the dialog.

validator Defines a validator procedure for the dialog.

validate Define the behavior of the validation phase for the
dialog.

status Define desktop status messages displayed during
dialog completion or cancellation.

Using the vague description above lets dive right into a basic example of a dialog to control a motor:

 dialog motor_control
 {
 # Values are stored in a structure called MotorParameters.
 struct MotorParameters;

The Application Framework

264

 # Use the std_dialog resource for painting.
 template "std_dialog";

 # Use a menu defined earlier, called motor_menu for the dialogs
 # menu bar.
 menu motor_menu;

 # Upon completion, execute this code.
 complete <-
 {
 if (UpdateMotorController())
 Commit();
 };

 # Upon cancellation, call the Motor::LockoutChanges routine.
 cancel Motor::LockoutChanges;

 # Display these messages when cancelled/completed.
 status
 {
 completion MSG_STATUS_CHANGES_SET;
 cancellation MSG_STATUS_OPERATION_DISABLED;
 };

 # Validation.
 validator <-
 {
 DoValidationStuff();
 return OtherValidationStuff();
 };

 # Only execute the validator if none of the fields are in an
 # an error state, as opposed to 'always'.
 validate if_no_error;

 # The fields.
 fields
 {
 speed : unsigned
 {
 label MSG_TEMPERATURE; # Label for this field.
 type short; # The data type is short.
 minimum 16 : MSG_TOO_SLOW; # too slow, display this message.
 maximum 1200 : MSG_TOO_FAST; # too fast, display this one.
 invalid MSG_INVALID_NUMBER; # invalid, display this.
 template "scalar"; # Use this template.
 };

 spin : boolean
 {
 label MSG_MOTOR_ON; # Label for this field.
 template "boolean"; # Use this template.
 };

The Application Framework

265

 };
 };

Collections

Introduction
Collection widgets present lists of information and can allow manipulation of those lists. Collection
widgets do not directly contain items or any kind of list; that is up to the application. Instead, collection
widgets make use of an “adaptor” class which provides an abstract interface to the list. Data adaptors are
subclasses of HttpdCollectionData which implement its abstract methods.

The HttpdCollectionData interface represent list items with a generic pointer. To physically present
those objects to the user an additional abstract interface is provided to perform the rendering task.
Rendering implementations are subclasses of HttpdCollectionObjectRenderer and implement
template directives.

Seminole includes some pre-built adaptor classes for various data structures. In addition, a manager
procedure is provided so that a collection widget can be a member of a dialog box.

Like dialog boxes, collection widgets have menus that can be used to perform associated actions. The
collection widget provides methods for determining if an object is selected and if so, which object to menu
handlers that take action on a particular object.

HttpdCollectionData Reference

Public Methods

Current

void * HttpdCollectionData::Current (void);

This method returns the currently indexed item of the collection. HttpdCollectionData objects
maintain a cursor that points to a particular element. This method can return NULL to identify that no
item is currently selected.

First

int HttpdCollectionData::First (void);

This method positions the cursor to the first element of the collection. If an error is encountered during the
moving of the cursor then an error value should be returned (see Table 4.1, “OS Abstraction Layer Error
Codes”). For success (even if there are no items in the collection) 0 should be returned.

Next

int HttpdCollectionData::Next (unsigned int count);

This method positions the cursor to the element in the collection count items following the current
element. If an error is encountered during the moving of the cursor then an error value should be returned
(see Table 4.1, “OS Abstraction Layer Error Codes”). For success (even if there are no more items in the
collection) 0 should be returned.

The Application Framework

266

Prev

int HttpdCollectionData::Prev (unsigned int count);

This method positions the cursor to the element in the collection count items preceding the current
element. If an error is encountered during the moving of the cursor then an error value should be returned
(see Table 4.1, “OS Abstraction Layer Error Codes”). For success (even if there are no more previous in
the collection) 0 should be returned.

IsFirst

bool HttpdCollectionData::IsFirst (void);

This method should return true is the currently selected element is the first element of the collection. If
any other element is selected by the cursor, false should be returned.

Event

int HttpdCollectionData::Event (HttpdAppEvent &ev);

This method is called when an event from the user (via a button that is part of the collection widget) is
destined for a particular item of the collection. The cursor of the collection data is positioned to the selected
item before this method is called.

This method should return an error code (see Table 4.1, “OS Abstraction Layer Error Codes”) or a template
return code.

Unlike all of the other methods in this class, Event is not abstract and does not have to be implemented
by subclasses. The default behavior is to ignore the event.

HttpdCollectionObjectRenderer Reference
The HttpdCollectionObjectRenderer class is a subclass of HttpdSymbolTable that also
defines an additional abstract method to specify a particular collection object.

During the rendering of a collection widget each item in the data adaptor is iterated for the current view.
The pointer to the current object (obtained from HttpdCollectionData::Current) is given to the
SetObject method of this class.

Templates can then contain directives for displaying a collection item that are delivered to subclasses of
HttpdCollectionObjectRenderer.

Public Methods

SetObject

int HttpdCollectionObjectRenderer::SetObject (void *p_object);

This method is called to prepare the renderer to render the object identified by p_object. The object
should remain in effect until the next call to SetObject. It is guaranteed that p_object will never
be NULL.

This method should return an error code (see Table 4.1, “OS Abstraction Layer Error Codes”) on failure
or 0 on success.

The Application Framework

267

HttpdCollectionWidget Reference

Template Directives

The HttpdCollectionWidget paints itself using templates. The templates can make use of directives
provided by HttpdCollectionWidget as well as additional directives provided by the renderer
object. The standard menu template directives also apply.

Collection Widget Template Evaluation Directives

cur-list-idx This directive evaluates to the zero-based offset of the currently painted item in the
widget. It should only be used inside a records loop directive.

data-key This directive evaluates to the data key for the widget.

Collection Widget Template Conditional Directives

more-ahead This directive is true if there is an additional page of items to be viewed. Typically this
should result in a “Next” button being presented to the user.

more-behind This directive is true if there are additional items before the items displayed on the
current page. Typically this should result in a “Prev” button being presented to the user.

is-first This directive is true if currently displayed item is the first in the collection. This
directive should only be used inside a records loop.

is-odd-row This directive is true if the current row is odd; the first row is considered even. This
directive is useful to alternate the colors of each record to assist in readability.

The collection widget also provides a looping directive, records that is used to display the current view
of items. The records should only be evaluated once per collection widget during a single painting cycle.

Public Methods

HttpdCollectionWidget

HttpdCollectionWidget::HttpdCollectionWidget (const char *p_local_id,
HttpdWidgetContainer *p_parent, const char *p_template, void *p_data,
const Options *p_options, int &rc);

Construct a collection widget. The p_local_id, p_parent, and rc arguments function identically to
the corresponding arguments in the HttpdWidget constructor.

The p_template parameter is the resource identifier of the template that should be used to paint this
widget. The remaining parameters are passed as a pointer to an Options structure. The most important
field of this structure is the setup function (mpSetup). This routine is called to fabricate the renderer and
collection objects backing the widget. The setup method is passed the p_data argument of the widget
constructor. This pointer is typically used to identify the data that is being displayed.

The Options structure is defined as follows:

 struct Options
 {
 int (*mpSetup)(void *p_data,
 HttpdCollectionObjectRenderer *&p_render,

The Application Framework

268

 HttpdCollectionData *&p_adaptor);

 unsigned int mPageSize;
 const HttpdMenuItem *mpMenuItems;
 size_t mMenuCount;
 HttpdWidgetFlags mFlags;
 unsigned short mRefreshInterval;
 };

All members of the structure should be initialized before being passed to the
HttpdCollectionWidget constructor. The mPageSize member determines the number of items
that should be displayed on the widget at any given time. The mpMenuItems and mMenuCount
members define the associated menu. The mFlags member contains additional widget flags. The
HttpdCollectionWidget widget has two additional flags:

• FREE_RENDERER - The renderer object was allocated dynamically and should be deleted when the
widget is destroyed.

• FREE_DATA - The data object was allocated dynamically and should be deleted when the widget is
destroyed.

The mRefreshInterval member, if greater than zero, forces the client to repaint the widgets for the
specified number of seconds. Changes in the data will be displayed during a repaint.

Menu

HttpdMenu & HttpdCollectionWidget::Menu (void);

Returns a referene to the menu object associated with the widget.

HaveSelection

bool HttpdCollectionWidget::HaveSelection (void);

This function returns true if an object is selected. Only code executing as part of an event handler (such
as menu handlers) should call this routine.

Data

HttpdCollectionData * HttpdCollectionWidget::Data (void);

This function returns a pointer to the data abstraction backing the collection widget.

Renderer

HttpdCollectionObjectRenderer * HttpdCollectionWidget::Renderer (void);

This function returns a pointer to the rendering object backing the collection widget.

Manager

int HttpdCollectionWidget::Manager (const HttpdDialogField *p_field,
HttpdWidget *p_widget, int action, va_list va);

This static method provides basic manager functions to embed a collection widget in a dialog box. The
configuration structure is expected to be a HttpdCollectionWidget::Options structure; the same structure
that is passed to the HttpdCollectionWidget constructor.

The Application Framework

269

HttpdCollectionListAdaptor Reference
The HttpdCollectionListAdaptor class adapts a list represented by the HttpdList class to
provide the HttpdCollectionData interface.

Public Methods

HttpdCollectionListAdaptor

HttpdCollectionListAdaptor::HttpdCollectionListAdaptor (HttpdList
&list);

Associates the adaptor with the list specified by list. The owner pointer of the HttpdListNode object
is used as the object pointer that is passed to the rendering object.

HttpdCollectionArrayAdaptor Reference
The HttpdCollectionArrayAdaptor class adapts a list represented as a normal array (either static
or dynamic) to provide the HttpdCollectionData interface.

Public Methods

HttpdCollectionArrayAdaptor

HttpdCollectionArrayAdaptor::HttpdCollectionArrayAdaptor (void
*p_array, size_t count, size_t slotsz);

Associates the adaptor with the array pointed to by p_array. The count parameter specifies how many
elements are in the array while slotsz specifies the size of each element.

HttpdWidgetBackBlocker Reference

Introduction
The HttpdWidgetBackBlocker widget is a subtle widget that can be used to prevent the use of the
“Back” button in many browsers (interfering with the state of the user interface). This widget is normally
transparent and can be made a child of the desktop where it can be painted with the child/ directive
anywhere inside the content area.

When the back button is used the client is sent a redirect to a specific URL. A sensible option is to redirect
the user to the URL for the application handler. This will result in an update for the current user-interface
state.

Public Methods

HttpdWidgetBackBlocker

HttpdWidgetBackBlocker::HttpdWidgetBackBlocker (const char *p_local_id,
HttpdWidgetContainer *p_parent, int status, const char *p_redirect_to,
int &rc);

The Application Framework

270

Construct a back-blocking widget. The p_local_id, p_parent, and rc arguments function
identically to the corresponding arguments in the HttpdWidget constructor.

If the “Back” button constraint is violated a redirect is sent as the response using
the status and p_redirect_to arguments. Under normal circumstances a status of
HTTPD_RESP_MOVED_TEMP should be used in conjunction with a p_redirect_to obtained from
calling HttpdAppHandler::Prefix.

271

Chapter 11. Imaging Library

What is the Imaging Library?

Introduction
Seminole handlers are not restricted to generating HTML or textual data; any binary data can be generated.
The Seminole imaging library takes advantage of this feature to display data graphically rather than
textually.

When using the imaging library, application code can use graphics primitives to draw on a canvas object.
The canvas object can then generate a graphics file on demand in response to a request.

The current implementation supports generation of GIF87a graphics files. Custom formats can be
implemented by subclassing the abstract HttpdCanvas class.

Using the Imaging Library
In order to use the imaging library application code must include the sem_image.h header file. There
are two ways to use the imaging library. The first approach is to create the canvas, paint the image, and
render the canvas in the context of a handlers Handle method.

An alternative approach is to draw the image at the applications convenience and only perform the
rendering step in the handler. If this approach is used then the access to the canvas object should be
synchronized with a mutex (HttpdMutex).

Setting up a request handler to draw dynamic images is easy. A subclass of HttpdHandler is installed
in the server object. The handler then performs the drawing and rendering steps if the request is for this
handler:

 bool MyHandler::Handle(HttpdRequest *p_request)
 {
 if (IsMyPath(p_request))
 {
 HttpdGif87aRenderer canvas;
 HttpdColor red, green blue;

 // Create a 425x125 pixel canvas with 8-bit depth.
 if (canvas.Create(425, 125, 8) != 0)
 goto failure;

 // Allocate colors.
 if (canvas.Color(255, 0, 0, 0, red) != 0)
 goto failure;
 if (canvas.Color(0, 255, 0, 0, green) != 0)
 goto failure;
 if (canvas.Color(0, 0, 255, 0, blue) != 0)
 goto failure;

 // Draw on the canvas.

Imaging Library

272

 …

 // Render the output.
 canvas.Render(p_request);
 return (true);
 }
 else // Not interested.
 return (false);

 failure:
 p_request->Respond(HTTPD_RESP_SRV_ERROR);
 return (true); // Handled, but not well.
 }

The HttpdColor and HttpdCoord) types are abstract types defined by sem_image.h for specifying colors
and coordinates to the generic drawing routines. There is nothing GIF specific about these types until they
are used by the HttpdGif87aRenderer canvas.

HttpdRect Reference

Introduction
The HttpdRect struct represents a rectangular area on the canvas using four points: top, left, bottom,
and right. The struct also provides methods for performing various operations with rectangles.

Because rectangles are such a fundamental concept there is little need for accessor methods for each data
member. Instead the members can be accessed directly as needed.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Data

mTop

 HttpdCoord mTop;

The top (lowest y coordinate) of the rectangle; inclusive.

mLeft

 HttpdCoord mLeft;

The left (lowest x coordinate) of the rectangle; inclusive.

Imaging Library

273

mBottom

 HttpdCoord mBottom;

The bottom (highest y coordinate) of the rectangle; inclusive.

mRight

 HttpdCoord mRight;

The right (highest x coordinate) of the rectangle; inclusive.

Public Methods

Width

HttpdCoord HttpdRect::Width (void);

This method returns the width of the rectangle.

Height

HttpdCoord HttpdRect::Height (void);

This method returns the height of the rectangle.

Intersection

void HttpdRect::Intersection (const HttpdRect &r);

This method intersects the rectangle object with the rectangle defined by r. The result of the intersection
is the new dimension of the rectangle object.

Union

void HttpdRect::Union (const HttpdRect &r);

This method adjusts the rectangle object so that it encompases both the original area and the area defined
by r.

Encloses

bool HttpdRect::Encloses (const HttpdRect &r);

This method tests if the rectangle defined by r is completely enclosed by the rectangle object.

Overlaps

bool HttpdRect::Overlaps (const HttpdRect &r);

Imaging Library

274

This method tests if the rectangle defined by r overlaps the area covered by the rectangle object.

Offset

void HttpdRect::Offset (HttpdCoord x_move, HttpdCoord y_move);

This method moves the origin of the rectangle by the specified offsets.

Inflate

void HttpdRect::Inflate (HttpdCoord x_grow, HttpdCoord y_grow);

The rectangle is grown on all four sides. Therefore the total expansion on the X-axis is twice x_grow and
the total expansion on the Y-axis is twice y_grow

Deflate

void HttpdRect::Deflate (HttpdCoord x_shrink, HttpdCoord y_shrink);

The rectangle is shrunk on all four sides. Therefore the total reduction on the X-axis is twice x_shrink
and the total reduction on the Y-axis is twice y_shrink

Subtract

unsigned int HttpdRect::Subtract (const HttpdRect &r, HttpdRect
*p_subrects);

Compute the list of rectangles covering the area of this rectangle without the rectangle r. The
p_subrects parameter must point to an array of at least HTTPD_RECT_MAX_AREA_FRAGMENTS
elements. This method returns the number of rectangles used in the p_subrects array.

HttpdCanvas Reference

Introduction
HttpdCanvas represents an abstract drawing surface. Subclasses of HttpdCanvas implement its
interface for a particular type of drawing surface.

There are two kinds of drawing routines a canvas provides. Pixel-oriented routines are fast but work only
with pixels. Brush-oriented routines are generally more powerful (although slower) and draw using an
abstract drawing tool, called a brush.

Brushes can provided by subclasses of HttpdCanvas or as stand-alone enhancements to canvas-
provided brushes. At any point in time the canvas has an active brush which is used by all brush-based
drawing operations.

Public Methods

Color

int HttpdCanvas::Color (unsigned char red, unsigned char green, unsigned
char blue, unsigned char thresh, HttpdColor &color);

Imaging Library

275

This method obtains a HttpdColor value for the specified values of red, green, and blue. The thresh
value determines the how accurate the resulting color must be. The higher the threshold value the less
exact the match is.

If the color could be allocated the color argument is set to the appropriate color value and 0 is returned.
Otherwise an error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

The purpose of the threshold value is to allow a canvas with limited color resources to share color entries
with previously used colors. If 0 is specified for the threshold then an exact match is requested.

Brush

HttpdBrush * HttpdCanvas::Brush (HttpdBrush *p_brush);

This method sets the current brush of the canvas to the brush pointed to by p_brush. A pointer to the
previously active brush is returned.

Pen

HttpdColor HttpdCanvas::Pen (HttpdColor pen);

This method sets the current pen color of the canvas to the color specified by pen. The previous pen color
is returned.

The pen color is used by default brush (see DefaultBrush) for drawing basic pixels.

Size

void HttpdCanvas::Size (HttpdRect &r);

This method sets r to the rectangle that defines the drawing area.

DefaultBrush

HttpdBrush * HttpdCanvas::DefaultBrush (void);

This method returns a pointer to the “default brush.” This brush paints single pixels (the smallest drawing
unit possible) using the current pen color.

Note

This function never returns NULL as the default brush should always exist for the life of the
canvas and be created during the construction of the canvas.

Box

void HttpdCanvas::Box (const HttpdRect &r);

This method draws a one-pixel border around the perimeter of the rectangle specified by r in the current
pen color.

FilledRect

void HttpdCanvas::FilledRect (const HttpdRect &r);

This method fills the pixels in the rectangle specified by r with the current pen color.

Imaging Library

276

HPixelLine

void HttpdCanvas::HPixelLine (HttpdCoord y, HttpdCoord start_x,
HttpdCoord stop_x);

This method draws a 1-pixel tall horizontal line from start_x to stop_x (inclusive) at y pixels from
the origin. The line is drawn in the current pen color.

VPixelLine

void HttpdCanvas::VPixelLine (HttpdCoord x, HttpdCoord start_y,
HttpdCoord stop_y);

This method draws a 1-pixel wide vertical line from start_y to stop_y (inclusive) at x pixels from
the origin. The line is drawn in the current pen color.

Line

void HttpdCanvas::Line (const HttpdRect &rect);

This method draws a line from the top left corner of the rectangle r to the bottom right using the current
brush.

Circle

void HttpdCanvas::Circle (HttpdCoord x_center, HttpdCoord y_center,
HttpdCoord radius);

This method draws a circle with the specified center and radius using the current brush.

RoundRect

void HttpdCanvas::RoundRect (const HttpdRect &rect, HttpdCoord roundness
= 4);

This method draws a rectangle of coordinates rect with rounded corners. The roundness parameter
specifies how many pixles the diagonal lines on each corner take up. Keep in mind that if roundness
is too large the rounded corners will no longer look round.

Grid

void HttpdCanvas::Grid (const HttpdRect &r, HttpdCoord x_spaces,
HttpdCoord y_spaces);

This method draws a 1-pixel wide grid using the current pen color covering the specified rectangle. The
x_spaces and y_spaces parameters determine the number of graduations for each axis.

LineGraph

void HttpdCanvas::LineGraph (const HttpdRect &r, const long *p_values,
size_t count, long minval, long maxval, size_t offset = 0);

This method graphs the data pointed to by p_values in the rectangle defined by r. The data must
be signed long integers. The count parameter specifies how many elements p_values points to and
minval and maxval specify the miniumum and maximum ranges to be graphed.

Imaging Library

277

The offset parameter specifies the where the graph should start within the p_values array.
Reguardless of the value of this parameter, count data points are always plotted. If offset is non-zero
then the graph simply wraps around to the beginnig of the array until count values are plotted.

The offset parameter makes it easy to draw a graph on a window of constantly changing data.

HttpdSquareBrush Reference

Introduction
The HttpdSquareBrush class implements the abstract HttpdBrush interface. It applies an existing
brush in a square (or rectangular) pattern for each drawing operation. This brush is generally used to make
shapes appear “thicker.”

Public Methods

HttpdSquareBrush

HttpdSquareBrush::HttpdSquareBrush (HttpdBrush *p_brush, HttpdCoord
x_cnt, HttpdCoord y_cnt);

The square brush object is configured to draw using p_brush for x_cnt repetitions along the x-axis
and y_cnt repetitions on the y-axis.

HttpdFont Reference

Introduction
The HttpdFont class is used for drawing text on a canvas. Each font object has configurable spacing and
scaling. Once created a HttpdFont object is read-only and thread safe and may be used from multiple
threads (requests) without synchronization.

Public Methods

HttpdFont

HttpdFont::HttpdFont (HttpdCoord scale = 1, HttpdCoord spacing = 1);

This method constructs of font of the specified scale with the specified character spacing.

CharWidth

HttpdCoord HttpdFont::CharWidth (char ch); const

This method computes the width of the specified character (in pixels).

StringWidth

HttpdCoord HttpdFont::StringWidth (const char *p_string); const

This method computes the width of the string p_string (in pixels).

Imaging Library

278

Draw

HttpdCoord HttpdFont::Draw (HttpdCanvas *p_canvas, HttpdCoord x,
HttpdCoord y, const char *p_string); const

This method draws the string p_string at the coordinates x, y of the canvas p_canvas using the
current pen color of the canvas.

The total horizontal width of the drawn string (in pixels) is returned.

HttpdGif87aRenderer Reference

Introduction
The HttpdGif87aRenderer class implements the HttpdCanvas interface. The contents of this
canvas can be rendered as a GIF87a graphics files in response to an HTTP request.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety
This class is completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Create

int HttpdGif87aRenderer::Create (HttpdCoord width, HttpdCoord height,
unsigned int depth = 8);

Before the object can be used the Create method must be called. This method prepares the canvas for
drawing with the specified dimentions and color-depth (in bits).

This method may be called on an already-initialized HttpdGif87aRenderer object to re-create the
object with a new size and/or depth. Keep in mind that re-creating an already existing canvas will obliterate
the image on the previous canvas.

Upon success, 0 is returned. Upon error, a code from Table 4.1, “OS Abstraction Layer Error Codes” is
returned.

Render

void HttpdGif87aRenderer::Render (HttpdRequest *p_request);

Given a request object, p_request, the contents of the canvas are sent back as the response.

No MIME header generation or any other response processing should be performed upon p_request
before this method is called.

Imaging Library

279

After this method returns no further actions of any kind should be performed on the request object.

280

Chapter 12. Web Sockets

Introduction
The WebSocket protocol is an extension to HTTP that provides a bidirectional communications path
between an HTTP client and Seminole. WebSockets avoid the overhead of repeated socket connections
and allow for long-term data transfer that HTTP does not.

An important thing to keep in mind is that many browser implementations of WebSockets do not implement
HTTP authentication even though the WebSockets protocol supports it. Therefore it may be necessary to
implement authentication using WebSockets messages or via HttpdSessionManager.

Each WebSocket connection also consumes a worker thread. It may also be necessary for applications
to ration the number of socket connections open at any one time to prevent other HTTP requests from
starvation. In fact the number of WebSocket connections can be artificially restricted by the session limit
of HttpdSessionManager.

HttpdWebSocket Reference

Introduction
The HttpdWebSocket class implements an active WebSockets (RFC 6455) connection. In addition this
class provides static methods for the detection and establishment of WebSocket connections.

Messages are represented with the following structure:

 struct Message
 {
 HttpdUint8 mMessage;
 void *mpBuffer;
 size_t mSize;
 };

The mMessage is the type associated with the frame. The WebSockets protocol defines two frame types:

HTTPD_WS_TEXT_FRAME (UTF-8)
HTTPD_WS_BINARY_FRAME

Public Methods

IsRequest

bool HttpdWebSocket::IsRequest (HttpdRequest *p_request);

This method may be called in the Handle method of an HttpdHandler subclass to determine if
p_request is a request to establish a web socket connection.

If a web socket connection should be established then true is returned. Otherwise false is returned.

Web Sockets

281

Connect

bool HttpdWebSocket::Connect (HttpdRequest *p_request, HttpdWebSocket
&socket);

If p_request is a web socket request (IsRequest returned true) this method attempts to connect to the
far end. If successful socket may then be used to perform I/O. If unsuccessful then no further processing
should be done on p_request and true should be returned from Handle.

This method returns true upon success or false upon failure.

Setup

bool HttpdWebSocket::Setup (HttpdRequest *p_request, HttpdWebSocket
&socket);

If p_request is a web socket request and the connection can be established then true is returned and
socket must eventually be closed.

In the event of failure false is returned and the HttpdHandler::Handle method must perform no
further processing and return true.

Close

void HttpdWebSocket::Close (void);

This method closes a websocket connection.

SetMaxRxSize

void HttpdWebSocket::SetMaxRxSize (size_t max_msg_size);

To prevent clients from consuming excessive amounts of memory the maximum message size received
by a socket may be set using this method. If a message is received that is larger than the maximum size
then the connection is severed.

The default maximum message size is the largest value that size_t can represent.

Send

int HttpdWebSocket::Send (const Message &msg);

This method sends the message to the peer.

Upon success, 0 is returned; otherwise a system dependent error value is
returned (see Table 4.1, “OS Abstraction Layer Error Codes”). Additionally
HttpdWebSocket::HTTPD_WS_CONNECTION_CLOSED is returned if the socket is closed for
whatever reason.

Received

int HttpdWebSocket::Received (Message &msg, unsigned int timeout);

Wait for a message to be transmitted by the far end or for timeout seconds to elapse with no received
message. If a message is successfully received then the fields of msg are filled in and 0 is returned.

Web Sockets

282

After this method returns the message buffer may be used (and even written to) until Finish is called
with the message. Until Finish is called no further calls to Received should be made.

However it is possible to call Send prior to calling Finish. In fact it is posisble to call Send with
the message structure (and buffer) that was recieved. Because the message buffer can be written to the
responses to the client can be a modified version of the request message.

Upon success, 0 is returned; otherwise a system dependent error value is
returned (see Table 4.1, “OS Abstraction Layer Error Codes”). Additionally
HttpdWebSocket::HTTPD_WS_CONNECTION_CLOSED is returned if the socket is closed
for whatever reason. If no message is received within the timeout period then
HttpdOpSys::ERR_NOTREADY is returned.

Normally code should not attempt to retry receiving a message if an error is returned. An exception to this
rule is if ERR_NOTREADY is returned.

Code that uses HttpdWebSocket objects should keep in mind that even in a transmit-only sitation this
method should be called periodically to ensure that the connection is properly maintained (i.e. ping frames
are acknowledged) and disconnects are detected.

Received (multiple wait version)

int HttpdWebSocket::Received (Message &msg, unsigned int timeout,
HttpdSocketWaitHandle wait_for);

This method is similar to the version defined above that does not include the wait_for parameter.
Additionally this version is only available if the portability layer supports multiple-wait socket reception
(HAVE_SOCK_WAIT is defined as 1).

This version waits either for a message to be received from the peer, for the specified timeout to occur, or
for the platform specific signaling mechanism referenced by wait_for to be signaled. The latter results
in a return of HttpdOpSys::ERR_NOTREADY to be returned.

Finish

virtual void HttpdWebSocket::Finish (const Message &msg);

Complete message reception and release any resources held by msg. This method should be called on
messages obtained by calling Received.

Protected Methods

UnhandledFrame

virtual bool HttpdWebSocket::UnhandledFrame (Message &msg, HttpdUint8
opcode, bool fin, int &rc);

This method is called when a frame is received with an unrecognized OPCODE field. When called the
opcode parameter is the value of the 4-bit opcode field in the received frame. The fin parameter is set
to true if the FIN bit is set in the frame. Finally the msg structure contains a valid size and buffer pointer
for the received frame.

If this method returns false then the frame is dropped and frame reception begins again. If true is returned
then rc is returned to the caller of Received.

Web Sockets

283

It is expected that if the frame is to be handled gracefully the Finish method is called on msg.

This implementation simply causes the Received method to return
HttpdOpSys::ERR_BADFORMAT in the event of an unrecognized opcode.

Fragment

virtual bool HttpdWebSocket::Fragment (Message &msg, HttpdUint8 opcode,
bool fin, int &rc);

This method handles fragment reassembly. If a data frame with the FIN bit clear or a continuation frame is
received from the far end it is routed to this method. This method then stores the fragment in a reassembly
buffer. The opcode parameter is the value of the 4-bit opcode field in the received frame. The fin
parameter is set to true if the FIN bit is set in the frame. Finally the msg structure contains a valid size
and buffer pointer for the received frame.

If this method returns false then the frame is dropped and frame reception begins again. If true is returned
then rc is returned to the caller of Received.

It is expected that this method also removes the message bytes from the protected mFifo member after
processing. For example:

mFifo.Consume(msg.mSize);

In the event that the client wants to send large messages that can not be buffered in the memory of the
target this method may be overridden to process fragments on the fly.

If this method is subclassed to support special fragment processing it is important to remember that frames
with an opcode of HTTPD_WS_TEXT_FRAME must contain UTF-8 encoded data. It is possible that an
encoded character may straddle two frames and this needs to be accounted for.

284

Chapter 13. Endpoint Discovery
Introduction
Endpoint Location

Providing a web-based interface for a device is only useful if it can be easily found. With a multitude of
embedded devices all offering a web interface it can be difficult to find out what URL to go to.

Seminole provides two components to help solve this dilemma. One component, the discovery server, sits
alongside the webserver and uses multicast UDP to help users locate the webserver. The other component,
the discovery client, is either installed or downloaded (from a well-known site, such as a corporate website)
where the web browser runs.

When the discovery client is invoked it will attempt to find all of the reachable discovery servers on a
given network that match a set of criteria. In addition to the URL other small bits of information can be
transmitted from the the server to the client. This allows the discovery mechanism to also act as an overall
status display for all the nodes in the network.

The Discovery Server
The discovery server (HttpdDiscoveryServer) executes on its own thread and does not impact the
processing of HTTP requests in any way. The discovery server does associate with an instance of Httpd
to derive the target URL.

A small structure must be provided to the server that describes the class of device, any name-value
parameters to report back and the network parameters. A default set of network parameters is provided
that should be used in most cases.

Several methods of HttpdDiscoveryServer may be overridden in a subclass for added functionality.
The most important of these, BuildResponse can be used to send real-time status data about this
endpoint for the client to display. A good example of this would be if any faults are present, security alerts,
or even environmental conditions (i.e. temperature, power supply levels, etc.).

The Discovery Client
The included discovery client is written in the Java programming language so that it can be run on a wide
variety of client systems (we hope). It runs as an applet within a web browser. This allows it to open a
connection to the located in the user's preferred browser.

The client should require only a few configuration parameters in an HTML document for configuration
and some way of delivering the client to where it is needed. One old fashioned approach to delivering the
client is to package the files on a CD-ROM. Another more modern approach is to delivery the client via
a well-known web server. It is also possible to serve the discovery client right from an embedded device
using Seminole although this implies that the URL for at least one device is well known.

The Java Discovery Client
Compiling

Compiling the Java discovery client requires an operating JDK in your current path. As with all other
Seminole components the build system is capable of building the client automatically although it is not

Endpoint Discovery

285

built as part of the default build procedure. Instead the discovery_client target must be used. For
example:

 $./buildit ports/PORTFILE discovery_client

If all goes well the discovery client (well the JAR file) is named built/PORTFILE/lib/
Discovery.jar This file can be combined with some instructional HTML that launches it and deployed
to wherever it is needed.

Due to the Java security model it is necessary that if the client is delivered over an untrusted source (HTTP
for example) that it be signed. Signing the JAR file requires that a public key be generated and given a
name. Once the key is created it can be signed by setting the JAVA_SIGN_KEY Perl variable in your
build file to the alias given to your key.

There are several ways to create the key but the easiest is using the keytool command. There are two steps
to making this key. The first command is used to generate the key. The second signs the key with itself.
It is also possible to sign the key via a trusted third party.

It is also important to specify the validity (in days) of the key. To avoid repeatedly having to re-sign the
applet it is a good idea to make the key last a long time. Of course this has security implications and the
security conscious should weigh their options.

To get started generating a key named MyCompany use the following commands:

 $ keytool -genkey -validity 365 -alias MyCompany
 $ keytool -selfcert -validity 365 -alias MyCompany

Once the keys are setup the discovery client can be cleaned by “building” the discovery_clean target:

 $./buildit ports/PORTFILE discovery_clean

After cleaning the client can then be re-built at described above.

Instructional HTML
In order to properly execute the JAR an HTML document must be created to launch the applet. This is
also a terrific place to include things like product setup instructions, troubleshooting guides, and technical
support contacts. The minimal content required to run the client is an APPLET tag. For example:

 <html>
 <head><title>Active Frobinator 2000's</title>
 <body>
 <applet
 code="gladesoft.seminole.discovery.DiscoveryApplet"
 archive="Discovery.jar"
 height=420 width=340>
 <param name="discovery.silence-timeout-url" value="none_found.html">
 </applet>
 </body>
 </html>

Endpoint Discovery

286

The parameter that is set within the APPLET tag, discovery.silence-timeout-url is only one
of many that can be set to control the appearance and behavior of the client. Almost all of the parameters
have reasonable defaults if not specified.

Note

All parameters used by the discovery client are prefixed with discovery.. Any further
references to the parameters imply this prefix.

Some parameters are not configurable at runtime and must be changed by recompiling the applet. Most of
these hard-coded constants as well as the defaults are in the DiscoveryConfiguration class. The
most important parameter is TIME_INTERVAL. This is the number of milliseconds an operation cycle of
the client takes. The default value is 100ms. Other parameters are based on these units.

Parameters that specify fonts do so in a standard way. They consist of three fields that are comma separated.
The first field is the name of the font (as seen by the JRE). The second parameter is one or more of the
following attributes combined with + characters:

• bold - Renders the font in bold.

• italic - Renders the font in italics.

• null - Ignored. Useful to signify no attributes.

The final field is the point size of the font. So a font specification may look like this:

 SansSerif,bold,14

Colors also are specified in a standard way. A color is composed of red, gree, and blue values (ranging
from 0 to 1) separated by commas. An optional alpha component (also in the range from 0 to 1) may
follow the green value.

Table 13.1. Discovery Client Parameters

Option Meaning Default Value

rx-port This is the port to listen on
for beacons from the server. It
should match the configuration of
the HttpdDiscoveryServer
instance.

1175

tx-port This is the port to send
discovery requests to the server. It
should match the configuration of
the HttpdDiscoveryServer
instance.

1176

broadcast This is the addresses on
which discovery requests are
sent. It should be the
multicast group address that the
HttpdDisocveryServer is
configured to listen on. Multiple

238.17.40.9,ff05::1:1174

Endpoint Discovery

287

Option Meaning Default Value

addresses may be specified by
separating them with commas.

classes This is the list of device classes to
allow through. Every instance of
HttpdDiscoveryServer has
a list of “classes” that describe the
device. If this parameter is present
then it is a comma separated list of
device classes to display. Only if
there is an intersection in the two
lists is the endpoint displayed.

None. Not specifying this
parameter implies no filtering.

allowed-schemes This parameter is a comma
separated list of URL “schemes”
without the :// portion that
are displayable. Discovery servers
can provide the scheme used to
access them. However this may be
an untrustworthy source. As such
this parameter can be used to filter
out unwanted protocols.

http,https

bind This parameter allows the socket
to be bound to a particular
interface address.

There is no default. When this
parameter is not specified the
socket is bound to the wildcard
interface address.

max-age This parameter controls the
number of time units that
an endpoint will remain in
the list without receiving a
beacon from the discovery server.
Setting this value too low
means that in heavy packet
loss situations endpoints may
disappear prematurely. Setting
this value too high means that if
an endpoint is removed from the
network it will remain in the list
way too long.

20 time interval units

send-pacing This parameter controls how
often probe packets are sent. It
should be smaller than max-age.
However setting this parameter
too high will result in longer
delays for a new node to display.
Setting this parameter lower
increases network traffic.

10 time interval units

view-in-place This setting determines if the
selected endpoint should be
displayed in the same browser
window (for values of on, true,
or 1) or in a separate window

true

Endpoint Discovery

288

Option Meaning Default Value

(for values of off, false,
or 0). Some browsers have
security implications with regards
to opening new windows.

For maximum reliability and ease
of use this option should probably
be set to true. However if
multiple devices are typical then
you may wish to consider setting
this value to false.

max-silence If no endpoint is seen by this
many time units the client will
navigate to the URL specified
by the silence-timeout-
url parameter. This is useful to
redirect to a “debugging” page to
help the user figure out why no
endpoints were seen.

10 time interval units

silence-timeout-url This is the URL to navigate to
if no endpoint is found in max-
silence time units.

If this parameter is not specified
then this feature is disabled.

load-fail-url The loading of the applet
can fail for a variety of
reasons (for example lack of
permission or an incompatible
runtime environment). In the
event this happens the client will
attempt to navigate to this URL
where instructions to remedy the
situation or discover the endpoint
manually may be found.

If this parameter is not specified
then this feature is disabled.

url-font This value sets the font a
discovered URL is displayed with.

Monospaced,bold,16

detail-label-font This value sets the font a for an
attribute label.

SansSerif,bold,12

detail-value-font This value sets the font a for an
attribute value.

SansSerif,null,12

bg-color This value sets the background
color for a discovered endpoint.

White

highlight-bg-color This value sets the background
color for a discovered endpoint
that has been selected by the user.

0.47,0.94,0.47 (a light
green)

url-color This value sets the background
color for the displayed URL.

Blue

attr-label-color This value sets the color that the
attribute label text is drawn in.

Black

Endpoint Discovery

289

Option Meaning Default Value

attr-color This value sets the color that the
attribute value text is drawn in.

Gray

attr-label-color-hl This value sets the color that
highlighted attribute label text is
drawn in.

Orange

attr-color-hl This value sets the color that
highlighted attribute value text is
drawn in.

Orange

border-color This value sets the color that
the border around a discovered
endpoint is drawn in.

Black

attr-order This value sets the order in
which attributes are displayed.
See below for further details.

descr

ep-sort This value is an optional specifier
for how to sort the displayed
endpoints. See below for further
details.

time

enable-icons If enabled then an optional
icon will be displayed for each
discovered endpoint (if the server
provides one). Otherwise icons
from the server are ignored.

true

max-icon-width Specifies the maximum icon
width allowed before an icon
is scaled. The value may be
specified as a percentage of the
available area if suffixed by a % or
an absolute size in pixels.

10%

max-icon-height Specifies the maixmum icon
height allows before an icon
is scaled. The value may be
specified as a percentage of the
available area if suffixed by a % or
an absolute size in pixels.

30%

min-audio-time Specifies the minimum amount
of time (in milliseconds) between
audio notifications. In order
to prevent repeated audio
notifications this value can be set
to ignore audio notifications if
they are close together (timewise).
Setting this parameter to 0 will
disable audio cues.

30%

string-file If specified this value references a
properties file to use for localized
strings. Setting this avoids using
the Java ResourceBundle

Not set

Endpoint Discovery

290

Option Meaning Default Value

class which often requests
many non-existant files. For
example setting this to /
res.properties will select
the default properties file at the
root of the JAR.

string-url If specified this value is a URL
relative to the document base of a
properties file to use for localized
strings.

Not set

By default the client is built in “restricted” mode. This disables the effect of the broadcast,
bind, rx-port, and tx-port parameters. Normally these should always be left at the defaults for
security reasons. However, for debugging or special deployments the constant RESTRICTED, defined
in DiscoveryConfiguration.java may be set to false to enable the functionality of these
parameters.

Attributes
Each endpoint can display a small set of associated data items along with its URL. Each of these data
items has an internal name that the client and server use to identify an attribute. The client also associates
a “display name” along with each attribute that is shown to the user.

The attr-order parameter specifies the internal name of all possible attributes as well as the order
in which to display them. It is okay to specify a display name that is not received from the server in the
attr-order parameter, it will simply be ignored. At a minimum servers should send an attribute called
descr that is a brief description of the endpoint.

Unlike other labels, the displayable string for the descr attribute is automatically defined to display
“Description”. Other attribute display text can be set by defining specially named parameters. For example:

 <param name="discovery.label-attr-vers" value="Version">

The attribute above configures the client to display the string Version as the label for a parameter of
vers. Any attribute name mentioned in attr-order should have a translation entry as in the above
example.

Formatting Attributes
There are also a number of parameters that can affect the formatting of the attribute values. Some of these
parameters perform string manipulations while others work on attributes that are textual representations
of numbers. The formatting is done using the classes in the java.text package that provides locale-
specific formatting. Therefore it is not necessary for a discovery server to attempt complex formatting.

Table 13.2. Attribute Formatting Parameters

Option Description

format-attr-trim-name If this parameter is true then whitespace is
removed from the front and the back of attribute
name.

Endpoint Discovery

291

Option Description

format-attr-lowcase-name If this parameter is true then the value of attribute
name is lowercased.

format-attr-lowcase-name If this parameter is true then the value of attribute
name is lowercased.

format-attr-type-name This parameter determines how attribute name is
to be interpreted. If this parameter is number then
the value is formatted as a localized number. If
this parameter is percentage then the value is
formatted as a percentage (scaled by 100).

format-attr-integer-name If this parameter is true and the value is to
formatted as a number then the value is treated as a
signed number rather than a floating-point value.

format-attr-scale-name If the formatting type is either number or
percentage then the value of the attribute is
multiplied by this value. For non-integer values this
may be a fractional value that can be used to scale
down the provided value.

format-attr-bias-name If the formatting type is either number or
percentage then this value is added to the value
of the attribute. For non-integer values this may be
a fractional value that can be used to scale down the
provided value.

format-attr-maxfrac-name If the formatting type is either number
or percentage and this parameter is
present the maximum number of fractional
digits is set to its value. See the Java
NumberFormat.setMaximumFractionDigits
documentation for details.

format-attr-minfrac-name If the formatting type is either number
or percentage and this parameter is
present the minimum number of fractional
digits is set to its value. See the Java
NumberFormat.setMinimumFractionDigits
documentation for details.

format-attr-maxint-name If the formatting type is either number or
percentage and this parameter is present
the maximum number of whole number
digits is set to its value. See the Java
NumberFormat.setMaximumIntegerDigits
documentation for details.

format-attr-minint-name If the formatting type is either number or
percentage and this parameter is present
the minimum number of whole number
digits is set to its value. See the Java
NumberFormat.setMinimumIntegerDigits
documentation for details.

format-attr-suffix-name If the formatting type is either number or
percentage and this parameter is present then

Endpoint Discovery

292

Option Description

the value of this parameter is used to construct a
ChoiceFormat object to format a suffix for the
numeric attribute value. See the Java documentation
for ChoiceFormat for details on the possible
values of this parameter.

format-attr-map-name If present this parameter allows the value from
the server to be mapped to a different value. The
map is parsed using the Java StreamTokenizer;
this allows character quoting and escaping.
The format of this parameter is a series of
name-value pairs. For example if the value
of this parameter is critical="Critical
Alarm\nImmediate Attention
Needed",warning="Warnings present"
the values critical and warning from the
discovery server will be mapped to the more verbose
values.

Sorting Endpoints
By default endpoints are displayed with the most newly discovered endpoint on top. The sort order can
be customized in the event many endpoints are expected. In fact multiple sort orders can be defined and
the user can select amongst them.

Sort orders are specified with a simple specification string. Multiple sort terms can be specified, separated
with commas. Endpoints are sorted according to the terms from left (most general sorting) to right (most
specific sorting).

Attributes may be sorted according to the type of data they carry. For example to sort the list of endpoints
based upon the descr field as a string followed by discovery time use the following:

 <param name="discovery.ep-sort" value="string:descr,time">

The sort specifier time is used to sort by the discovery time. The specifier string sorts according to
the current locale of the client. Any specifier can have its sort ordering inverted by placing a ! or ~ in
front of it. For example to sort the the description in the opposite direction but the same direction for the
discovery time use:

 <param name="discovery.ep-sort" value="!string:descr,time">

The difference between ! or ~ is subtle and has to do with when the attributes are not present in endpoints.
By default endpoints without the attribute are considered to be after all of the sorted records. In the case
of ! the ordering of all comparisons is reversed. This results in endpoints without the attribute coming
first. If ~ is specified then only the comparisons for records with the attribute is reversed. This results in
endpoints without the attribute remaining at the end of the sort order.

For attributes that are numeric values you can sort using a specifier of double. For example to sort based
upon the value of an attribute called temperature use:

Endpoint Discovery

293

 <param name="discovery.ep-sort" value="double:temperature">

Commonly attributes are used to specify certain device states as a string that is a set of possible
enumerations. For these cases an arbitrary set of strings can specify a particular ordering. For example
assume a device can send a state of critical, warning, maintenance, or operating. We would
like to see them in that order so that devices needing attention appear on top. We could do this using the
enum sort specifier like this:

 <param name="discovery.ep-sort"
 value="enum:state:critical|warning|maintenance|operating">

In the previous examples we have been setting the parameter ep-sort to our sort specification. But
what if you wanted multiple sort specifications and allow the user to select through them. In fact all of
the examples above may be desirable in certain cases and we should really let the user choose what they
want to see.

If we don't specify ep-sort but instead specify a list of sorts (as shown below) the user will be presented
with a selection box of all the possible sorting options.

 <param name="discovery.ep-sort.0"
 value="Newest::time">
 <param name="discovery.ep-sort.1"
 value="*By Status::enum:state:critical|warning|maintenance|operating">
 <param name="discovery.ep-sort.2"
 value="By Temperature::double:temperature,time">

In the example above the By Status configuration is selected by default because it begins with an
asterisk. The display names are shown and the associated with the sort specifications that follow them.

Endpoint Icons
The discovery server can optionally provide a pointer to an icon that the Java client will display. The icon
may either be served up by the instance of Seminole running on the endpoint or included in the JAR file.
For security reasons an arbitrary URL is not allowed as this could potentially allow a malicious device to
attempt a form of cross-site scripting attack.

In order to display an icon the discovery server must publish two parameters:

• icon_loc specifies the location of the icon. It can either be server to specify that the icon is on the
discovered webserver or resource to indicate that the icon is a resource in the JAR. Alternatively,
icon_loc can be url to refer to a URL from the configuration.

• icon_file specifies the path (if icon_loc is server) or the resource name (if icon_loc is
resource).

If icon_loc is url and a configuration parameter exists by the name of icon-url-icon_fn then
the value of that parameter is used as the URL for the icon. Additionally if the attribute icon_name is
present it is considered to be an additional path component appended to the configured URL.

Endpoint Discovery

294

Class Filters
In some instances it may be desirable to allow a user to select which class of devices they are discovering.
By default filtering can be set with the classes parameter. Rather than setting this parameter a list of
class filters can be created that the user can select at runtime.

Creating a filter list involves two things: A user visible name and the list of class names to filter on. Each
of these are specified as parameters with numbered names. For example, let us consider three possible
filtered views for a security system: Cameras, door and/or window switches, and motion sensors. We could
define these filters with the following parameters:

 <param name="discovery.classes.cameras"
 value="cams">
 <param name="discovery.classes.switches"
 value="door-switches,window-switches">
 <param name="discovery.classes.motion"
 value="motion-sensors">
 <param name="discovery.filter.0"
 value="cameras::Video Cameras">
 <param name="discovery.filter.1"
 value="switches::Intrusion Switches">
 <param name="discovery.filter.2"
 value="*motion::Motion Sensors">

The list of classes for a particular filter is given a name and the list of device class names (as configured
in the discovery server) are assigned to that name. In the example above we see that the switches filter
will find devices that belong to either the door-switches or window-switches device classes.

The list of selectable filters is defined with the discovery.filter.number parameters. The name
of the filter set is followed by :: and the display name of the filter. The filters are displayed to the user in
numerical order. The filter with the name preceeded by an asterisk is the filter selected by default.

Change Highlighting
If a discovered device is displaying important statistics about itself it may be desirable to briefly highlight
changes in the display so that they catch the user's eye. By default this feature is off but it can easily be
turned via a configuration parameter: change-highlight-time

This parameter specifies the number of milliseconds that a changed attribute is to remain
highlighted for. It is important to keep in mind that this interval is processed only in multiples of
DiscoveryConfiguration.AGE_PACING; by default 1000ms.

Setting this parameter to 0 or not defining it disables change highlighting.

HttpdDiscoveryServer Reference

Introduction
HttpdDiscoveryServer implements the server side of the Seminole discovery protocol. The server
can be automatically found by discovery clients (such as the Java Discovery Client).

Endpoint Discovery

295

The server is also capable of sending along a set of named attributes. A static list can be provided to the
server at creation time or the HttpdDiscoveryServer can be subclassed to allow the transmission
of dynamic data.

Note

The HttpdDiscoveryServer class is only available if the portability layer provides the
HAVE_UDP_SOCKETS feature.

Configuration Structures
The HttpdDiscoveryServer class requires several configuration structures.
HttpdDiscoveryServer includes reasonable defaults for some of these strucutres. The figure below
shows an overview of how the configuration structures are arranged:

HttpdDiscoveryServer

Config

descr

f irmware_ver v1.2.17

FridgeCam 2000

Array of HttpdPair

video_camera
household_appliance
NULL

Array of const char *

Network Configurat ion
Device Classes
Constant Attributes

NetworkConfig
(mDefaultNetwork shown)

TX Port
RX Port
Socket Opt ions
Broadcast Address
Buffer Size
Broadcast Interval

1175
1176

238.17.40.9
1380
30s

mcast:238.17.40.9
NULL

Array of const char *

The top-level configuration structure points to three different structures:

 struct Config
 {
 const NetworkConfig *mpNetwork;
 const char *const *mppDeviceClassList;
 size_t mParamCount;
 const HttpdPair *mpParams;
 };

The mpNetwork field points to the network configuration structure. The standard protocol configuration
is available as HttpdDiscoveryServer::mDefaultNetwork. The device class list is a set of
classes that best describe this device. This is most often used to to filter out unwanted endpoints in the
discovery client. The device class list should be a NULL-terminated list of device class names. If you are
unsure of what classes your device falls under then contact our support team. The mpParams pointer
points to an array of name-value pairs that are sent out with each request. If mParamCount is 0 then

Endpoint Discovery

296

mpParams may be NULL. Otherwise mParamCount should be the number of entries in the mpParams
array. The HTTPD_NUMELEM macro can be used if the compiler knows the size of the array.

It is normally not necessary to declare the NetworkConfig as the default is almost always appropriate.
The default network configuration, available as HttpdDiscoveryServer::mDefaultNetwork,
can be used for the Config structure above.

If INC_IPV6_SUPPORT is enabled then HttpdDiscoveryServer::mIPv6Network is available
for use on IPv6 enabled devices.

 struct NetworkConfig
 {
 HttpdIpPort mTxPort;
 HttpdIpPort mRxPort;
 const char *const *mppSocketOptions;
 const char *mpBroadcastAddress;
 size_t mBufferSize;
 unsigned int mBroadcastInterval;
 };

The mTxPort and mRxPort members control the ports the server uses. The mppSocketOptions is
passed to the HttpdUdpServerSocket encapsulated by the discovery server. The server transmits
beacons on mpBroadcastAddress. Both transmission and reception share a buffer of mBufferSize
bytes. Packets larger than this size can not be processed. The server will also send an unsolicited broadcast
every mBroadcastInterval milliseconds.

Public Methods

HttpdDiscoveryServer

HttpdDiscoveryServer::HttpdDiscoveryServer (Httpd *p_server, const
HttpdDiscoveryServer::Config *p_config);

This method constructs a discovery server and points it to the configuration described by p_config. The
server is associated with the webserver instance p_server.

This constructor only initializes the object. To allocate all of the required resources you must call the
Create method.

Note

The lifetime of the configuration structure and the webserver must be equal to or exceed the
lifetime of the HttpdDiscoveryServer object.

Create

int HttpdDiscoveryServer::Create (void);

This method must be called before the discovery server can be started. It allocates all of the necessary
resources for operation. These resources remain allocated until the discovery server object is destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Endpoint Discovery

297

Start

int HttpdDiscoveryServer::Start (void);

This method starts the discovery service.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Stop

void HttpdDiscoveryServer::Stop (void);

This method stops the discovery service.

Protected Methods
Request processing can be customized by subclassing HttpdDiscoveryServer and overriding the
protected methods. All of the context involving a particular request are bundled up into a Request
structure:

 struct Request
 {
 HttpdCgiParameter *mpQuery;
 HttpdIpAddress mInquisitorAddress;
 HttpdIpPort mInquisitorPort;
 };

The fields are as follows:

mpQuery This is the list of name/value pairs contained in the
request packet.

mInquisitorAddress This is the address of the host making the discovery
request. The reply will be sent back to this address.

mInquisitorPort This is the port of the host making the discovery
request.

ShouldHandleRequest

bool HttpdDiscoveryServer::ShouldHandleRequest (Request *p_request);

This method determines if an incoming request for discovery should be responded to. The list of device
classes in the request is intersected with the list of device classes in the server configuration. If the
intersection is not empty then this method returns true. Otherwise false is returned.

Subclasses may override this to change the response criteria.

BuildResponse

int HttpdDiscoveryServer::BuildResponse (HttpdCgiWriter *p_writer);

This method writes the response packet to be sent to the machine running the discovery client. In particular
name/value pairs are written to the p_writer object.

Endpoint Discovery

298

The default implementation adds the information necessary to derive the URL of the associated webserver
plus the static array of HttpdPair elements in the Config structure.

Subclasses may override this to add dynamic data to the response. Subclasses should call the base class
implementation and avoid writing an attribute named port or scheme to p_writer.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

PrepareResponse

int HttpdDiscoveryServer::PrepareResponse (void);

This method rebuilds the beacon packet if a rebuild is necessary (mRebuildResponse is true). It is
called before a response packet is sent.

Subclasses may override this if they intend to send dynamic data (in order to set mRebuildResponse
prior to calling the default implementation).

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

SendBeacon

bool HttpdDiscoveryServer::SendBeacon (void);

This method is called when the server needs to decide if a beacon should be sent for clients that can
collect them without solicitation. The default implementation simply calls BuildResponse to prepare
the response and returns true if building the response was successful.

Subclasses can use this method to inhibit the sending of the beacons if, for example, the device is not ready
for administration at this time.

Protected Data

mRebuildResponse

bool mRebuildResponse

This member is checked at the start of HttpdDiscoveryServer::PrepareResponse. If it is
true then the packet contents is rebuilt. Once built this member variable is set to false. This prevents
the CPU overhead of regenerating the packet each time it needs to be transmitted.

Subclasses of HttpdDiscoveryServer can override PrepareResponse and set this variable to
regenerate the packet. This is useful, for example, if it contains dynamic data (such as some form of device
status).

HttpdDiscoveryClient Reference

Introduction
The HttpdDiscoveryClient implements a native (i.e. non-Java) client for the discovery server
(HttpdDiscoveryServer). It manages a list of HttpdDiscoveredEndpoint objects where each
one represents a discovered endpoint on the network.

Endpoint Discovery

299

Both HttpdDiscoveryClient and HttpdDiscoveredEndpoint are abstract. A native
discovery client must subclass both of these classes and implement a user interface.

Note

The HttpdDiscoveryClient class is only available if the portability layer provides the
HAVE_UDP_SOCKETS feature.

Configuration Structures
The HttpdDiscoveryClient class requires a configuration structure, NetworkConfig,
to operate. Reasonable defaults for these parameters are provided by
HttpdDiscoveryClient::mDefaultNetwork. If INC_IPV6_SUPPORT is enabled then
HttpdDiscoveryClient::mIPv6Network is available for use on IPv6 enabled devices.

 struct NetworkConfig
 {
 HttpdIpPort mTxPort;
 HttpdIpPort mRxPort;
 const char *const *mppSocketOptions;
 const char *mpBroadcastAddress;
 size_t mBufferSize;
 unsigned int mBroadcastInterval;
 int mMaxTimeToLive;
 const char *const *mppClasses;
 };

The mTxPort and mRxPort members control the ports the client uses. They should be the reverse
of the server configuration. The mppSocketOptions is passed to the HttpdUdpServerSocket
encapsulated by the client. The client transmits beacons on mpBroadcastAddress. Both transmission
and reception share a buffer of mBufferSize bytes. Packets larger than this size can not be processed.
The client will also send an unsolicited broadcast every mBroadcastInterval. mMaxTimeToLive
controls, in seconds, the longest an endpoint is considered “alive” without any response from the
server. Finally, mppClasses is a NULL-terminated list of device classes that is to be queried for. If
mppClasses is NULL devices of all classes are discovered.

Public Methods

HttpdDiscoveryClient

HttpdDiscoveryClient::HttpdDiscoveryClient (const
HttpdDiscoveryClient::NetworkConfig *p_config);

This method constructs a discovery client and points it to the configuration described by p_config.

This constructor only initializes the object. To allocate all of the required resources you must call the
Create method.

Note

The lifetime of the configuration structure must be equal to or exceed the lifetime of the
HttpdDiscoveryClient object.

Endpoint Discovery

300

Create

int HttpdDiscoveryClient::Create (void);

This method must be called before the discovery client can be started. It allocates all of the necessary
resources for operation. These resources remain allocated until the discovery client object is destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Start

int HttpdDiscoveryClient::Start (void);

This method starts the discovery client.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Stop

void HttpdDiscoveryClient::Stop (void);

This method stops the discovery client.

Protected Methods

CreateEndpoint

HttpdDiscoveredEndpoint *HttpdDiscoveryClient::CreateEndpoint
(HttpdIpAddress addr, HttpdIpPort port, HttpdCgiParameter *&p_attr, bool
&free_addr);

This pure virtual method must be implemented by subclasses. This method should allocate
memory (using HttpdOpSys::Malloc) sufficiently large to hold the desired subclass of
HttpdDiscoveredEndpoint and construct the object.

If the object can not be allocated for any reason then NULL should be returned. Notice that p_attr and
free_addr are passed by reference. For efficiency these structures (the address and the attributes) may
be directly transferred to the endpoint. In this case the discovery client should not free them as it looses
ownership. To prevent the discovery client from freeing addr this method should set free_addr to
false. To avoid freeing the attribute list the method can simply point p_attr to NULL (or to a list of
nodes that should be freed).

A typical implementation of this method for the MyEndpoint class would be as follows:

 void *p_buffer;

 p_buffer = HttpdOpSys::Malloc(sizeof(MyEndpoint));
 if (httpd_rarely(p_buffer == NULL))
 return (NULL);

Endpoint Discovery

301

 HttpdCgiParameter *p_saved_attr = p_attr;
 p_attr = NULL;
 free_addr = false;

 return (new(p_buffer) MyEndpoint(this, p_saved_attr, addr, port));

Notice that the parameters passed to the MyEndpoint constructor above all fall through to the
HttpdDiscoveredEndpoint constructor.

DeleteEndpoint

void HttpdDiscoveryClient::DeleteEndpoint (HttpdDiscoveredEndpoint
*p_endpoint);

This pure virtual method is responsible for releasing an endpoint that has been created (via
CreateEndpoint) and displayed. The discovery client calls this method when p_endpoint is no
longer needed.

Implementations should clean up any display or mention of the endpoint and then delete p_endpoint.

Note

It is important to keep in mind that all objects created by the CreateEndpoint method
are destroyed by this method with one exception:

If the endpoint is never displayed (the Display method is never called) then the object is
simply deleted rather than being passed to this method.

PurgeEndpoint

void HttpdDiscoveryClient::PurgeEndpoint (HttpdDiscoveredEndpoint
*p_endpoint);

This method is called during shutdown of the client to remove endpoints. The default behavior, to simply
call DeleteEndpoint can be overridden by subclasses to perform a more efficient “mass delete.”

For example: Consider a GUI client where deleting the endpoint has significant cost in terms of updating
the display. This method could be overridden to avoid those updates if all the endpoints are being destroyed
anyhow.

HttpdDiscoveredEndpoint Reference

Introduction
The HttpdDiscoveryClient object represents each discovered endpoint with an instance of this
abstract base class. Pure virtual methods must be implemented in subclasses. A factory method must then
be provided in HttpdDiscoveryClient to create subclasses of HttpdDiscoveredEndpoint.

Note

This class is only available if the portability layer provides the HAVE_UDP_SOCKETS
feature.

Endpoint Discovery

302

Protected Methods

HttpdDiscoveredEndpoint

HttpdDiscoveredEndpoint::HttpdDiscoveredEndpoint (HttpdDiscoveryClient
*p_owner, HttpdCgiParameter *p_attr, HttpdIpAddress addr, HttpdIpPort
port);

This method constructs an endpoint object. The object is managed by p_owenr. The p_attr,
addr, and port parameters describe the endpoint. These parameters are provided to the
HttpdDiscoveryClient::CreateEndpoint method that is responsible for creating endpoint
instances.

Update

virtual void HttpdDiscoveredEndpoint::Update (void);

This pure virtual method is called when any characteristics of the endpoint have changed. Typically this
should result in refreshing the display of the endpoint.

It is important to realize that this method is called from a thread managed by the
HttpdDiscoveryClient. Synchronization between other components may be necessary.

Display

virtual void HttpdDiscoveredEndpoint::Display (void);

This pure virtual method is called when a newly discovered endpoint is created and ready for display.

It is important to realize that this method is called from a thread managed by the
HttpdDiscoveryClient. Synchronization between other components may be necessary.

~HttpdDiscoveredEndpoint

virtual HttpdDiscoveredEndpoint::~HttpdDiscoveredEndpoint (void);

The endpoint object is destructed when the endpoint is no longer discoverable. The destructor should
remove any display of the endpoint.

Protected Data Members

mpAttributes

 HttpdCgiParameter *mpAttributes;

This member holds a list of attributes from the endpoint. Some of the pairs in the list have a well defined
meaning (such as scheme and port). Other pairs (those that begin with a leading _) are used for internal
operation of the discovery service.

The endpoint is also free to put additional data describing it in various pairs. It is up to the client and server
to figure out the meaning of these pairs (typically based upon device class).

Endpoint Discovery

303

mpOwner

 HttpdDiscoveryClient *mpOwner;

This member holds a pointer to the discovery client that found (and is managing) this endpoint.

mpUrl

 char *mpUrl;

This member is a string containing the URL of the discovered endpoint. It should not be modified by
subclasses.

The Win32 Discovery Client
The Win32 discovery client uses the HttpdDiscoveryClient class to implement a discovery client
application. The user interface of the discovery client is based upon HTML and an embedded browser
object. The dynamic content is generated using the template engine.

This discovery client comes with full source code in src/discovery/client/win32. Almost all
of the behavior is configurable by changing templates and resource scripts. Little knowledge of the Win32
API is required to modify the appearance of the client.

Compiling
Compiling the discovery client can be done using any compiler capable of producing Win32 executables.
For Microsoft Visual C++ project and solution files are included. The project file (w32dsclnt.vcproj)
will automatically build the MSVC-DSCLNT port of Seminole.

For other compilers the client builds similar to any other Win32 application. The settings in the included
project file (described as follows) should be mimmicked for other compilers:

• The executable is linked statically. This helps ensure that the client runs on the widest range of systems
as possible.

• Links against the urlmon.lib, winmm.lib, and ws2_32.lib import libraries.

• Builds the content template using SCPG.

Configuring the Client
All of the “configurable” portions of the client are in src/discovery/client/win32/content.

The most likely change necessary to the client is to add additional attributes to the display. Each
endpoint is represented by a DIV HTML element. The body of that element is cleverly created by the
template engine. The template for the body is named src/discovery/client/win32/content/
endpoint.thtm. By default only a single attribute, descr (“description”) is supported. However
additional attributes can be added. Consider the fragment that displays the description:

Endpoint Discovery

304

<table class="epattrs">
%{if:attr-exists name="descr"}%
 <tr>
 <th>Description:</th>
 <td>%{eval:attr-val name="descr" quote="html"}%</td>
 </tr>
%{endif}%
</table>

As evident from above, the HttpdCgiSymbols class is used to expose the attributes to the template
with a prefix name of “attr”. Simply replicate the fragment producing the table row above for each attribute
desired along with the descriptive name heading.

The parameters of the client are kept in src/discovery/client/win32/content/
client.cfg. It is recommended that if you modify the parameters you change the value of the
CLIENT_PRODUCT macro to something that uniquely idenfities that set of parameters. Most of the
parameters are described by comments in this file.

305

Chapter 14. The Other Direction: An
HTTP Client
The HTTP Client

Introduction
Seminole includes a simple HTTP client package that shares code with the server component. The client
can be used for many things. For example a device could update its firmware in the background from
a public HTTP server. Even more amibitious, combined with the discovery service and XML parser, a
network of embedded devices could self-organize and communicate with one another using a form of RPC
over HTTP.

The client is similar in design to the server component: Functionality can be traded for resources via
compile-time options and settings. In fact many of the options that affect the server component (such as
XFER_BUF_SIZE) also affect the client.

Performing HTTP Transactions
There are three main objects involved in performing an HTTP request. The request object,
HttpdClientFetch contains all of the information specific to the particular HTTP resource being
requested. This object is submitted to an instance of HttpdClient. Instances of this class contain all of
the common resources required for performing HTTP requests. In most environments there is no need to
have more than a single instance of the client. However if complete isolation between requests is desired
then different requests can be directed to different client objects.

Once a request is processed the state of the transaction is represented by an instance of
HttpdClientTransfer. Unlike the HttpdClientFetch object the transfer object holds resources
needed only during the actual transfer. Instances of HttpdClientTransfer are created by the
HttpdClient object and passed into the various methods of the HttpdClientFetch object.

It is normally not necessary to subclass the HttpdClient or HttpdClientTransfer classes.
Application behavior is expected to be implemented in subclasses of HttpdClientFetch. In particular
the ResponseOk method of the fetch object is called to process the response body.

Because of the limited amount of storage on most embedded devices HTTP responses can be processed in
a “streamy” fashion. This is accomplished by subclassing HttpdClientFetch so that ResponseOk
processes the data from the HttpdOutboundTransfer in an application-specific manner.

HttpdClient Reference

Introduction
The HttpdClient class implements a complete environment for performing HTTP requests. Although
each HTTP transaction is self-contained it is expected that clients maintain a certain amount of state such
as cookies, persistent connections, and cached redirects.

It is normally expected that only one instance of this class be created for all HTTP client operations. If
it is of critical importance to isolate two different fetching environments then multiple instances of this
class may be created.

The Other Direction: An HTTP Client

306

Public Methods

Create

int HttpdClient::Create (void);

This method must be called before any fetching can be performed using this environment.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

SetSocketOptions

void HttpdClient::SetSocketOptions (const char *const *pp_options);

This method sets the platform-specific options used for socket connections.

SetCookieJarSize

void HttpdClient::SetCookieJarSize (size_t max_cookies);

This method sets the maximum number of cookies this client object will hold in its cookie jar.

Note

This method is only available if the INC_CLIENT_COOKIE_SUPPORT option is enabled.

SetProxyServer

void HttpdClient::SetProxyServer (const char *p_proxy_url);

This method configures the client to use a proxy server. The proxy server is specified in URL format.
The URL allows a proxy to be used via alternative transports (e.g. SSL). Additionally the authentication
information for the proxy may be part of the URL.

Note

This method is only available if the INC_CLIENT_PROXY_SUPPORT option is enabled.

NoProxyServer

void HttpdClient::NoProxyServer (void);

This method disables any prior use of a proxy server (configured via SetProxyServer).

Note

This method is only available if the INC_CLIENT_PROXY_SUPPORT option is enabled.

SetKeyRing

void HttpdClient::SetKeyRing (HttpdClientKeyRing *p_key_ring);

The Other Direction: An HTTP Client

307

This method configures the client to use a key ring object. If client authentication is supported
(INC_CLIENT_AUTH is non-zero) then a key ring object must be configured for the client before any
fetches may be performed. The key ring object is responsible for maintaing cached authentication data.
As such the key ring must have a lifetime that meets or exceeds the HttpdClient object. Additionally
the key ring must not be changed while any fetches are in progress.

Flush

void HttpdClient::Flush (void);

This method flushes all cached data (except data being used by fetch operations in progress). The memory
occupied by the cached data is released hence this method could be called to reduce memory pressure in
other components using HttpdOpSys::Malloc.

It may also be useful to call this method during any kind of major reconfiguration event (e.g. IP address
change) to avoid stale information from being used.

HttpdClientFetch Reference

Introduction
HttpdClientFetch objects represent a packaged request for an HTTP server. Instances of this object
are submitted to a HttpdClient object for processing.

Note

It is required that applications subclass HttpdClientFetch to provide handlers for server
responses.

Public Methods

HttpdClientFetch

HttpdClientFetch::HttpdClientFetch (HttpdClient &client);

The constructor creates the client fetch and associates it with a client context. The lifetime of client
must exceed the lifetime of this request object.

Fetch

int HttpdClientFetch::Fetch (const char *p_url, const char *p_method
= "GET");

This method performs a fetch using the associated client object. As the fetch progresses various protected
methods of this class are called in an event-driven fashion.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes”). Additionally, HTTP-client specific error codes, such as
HTTPD_ERR_TOO_MANY_REDIRECTS, may be returned.

MaxRetries

void HttpdClientFetch::MaxRetries (HttpdClientCounter v);

The Other Direction: An HTTP Client

308

This method sets the maximum number of retries due to transient errors before the fetch is no longer retried
by the client.

MaxRedirects

void HttpdClientFetch::MaxRedirects (HttpdClientCounter v);

This method sets the maximum number of redirects before the fetch is abandoned. This limit is in place to
prevent an infinite loop of redirects. The default value is normally sufficient and comes from the RFC.

MaxLoginAttempts

void HttpdClientFetch::MaxLoginAttempts (HttpdClientCounter v);

This method sets the maximum number of authorization challenges that are not unlocked before the fetch
is no longer retried by the client.

RetryDelay

void HttpdClientFetch::RetryDelay (unsigned long msec);

This method sets the delay time between retrying requests. The thread performing the fetch is suspended
for this time period to avoid excessive network traffic in the event of network failure.

BodySource

void HttpdClientFetch::BodySource (HttpdClientRequestBodySource
*p_source);

For HTTP methods where the request includes an entity body (e.g. POST) the body is provided by a class
that implements the HttpdClientRequestBodySource interface.

If p_source is NULL (the default value if this method is not called) then the request body comes from
a HttpdContentSink obtained via the RequestBodySink method.

To improve performance applications can implement the HttpdClientRequestBodySource
interface to allow the client to decide the best way to send the request body.

BodyContentType

void HttpdClientFetch::BodyContentType (const char *p_source);

For HTTP methods where the request includes an entity body (e.g. POST) this method sets the content
type of the request entity body.

RequestBodySink

HttpdContentSink &HttpdClientFetch::RequestBodySink (void);

If the request body source is NULL then this method may be called to obtain a sink object that can be
used to store the request body.

Note

If a request body source object is employed this method should not be called.

The Other Direction: An HTTP Client

309

Protected Methods

SendHeaders

int HttpdClientFetch::SendHeaders (HttpdClientTransfer &xfer);

This virtual method sends out the request headers for the request. Subclasses can override this virtual
method to add additional headers. It is recommended that subclasses call the base class method after the
custom headers are written.

This method returns 0 if successful or a a system dependent error value (see Table 4.1, “OS Abstraction
Layer Error Codes”).

ProcessResponse

int HttpdClientFetch::ProcessResponse (HttpdClientTransfer &xfer);

This virtual method examined the mStatus field of xfer to handle the appropriate response from the
server. The standard HTTP status codes are handled but this method may be overridden for additional
error logging or the handling of non-standard server responses.

This method returns 0 if successful or a a system dependent error value (see Table 4.1, “OS Abstraction
Layer Error Codes”).

ResponseOk

int HttpdClientFetch::ResponseOk (HttpdClientTransfer &xfer,
HttpdOutboundTransfer &body);

This pure virtual method must be implemented by subclasses. If a 200 response is returned by the server
this method is called. Of particular importance is the body parameter. This object can be used to process
the returned entity body.

This method returns 0 if successful or a a system dependent error value (see Table 4.1, “OS Abstraction
Layer Error Codes”).

HttpdClientRequestBodySource Reference

Introduction
The HttpdClientRequestBodySource interface is used to descibe the way that the request body
is submitted during a fetch.

Public Methods

Traits

virtual int HttpdClientRequestBodySource::Traits (void); const

This method should return a combination of zero or more of the following flags describing the request
body:

SRC_CHEAP This indicates that the generation of the request body
is “cheap.” A body is cheap to generate if little CPU

The Other Direction: An HTTP Client

310

time is needed to recreate it. The most obvious example
of this is a request body that is simply sitting around
in memory as a string. However depending on the
application other sources (e.g. HttpdXmlDomWriter)
may also be considered “cheap.”

SRC_SIZE_KNOWN This indicates that the size (in bytes) of the request body
is known. If this flag is set then the client will call the
TotalSize method to compute the size of the body.
Again a perfect example of this would be a a request body
that is a static string in memory.

SRC_LARGE_WRITES This indicates that the implementation of the Generate
method will perform mostly large writes. This is often set
because the content is buffered rather than assembled on
the fly. This flag should not be set if the request body is
assembled with many small writes (e.g. building strings
with HttpdWritable::Printf).

The default implementation returns 0. It is expected that implementations of this interface optimize
performance by returning the appropriate hints about their implementation.

TotalSize

virtual size_t HttpdClientRequestBodySource::TotalSize (void);

This method is only called by the client if the SRC_SIZE_KNOWN trait is present. When called it should
return the size (in bytes) of the entity body for the request.

Generate

virtual int HttpdClientRequestBodySource::Generate (HttpdWritable
*p_target);

This method is only called to generate the request body. It should write the request body to p_target. A
a system dependent error value should be returned (see Table 4.1, “OS Abstraction Layer Error Codes”).

Keep in mind that this method may be called multiple times by the client in the face of retries — especially
if the SRC_CHEAP trait is present.

HttpdClientBufferRequestBody Reference

Introduction
The HttpdClientBufferRequestBody class implements the
HttpdClientRequestBodySource interface for static, in-memory buffering. The advantage of
storing the request body in memory is efficiency. Although keep in mind that if it is impractical to store
the request body in memory (or that the request body be dynamically generated) then you should consider
creating a custom implementation of HttpdClientRequestBodySource rather than this helper
implementation.

Note

Only the methods in addition to those that are part of the abstract interface are documented
here.

The Other Direction: An HTTP Client

311

Public Methods

HttpdClientBufferRequestBody

HttpdClientBufferRequestBody::HttpdClientBufferRequestBody (const void
*p_data, size_t size);

All that is needed to construct a buffered request body is a pointer to the data (p_data) and the size (in
bytes) of the data (size).

HttpdClientKeyRing Reference

Introduction
An instance of HttpdClientKeyRing is used by the HttpdClient class to manage authentication
data. In particular it caches authentication data based upon client URL to avoid round-trips during repetitive
fetches.

This class may be subclassed to add support for additional authentication schemes or to obtain credentials
in a non-standard way.

Public Methods

HttpdClientKeyRing

HttpdClientKeyRing::HttpdClientKeyRing (size_t max_keys, long
max_key_age, int match_method = HTTPD_CLIENT_KEY_MATCH_PATH_SUBSET);

The constructor sizes the parameters of the key ring. The max_keys parameter controls the maximum
number of cached keys. Keys are expired in LRU order when the cache fills up. For security reasons a keys
should be periodically deleted after a certain amount of time. The max_key_age parameter controls the
maximum duration (in seconds) that a key can exist in the cache.

The final parameter controls what keys are applied to what requests. Setting this parameter is a balance
between security (preventing credentials leak out to a part of URL-space they shouldn't) versus efficiency
(avoiding round trips because credentials are already known).

match_method may be set to one of the following values:

HTTPD_CLIENT_KEY_MATCH_EXACT This is the most secure option. Every part of the URL
(even the query string) must match before credentials are
sent out.

HTTPD_CLIENT_KEY_MATCH_IGNORE_QUERY This is similar to the above option except that the query
string may be different. However the entire path (and host,
port, and scheme) must match before credentials are given
out.

HTTPD_CLIENT_KEY_MATCH_PATH_SUBSET This option (the default) is what is specified by the
RFC's: Paths that are “subsets” of the path (but with
matching host, port, and scheme) are given credentials.
The definition of a subset in this case ignores the final
component in a path specifier (assuming them to be
filenames within a directory tree).

The Other Direction: An HTTP Client

312

HTTPD_CLIENT_KEY_MATCH_IGNORE_PATH This is the least secure option. It requires only that the host,
scheme, and port match before credentials are given out.

Create

int HttpdClientKeyRing::Create (void);

This method must be called before the keyring is used. It creates the internal objects used by the ring.
Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Protected Methods

GetAuthority

int HttpdClientKeyRing::GetAuthority (HttpdClientFetch &fetch, const
char *p_header, const char *&p_authority);

This virtual method should return a pointer to the credentials needed for fetch. The WWW-
Authenticate header line for the selected authentication scheme is also provided.

If credentials are available then p_authority should point to the credentials in the format of
user:password.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes”). If the authority must be dynamically allocated then subclasses
may override FreeAuthority which the key ring will always call for all successful returns of
GetAuthority.

The default implementation of this method obtains the authority from the fetched URL - for example:

http://user:pass@host:port/path/to/resource

GetKey

int HttpdClientKeyRing::GetKey (HttpdClientFetch &fetch, const
HttpdMimeParser &mime, HttpdClientKey *&p_key);

This virtual method creates a key object for unlocking the fetch.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful the key object will have its Create method called and
it will be added to the key ring.

Subclasses may override this method to add additional calls to IsScheme to add support for alternative
authentication schemes.

IsScheme

const char *HttpdClientKeyRing::IsScheme (const HttpdMimeParser &mime,
const char *p_scheme, size_t scheme_len);

The Other Direction: An HTTP Client

313

This static method searches for WWW-Authenticate heads with the specified scheme. The
scheme_len parameter must be the length of the p_scheme string (not including the terminating null
character).

If the scheme is present in mime then a pointer to the additional arguments in MIME line is returned. If
the scheme is not offered then NULL is returned.

IsDefunct

bool HttpdClientKeyRing::IsDefunct (HttpdClientFetch &fetch, const
HttpdMimeParser &mime);

This virtual method determines if a key object should no longer be used. The key ring maintains the LRU
and aging properties. However this method may also cause a key to be removed from the cache by returning
true.

The default implementation expires keys that have failed to unlock a request. Subclasses may override this
method and return true in additional cases for added security.

314

Chapter 15. Integrating Seminole With
An Application
Porting and Integrating Seminole

Introduction
Seminole is usable as a standalone webserver, but its primary purpose is to serve as one component of a
whole embedded system. To that end, Seminole is provided with considerable support structure intended
to ease its integration into an existing project environment. In particular, Seminole has:

• A generalized, modular build system

• A clear separation between portable and non-portable code

• Controlled resource utilization

As a result of these attributes, implementors will hopefully have more time to spend on their real goals
rather than struggle with integration problems.

This section discusses the Seminole build system and portability layers in further detail.

Seminole compile-time parameters and options
For efficiency reasons many parameters are provided that control the various features of Seminole at
compile time. Some of these options enable and disable features. Others control limits or parameters of
normal operation. Options that enable and disable features typically begin with a INC_ prefix. Setting a
feature parameter to zero disables the feature and any non-zero value enables the feature.

These parameters are set when configuring the build system. All of these parameters have default values
that are a best guess of what an ideal deployment environment is like. When putting Seminole into
production it is important to review these parameters and adjust them accordingly.

• INC_QUEUED_HEADERS - This option enables support for queuing headers during the processing of
a request to be delievered to the client when the response is sent. The default is 1. Disabling this feature
results in a minor reduction in code size.

• INC_SORTED_HEADERS - This option causes the MIME parser to sort the headers. If the headers
are sorted they can be binary searched. The sorting is done using the qsort() library function. In
certain obscure cases (i.e. a large number of MIME headers) enabling this option may result in improved
performance. The default is 0.

• INC_OPTIONS_METHOD - This option enables support for the HTTPOPTIONS method. If this
feature is not required then disabling this option reduces code size. The default is 1.

• INC_REQUIRE_HOST_HEADER - This option enables validation of the HTTP/1.1 behavior that a
Host header must be specified. If strict validation is not required then disabling this option reduces
code size. The default is 0.

• INC_DYNAMIC_SERVER_NAME - This option makes the Httpd::ServerName method virtual
so subclasses can override it. By default the method is static for maximum efficiency. The default is 0.
Disabling this feature results in a minor reduction in code size and greater performance.

Integrating Seminole
With An Application

315

• INC_FAST_URI_DECODE - This option makes the UriDecode family of functions faster at the
expense of code size. The default is 0.

• INC_TRACING - This option enables a run-time debugging facility that traces various operations in
Seminole to help debugging during the integration phase. The default is 0.

• INC_XML_TRANSCODE_SUPPORT - This option enables character set transcoding and automatic
detection for the XML parser. Disabling this feature reduces code size and improves performance but
requires that all XML content submitted to the parser be encoded as UTF-8. The default is 1.

• INC_XML_NAMESPACES - This option enables namespace support for the XML parser. The default
is 1. Disabling this option results in a reduction of memory usage and code size.

• INC_XML_DOM_WRITE_CDATA - This option enables XML_OPT_USE_CDATA support in
HttpdXmlDomWriter. The default is 1. Disabling this option results in smaller code size.

• INC_WEBDAV_LOCKING - This option enables Class 2 support in HttpdWebDAVHandler. The
default is 1. Disabling this option results in smaller code size and reduced memory consumption.

• INC_WEBDAV_SHARED_LOCKS - This option enables shared locks for WebDAV. Shared
locks are useful in some distributed authoring scenarios. This option only has meaning if
INC_WEBDAV_LOCKING is enabled. The default is 1. Disabling this option results in slightly smaller
code size.

• INC_WEBDAV_TOKEN_TIMESTAMP - In an ideal world lock tokens are globally unique across all
time. Enabling this option adds a timestamp component to lock tokens. If the entropy source backing
HttpdOpSys::Entropy is strictly time based then enabling this option will not help. This option
can be disabled if the SESSION_NONCE_LEN parameter is sufficiently large. This option has no effect
unless INC_WEBDAV_LOCKING is enabled. Additionally this option also has no effect if the platform
abstraction layer does not provide a real-time clock (i.e. HTTPD_HAVE_CLOCK is 0). The default is 1.
Disabling this option gives a small reduction in code size and a minor increase in performance.

• INC_WEBDAV_QUOTAS - This open enables support for RFC 4331 (WebDAV Quotas). This symbol
has no effect unless INC_FILE_QUOTAS is enabled. The default is 1. Disabling this option gives a
small reduction in code size.

• INC_SHUTDOWN - This option includes the code for graceful shutdown, including the
Httpd::Stop method, socket force close logic, and memory cleanup logic. The default is 1.

• INC_WRITE_BATCHING - This option batches writes to the HTTP socket to avoid lots of small
packets. When enabled the HttpdBatchWriter is used to provide this behavior. It causes a small
increase in code size in exchange for increased network throughput and efficiency. The default is 1.

• INC_VERBOSE_RESPONSES - Disabling this option removes details from the HTTP responses.
Normally the HTTP response includes a description of the response and (for error responses) a body
indicating the error. Disabling this option makes the responses terse to save code space. The default is 1.

• INC_MODIFIED_SINCE - Enabling this entry adds support for the If-Modified-Since: header.
The default is 1.

• INC_UNMODIFIED_SINCE - Enabling this entry adds support for the If-Unmodified-Since:
header. The default is 1.

• INC_SIMPLE_MODIFIED_SINCE - When processing conditional headers with timestamps the
provided date must be parsed to implement the correct semantics. However a possible shortcut is to
simply do an exact string comparison on the provided date with the last modified date. This results in
smaller code size in exchange for less protocol conformance. Enabling this option enables this shortcut.
The default is 0.

Integrating Seminole
With An Application

316

• INC_BYTERANGE_SUPPORT - Define this entry to support partial content fetching (byte ranges)
using the Range: header. The default is 1.

• INC_PERSISTENT_CONN - Enable this option to include support for persistent connections. Persistent
connections avoid TCP connection setup overhead for multiple requests. It is especially useful for pages
with many images or references to other objects. It results in a code size increase. The default value is 1.

• INC_OVERLOAD_PROTECTION - This option enables the overload protection feature of Seminole.
This option only takes effect if INC_PERSISTENT_CONN is enabled and the platform has threads
(HTTPD_HAVE_THREADS). The default value is 1 on platforms where this capability is supported.

• INC_ABORT_IDLE_SHUTDOWN - This option enables Seminole to close idle connections
during a graceful shutdown. This option can only be enabled if INC_SHUTDOWN and
INC_OVERLOAD_PROTECTION are enabled. The default value is 1 on platforms where this
capability is supported.

• INC_ETAGS - ETags are a form of unique identifiers for HTTP objects. They can be used to assist in
caching and conditional fetching. If it is expected that most browsers will support ETags they can be
used in place of If-Modified-Since: header support. The default value is 1.

• INC_FILE_QUOTAS - This enables support for quota information in the HttpdFileSystem class.
The default value is 1. Disabling this option if it is not needed will result in a minor code size reduction.

• INC_DIRECTORY_LISTS - Enable this option when directory indexing support is desired. This feature
is typically only used for debugging or testing configurations and generally disabled for production use.
Enabling this option results in additional code in the HttpdFileHandler class. The default is 1.

• INC_LZRW1KH_COMPRESSION - Enable this option when the LZRW1/KH (codepoint 1)
compression algorithm is to be supported by the ROM file system. This compression engine uses very
little memory and has a very small code footprint. It also performs very well and results in moderate
space savings. The default is 1.

• INC_LZJB_COMPRESSION - Enable this option when the LZJB (codepoint 3) compression algorithm
is to be supported by the ROM file system. This compression engine is very fast and efficient. The
decompression process is very fast for the savings it gets. The default is 1.

• INC_LZARI_COMPRESSION - This option includes support for the LZARI (codepoint 2)
compression algorithm is to be supported by the ROM file system. This compression engine requires
more resources than the LZRW1/KH algorithm but may result in higher compression ratios. The default
is 1.

• INC_ROM_DIRECTORIES - If this option is enabled runtime support for directory indexes is enabled
in HttpdRomFileSystem. Even with this feature enabled, SCPG must also be told to generate
directory objects. The default is 1.

• INC_ROM_SAFETY_CHECKS - If this option is enabled then the HttpdRomFileSystem package
does more stringent checking of the content data. In most embedded systems this option can be safely
turned off to reduce code size. The content data in these systems is usually stored in the same flash
device as the code and is checksummed during startup. However in more complex systems where content
packages can be loaded from other sources (such as disk files or plug-in modules) then it is wise to
enable this option. The default value is 1.

• INC_ROM_ATTRIBUTES - If this option is enabled then the HttpdRomFileSystem will support
per-file attributes. With this option disabled the code size impact for the ROM filesystem may be smaller.
This is because the attributes are encoded using URL encoding and enabling attributes will link in the
CGI parser.

Integrating Seminole
With An Application

317

• INC_ROM_FAST_COMPRESSED_PUSH - Enable optimized pushing of compressed content stored
in a HttpdRomFileSystem. Disabling this option results in reduced performance at the expense of
code size. The default value is 1.

• INC_ROM_FAST_RANGE_PUSH - This option includes an optimization that improves the handling
of byte ranges for uncompressed files in a HttpdRomFileSystem. Enabling this option results in
slightly larger code size. The default value is 1.

• INC_TEMPLATE_MIME_TYPES - This option enables the ability to override the default MIME type
emitted by HttpdFSTemplateShell. Disabling this feature results in miniscule performance and
code space savings. The default value is 1.

• INC_CHARCLASS_PATTERN_MATCH - Enabling this feature adds character class support to the
HttpdUtilities::MatchPattern function. Disabling this feature saves code space at the
expense of functionality. The default value is 1.

• INC_HASH_PJW - Enabling this option changes the hashing algorithm used by
HttpdUtilities::Hash to the “P.J. Weinberger” hash function. This hashing function results in
a better distribution at the expense of slightly increased CPU consumption and code size. For very large
numbers of CGI parameters in a HttpdCgiHash enabling this may be a performance win on 32-bit
processors. If this option is disabled (the default) then a normal addative hash function is used instead.

• INC_MODIFIABLE_FILESYSTEMS - Enabling this option enables the methods in the filesystem API
for writable file systems. The default value is 1. Disabling this option reduces code size.

• INC_BACKGROUND_SESSION_PURGE - This option enables time-based purging of unused session
objects. Without this option, instances of HttpdSessionManager will only destroy a session object
when there is no additional room for a new session. When this option is set, a background thread
periodically examines the session table and deletes any sessions that have an idle time exceeding a
predefined threshold.

For applications with very large session objects this option can help reduce the contention for memory
by other tasks using HttpdOpSys::Malloc. Using this option also results in a significant increase in
security because it makes replay attacks more difficult. However, in order to use this option the target
platform must support threads and the ability to note the passage of time. The default value is 1.

• INC_FAST_MD5 - If this option is enabled the code implementing the HttpdMD5 class will be larger
but much faster. The default is 0.

• INC_FAST_SHA1 - If this option is enabled the code implementing the HttpdSHA1 class will be
larger but much faster. The default is 0.

• INC_SECURE_MD5 - If this option is enabled then the HttpdMD5 class will wipe all working data
from memory when complete. This results in increased security at the slight expense of additioal CPU
utilization. The default value for this option is 1 and it is recommended that this option not be disabled.

• INC_SECURE_SHA1 - If this option is enabled then the HttpdSHA1 class will wipe all working data
from memory when complete. This results in increased security at the slight expense of additioal CPU
utilization. The default value for this option is 1 and it is recommended that this option not be disabled.

• INC_LOW_STACK_PRESSURE - For performance reasons Seminole allocates several large objects
on the stack of the servicing thread. For systems where stack space is limited this option can be enabled.
When enabled this option causes these objects to be allocated from the heap. The downside of this is
that this reduces performance and increases code size (slightly). It also opens up a window of failure
if the heap does not have enough free space to allocate request objects. In that case, the client socket
is simply closed without even sending back a response. This may also result in slightly increased heap
fragmentation. The default value is 0.

Integrating Seminole
With An Application

318

• INC_LOW_HEAP_PRESSURE - This option causes Seminole to use less heap memory at the expense
of code size and execution time. In low memory environments enabling this option is a worthwhile
optimization. The default value is 1. This option may also be set to 2 or 3 for a more aggressive reduction
in heap usage at the expense of performance. The higher the value the less pressure placed on the heap.

• INC_LOW_CODE_PRESSURE - This option causes Seminole to use less code size at the expense of
execution time. This option should be enabled when the expected HTTP load is light and code size
footprint is important. The default value is 1.

• INC_MULTIPLE_TRANSPORTS - This option enables the optional transport-selection mechanism.
With this feature enabled Seminole allows several different network transport protocols to be selected
at runtime. The most important reason to enable this option is to support SSL (which must be enabled
separately using the INC_SSL option). The default value is 0.

• INC_SSL - Enable SSL protocol support. This option should only be enabled if support is provided
on your particular target. This feature requires the INC_MULTIPLE_TRANSPORTS feature also be
enabled. There may be additional parameters that can be configured in the portability layer when this
option is enabled. The default value is 0.

• INC_IPV6_SUPPORT - Enable support for IPv6. This option should only be enabled if this protocol is
supported by your target platform. The default value is 0.

• INC_BUFFER_OUTPUT - There are some cases where the length of the response is unknown. In these
cases the HttpdDynamicOutput class is used to control how the output is delivered. Enabling this
option tells the HttpdDynamicOutput class to buffer the output in dynamic memory in order to
avoid closing persistent connections. This results in increased use of run-time memory usage but allows
greater network throughput. The buffering is performed by the HttpdContentSink class. The value of
this option has no effect if the INC_PERSISTENT_CONN feature is not enabled. The default value
for this option is 1.

• INC_CHUNK_OUTPUT - Similar to the INC_BUFFER_OUTPUT feature this option allows the
HttpdDynamicOutput class to use the “chunked” transfer encoding if possible. This encoding is
only supported with HTTP/1.1 clients, older clients will be handled by other methods (if available) or
by closing persistent connections. The chunked encoding is performed by a the HttpdChunkedSink
filter class. The value of this option has no effect if the INC_PERSISTENT_CONN feature is not
enabled. The default value for this option is 1. The default value is 1.

• INC_BUFFER_OVERFLOW_RECOVERY - If the INC_BUFFER_OUTPUT option is enabled and
the server runs out of temporary storage for the content an attempt is made to recover by shutting down
persistent connections when this happens. In the event of this failure the content is still delivered by
sending what has been buffered until the heap was exhausted then continuing with data transmission and
finally closing the connection when complete. Enabling this option results in a slight increase in code
size. Enabling this option has no effect if the INC_PERSISTENT_CONN or INC_BUFFER_OUTPUT
options are disabled. The default value is 1.

• INC_FAST_STRING_SINK - Enabling this option causes HttpdStringSink to allocate reserve
memory to avoid each Write call resulting in a call to Realloc. This option can also reduce heap
fragmentation. It increases code size slightly but also results in a gain in CPU utilization. The amount
of pre-allocated memory is bounded by the STRING_GROW_SIZE parameter. The default value is 1.

• INC_BASIC_AUTH - This option enables the basic HTTP authentication mechanism in the
HttpdAuthenticator class. If no authentication mechanisms are enabled then requests to
authenticate a request will always fail with a HTTPD_RESP_UNAUTHORIZED (401) status. The
default value is 1 and should not be disabled in most circumstances.

• INC_DIGEST_AUTH - This option enables HTTP digest authentication. Digest authentication prevents
passwords from being transported in the clear across the network. This results in an increase in code size.

Integrating Seminole
With An Application

319

This feature uses the session manager therefore the security precautions involved in using the session
manager (good quality entropy and background session scrubbing) should be employed if possible. The
default is 1.

Setting this value to 2 will result in presenting digest authentication ahead of basic authentication (when
both are enabled). This normally is against the recommendations of the RFC's. However many versions
of the Firefox® browser will always choose the first scheme presented rather than the strongest scheme
presented (as is required). Setting this value to 2 works around this bug; at the expense of compatability.

• INC_DIGEST_AUTH_URL_MATCH - Digest authentication requires that the URL be a component
of the password hash. The URL is passed in an attribute rather than taken from the actual HTTP request
line. This prevents proxies from modifying it and thus corrupting the password hash.

If this option is enabled then Seminole verifies that the URL is equivilent to the request URL. This
verification requires additional processing overhead but reduces the effectiveness of man-in-the-middle
attacks. Disabling this option reduces code size and memory requirements at the expense of security.
With this option disabled passwords are still never sent across the network in the clear — providing
secrecy. The nonce mechanism ensures that replay attacks will not succeed. However if there is a chance
that an attacker can intercept (and modify) the request then this verification step prevents this.

The default value is 1.

• INC_PASSWD_BLINDING - This option reduces the risk of timing attacks when comparing
passwords. HTTP basic authentication is particularly vulnerable to this kind of attack although
in many environments the attack is difficult to mount. Enabling this option causes the
HttpdAuthenticator::SecureStrEqu method to always take the same amount of time
comparing strings irrespective of the contents of those strings. Enabling this option reduces performance
and increases code size. In security critical environments this option should be enabled. For performance
critical applications this option can be disabled. The default value is 1.

• INC_CONDITIONAL_HINTS - Enabling this option adds conditional hints if the C++ compiler
supports them. Conditional hints help to identify if statements that are used for infrequent events (such
as total failure cases) and cause the compiler to generate code that is more efficient for the frequent
cases. With the GNUGCC™ compiler this is accomplished with the __builtin_expect built-in.
The default value is 1.

• INC_ALIASING_HINTS - Enabling this option adds pointer aliasing hints if the C++ compiler supports
them. Aliasing hints help identify pointers that don't alias and avoid reloading values from memory.
This reduces code size and increases efficiency. The default value is 1.

• INC_ALLOCATION_CACHING - Enabling this option causes some classes to cache memory
allocations to avoid a performance penalty. For systems with very limited amounts of memory disabling
this option reduces resource consumption at the expense of performance. The default value is 1.

• INC_ALLOCATION_CACHE_PURGE - Enabling this option enables the ability to purge all allocation
caches when the system is low on memry. The default value is 1.

• OVERLOAD_ABORT_RETRIES - This parameter controls how many times overload protection will
attempt to release an idle thread before failing the new request instead. This parameter only has any
effect if INC_OVERLOAD_PROTECTION is enabled. The default value is 1. In some high-volume
configurations (especially when running under a POSIX operating system) it may be advantageous to
increase this value.

• OVERLOAD_ABORT_SLEEP - This parameter controls how long the acceptor task sleeps
(in milliseconds) during retries when in overload. This parameter only has any effect if
INC_OVERLOAD_PROTECTION is enabled. The default value is 130.

Integrating Seminole
With An Application

320

• INC_CLIENT_CONN_POOL - This option enables connection pooling in the HttpdClient class.
Enabling this option makes HTTP fetching much faster at the expense of code size and memory (and
socket) consumption. The default value is 1.

• INC_CLIENT_REDIR_CACHE - This option configures the size and desire for redirect caching in
HttpdClient. If the value is 0 then permanent redirects are never remembered. Otherwise this
controls the number of slots in the cache. Disabling the cache reduces the code size of the client. The
default value is 16.

• INC_CLIENT_PROXY_SUPPORT - This option enables support for HTTP proxies. Disabling this
option reduces code size and improves fetch performance. The default value is 1.

• INC_CLIENT_COOKIE_SUPPORT - This option enables support for HTTP cookies on the client side.
Disabling this option reduces code size and improves fetch performance. The default value is 1.

• INC_CLIENT_AUTH - This option enables authentication support in the client. Disabling this option
reduces code size. The default value is 1.

• INC_CLIENT_AUTH_BASIC - This option enables basic authentication support in the client. The
default value is 1.

• INC_CLIENT_AUTH_DIGEST - This option enables digest authentication support in the client.
Disabling this option reduces code size. The default value is 1.

• INC_CLIENT_COOKIE_BUFFERING - This option prevents the HTTP client from writing cookie
headers while holding the mutex of the cookie jar. This prevents the somewhat unlikely case of a socket
write stalling for a long period of time while holding the cookie jar mutex and affecting other fetches.
Enabling this option increases code size and memory consumption slightly. It is probably a good idea
to enable this option if there are many threads performing simultaneous fetches against a single client
object. The default value is 0.

• CLIENT_MAX_CONN - When INC_CLIENT_CONN_POOL is enabled this parameter controls the
maximum number of connections that will be pooled per instance of HttpdClient. The default value
is 130.

• CLIENT_MAX_CONN_PER_HOST - When INC_CLIENT_CONN_POOL is enabled this parameter
controls the maximum number of connections to a single host per instance of HttpdClient. This
value must be smaller than CLIENT_MAX_CONN. The purpose of this limit is not to reduce the resource
consumption of HttpdClient — that is the purpose of CLIENT_MAX_CONN. This constant is to
avoid causing excessive resource consumption on other servers. The default value is 5 as recommended
by RFC 2616.

• CLIENT_HASH_BUCKETS - When INC_CLIENT_CONN_POOL is enabled this parameter adjusts
the size of the hash table used to look up pooled connections. It should be a prime number. Larger values
increase the memory footprint of HttpdClient. The default value is 17.

• CLIENT_AUTH_KEY_BUCKETS - Authentication credentials are cached to help reduce round trip
times. Increasing the value reduces search overhead at the expense of memory. Setting this value to less
than 2 will disable hashing (thus saving code and data space). The default value is 19.

• CLIENT_AUTH_CNONCE_LEN - This parameter controls the length of the client nonce when using
HTTP digest authentication. Increasing this value will increase security provided sufficient entropy is
available. The default value is 16.

• TMPL_MAX_INCL_DEPTH - This is the maximum number of file includes that may be nested when
processing a template with the HttpdFSTemplateShell mechanism. The default value is 16. There

Integrating Seminole
With An Application

321

is no cost to increasing this limit except that beyond a certain point of nested includes may cause a
stack overflow.

• TMPL_MAX_SYM_LENGTH - This is the maximum length of a symbol identifying a template operation.
This value only applies to the actual name of the action, not the associated attributes. The maximum
theoretical value is 127 and the default value is 126. Lowering this value may save a few bytes of
storage during template processing.

• CGI_HASH_SIZE - This parameter controls the number of buckets in the HttpdCgiHash class. The
more buckets the quicker parameters can be found (at a cost of space). In general, the number of buckets
should be a prime number. But this is not a hard-and-fast rule if memory is in short supply. The default
value is 7.

• BITSET_WORD_SIZE - This parameter selects the word size used by classes such as HttpdBitSet.
Ideally the word size selected should be the most efficient for the machine to manipulate. Setting
this incorrectly only results in reduced performance. However computing the correct setting takes into
account a number of factors such as the compiler, CPU, and memory bus width.

Value Word Type

0 unsigned int

1 unsigned long

2 unsigned short

The default value is 1.

• MAX_MIME_ENTRIES - This parameter controls the maximum number of name-value pairs on an
incoming request. The default value is 48 pairs.

• MAX_INPUT_LINE - This is the maximum length of a line on an incoming request in bytes. The default
value is 1024.

• XFER_BUF_SIZE - This parameter controls the transfer buffer size. This buffer size is used in several
places where the copying of data from one source (such as a file) to another (such as a socket) is
performed. The default value is 1024 bytes. Increasing this value may result in increased efficiency
in some usage scenarios.

• MIN_BATCH_WRITE_SIZE - This parameter controls the smallest write that will be sent to the target
writable associated with a HttpdBatchWriter. If this constant is set to 0 then all writes will be at
least XFER_BUF_SIZE bytes in size. Setting this parameter to a non-zero value results in a slight code
size increase but may reduce CPU consumption. The default value is 0.

• SINK_BUFFER_SIZE - This parameter is the size of the data buffers that HttpdContentSink uses to
buffer dynamically generated content. The default value is 512 bytes. Setting this value higher results
in fewer memory allocations by the content sink but may result in increased memory consumption.

• STRING_GROW_SIZE - If the INC_FAST_STRING_SINK option is enabled then this parameter
controls the amount of extra memory allocated by the HttpdStringSink object to reduce allocation
overhead and fragmentation. If the INC_FAST_STRING_SINK option is disabled then this parameter
has no effect. The default value is 512 bytes but could be made smaller if memory is tight with little
performance impact.

• CHUNK_OUTPUT_SIZE - This parameters controls the maximum size (in bytes) of a segment of data
when using the HTTP/1.1 chunked transfer encoding. Chunked transfer encoding is provided by the
HttpdChunkedSink class. The default value is 1024.

Integrating Seminole
With An Application

322

• DIGEST_WINDOW_SIZE - This parameter controls the number of pending nonces that are allowed in
a digest authentication session. Increasing this parameter can help avoid digest authentication failures
in very high request rates at the expense of memory. The default value is 128.

• DIGEST_MAX_AGE - This parameter controls the maximum age of a digest authentication session (in
seconds). If the background session scrubbing option (INC_BACKGROUND_SESSION_PURGE) is
not enabled then this parameter has no effect. The default value is 900.

• DIGEST_MAX_SESSIONS - This parameter controls the maximum number of digest authentication
sessions at any one time. Raising the number of sessions allows more simultaneous clients at the expense
of memory. The default value is 32.

• DIGEST_BATCHSIZE - This parameter adjusts the number of session objects processed
for aging during a single cycle. If the background session scrubbing option
(INC_BACKGROUND_SESSION_PURGE) is not enabled then this parameter has no effect. The
default value is 8 sessions.

• DIGEST_CYCLETIME - This parameter determines how often the background scrubber is woken up
to scrube digest authentication sessions. The default is 60000 milliseconds.

• FIRST_TIMEOUT - This parameter represents the amount of time to wait (in seconds) after the
establishment of a TCP connection for the first line of the request. This timeout serves two purposes.
First, it serves to prevent persistent connections from lasting indefinitely. Second, it functions as a
denial-of-service attack recovery mechanism. The timeout for the first request line is distinct because
often times a client may take longer to send the initial line of the request. Once the request is generated
the headers typically are sent quickly. Therefore this timeout should be larger than the MIME_TIMEOUT
parameter. The default value is 160.

• MIME_TIMEOUT - This parameter represents the amount of time to wait after the first request line is
received for the transmission of the MIME name-value pairs. Unlike FIRST_TIMEOUT expiration of
this timer would more likely indicate a network or protocol error rather than an overloading condition.
The default value is 30 seconds.

• CGI_TIMEOUT - This parameter represents the maximum amount of time that the CGI parsing classes
(such as HttpdCgiParameter and HttpdMultipartCgiParser) will wait for new incoming
data. The default value is 200 seconds.

• ACCEPT_FAIL_DELAY - With some TCP/IP implementations the HttpdSocket::Accept
operation can return an error code that indicates a non-fatal but transient error condition (resource limits,
insufficient buffers, link connectivity problems, etc). This is the amount of time the acceptor thread
should wait before calling accept again to process additional incoming connections. It is mainly used
as a throttling timer to reduce the likelyhood of similar setup errors ocurring in succession. The default
value is 500 milliseconds.

• MAX_REQUESTS_PER_CONN - When persistent connections are enabled this parameter controls
the maximum number of requests that can be processed on a single connection. Even if the
FIRST_TIMEOUT timer is not exceeded the maximum number of requests can never be exceeded.
This option has no effect if the INC_PERSISTENT_CONN feature is disabled. The default value is
5 requests.

• MAX_PASSWD_LENGTH - This is the maximum length of a password when using the
HttpdAuthenticator framework. The default is 48 characters.

• MAX_REALM_LENGTH - This is the maximum length of the realm when using
HttpdAuthenticator framework. The default value is 48 characters.

Integrating Seminole
With An Application

323

• SESSION_NONCE_LEN - This parameter controls the number of random characters included in a
session identifier included to prevent spoofing. Making this value longer is only likely to increase
security if a the target platform has a good source of entropy. The default value is 32 characters.

• MAX_MODAL_DEPTH - This parameter is the maximum number of widgets that may be stacked within
a HttpdWidgetStack object. The default value is 4.

• WIDGET_TABLE_GROW_SIZE - This value is the number of “widget slots” to allocate when the
current widget manager (HttpdWidgetManager) runs out of available tracking slots. The default
value is 64. The default should be appropriate for almost all circumstances however reducing this value
may result in decreased memory consumption when using the application framework.

• GIF_HASH_SIZE - This parameter controls the compression engine in the
HttpdGif87aRenderer object. Adjusting this value may result in bandwidth reduction in exchange
for higher memory consumption during image creation. The default value is 5003.

• PMATCH_MAX_RECURSION - This parameter limits the default recursion depth of the
HttpdUtilities::MatchPattern method. Patterns that involve “globbing” matches can make
this routine recursive. To guard against stack exhaustion (especially when the pattern string comes from
an untrusted source, such as a CGI variable) a limit is placed on the maximum depth of the recursion.
The default value is 16 but this may have to be altered depending on available stack space.

• DSC_TRANSMIT_JITTER - This parameter controls the amount of “jitter” artificially added to
beacons transmitted by HttpdDiscoveryServer. The purpose of the jitter is to prevent a storm of
broadcasts which may result in a high collision rate on some networks. This value is in milliseconds
and defaults to 90.

• DSC_BEACON_JITTER - This parameter controls the amount of “jitter” artificially added to
unsolicited beacons transmitted by HttpdDiscoveryServer. This value is in milliseconds and
defaults to 20.

• DSC_REQUEST_JITTER - This parameter controls the amount of “jitter” artificially added to request
beacons transmitted by HttpdDiscoveryClient. The purpose of the jitter is to prevent a storm of
broadcasts which may result in a high collision rate on some networks. This value is in milliseconds
and defaults to 5000.

• DSC_ENDPT_HASH_SIZE - This parameter controls the number of buckets in the hash table that
HttpdDiscoveryClient uses to hold HttpdDiscoveredEndpoint objects. The default value
is 171.

• DSC_CLIENT_SCRUB_BATCH - This parameter controls the number of endpoints examined by
HttpdDiscoveryClient during a scrubbing cycle. The number of endpoints is limited to a subset
to avoid execessive bursts of CPU consumption. The default value is 16.

• XML_TAG_BUF_SIZE - This parameter controls the number of characters that the internal name buffer
of HttpdXmlNode holds. If a tag name exceeds this length a dynamically allocated buffer is used.
The default value is 32.

• XML_PARSE_NODE_CACHE_SIZE - This parameter controls the maximum number of node objects
to cache during a parse. These nodes are temporary objects that are used during parsing. To avoid
continuous memory reallocation the XML parser caches these objects as it parses the document. The
higher this value the more temporary memory consumed during parsing. The default value is 24.

• XML_NAMESPACE_CHUNK_SIZE - This parameter determines the size of space reserved when
allocating storage for namespace URL's. To reduce the number of heap allocations memory is allocated
in chunks when a namespace must be stored. As many URL's are packed into a single allocation as
possible. Setting this parameter tunes the amount of internal versus external fragmentation. Setting this

Integrating Seminole
With An Application

324

parameter to 0 disables chunking and allocates each namespace URL in a separate object, reducing code
complexity instead. The default value is 140.

• XML_NAMESPACE_MAX_SEARCH - When a namespace URL is encountered the XML parser scans
the list of namespaces that have already been seen to see if the string space can be shared. This sharing
reduces memory consumption at the expense of CPU time. If this parameter is set to 0 then the entire
list of namespace URL's is searched. Otherwise this value specifies the maximum number of URL's the
XML parser will examine in an attempt to save space. The default value is 0.

• MACRO_MAX_ARGS - This parameter controls the maximum number of arguments to a macro in the
HttpdMacroProcessor class. The default value is 32.

• INC_CACHING_FILE_DATA_SOURCE - If this option is enabled the code implementing the
HttpdFileDataSource class will employ a caching mechanism. This caching mechanism is
useful when the associated HttpdFile does not have any caching performed by the underlying
operating system and system calls are expensive. For operating systems with no memory protection and
tight memory requirements disabling this option may result in a reduction of code size and memory
consumption. The default is 1.

• FILE_DATASRC_CACHE_SIZE - This parameter controls the size of a cache block in the caching
version of HttpdFileDataSource. It is recommended that it be a power of 2. See File Data Source
Caching for details. The default value is 4096 bytes.

• FILE_DATASRC_MAX_CACHE_BLOCKS - This parameter controls the maximum number of cache
blocks that a HttpdFileDataSource may hold. See File Data Source Caching for details. The
default value is 16 blocks.

• FILE_DATASRC_HASH_BUCKETS - This parameter controls the number of hash buckets in the
caching version of HttpdFileDataSource. It is recommended that it be a prime number. See File
Data Source Caching for details. The default value is 7 buckets.

• FILE_DATASRC_MAX_PINNED - This parameter controls the maximum number of pinned cache
blocks in a HttpdFileDataSource. See File Data Source Caching for details. The default value
is 4 blocks.

• HAVE_GLOBAL_CONSTRUCTORS - This option determines if global constructors are supported on
this platform. Some embedded systems do not call global constructors or call them at the wrong time.
This problem can be worked around at a minor cost in efficiency by setting this option to 0. If this option
is set to 0 then the runtime environment must provide properly synchronized delayed construction of
static locals. The default value is 1.

The Seminole Build System

Overview

Like the rest of Seminole, the build system is oriented towards embedded systems developers. Using
the build system is completely optional. If your project has a radically different build system from what
Seminole offers, it can be used instead with little effort. The major features of the Seminole build system
are:

• The compilation tools and build environment are easily changed.

• Multiple targets are easily selected and built.

• The output files for each target are isolated so one can have Seminole built for a variety of targets at
the same time.

Integrating Seminole
With An Application

325

The Seminole build system consists of two logical pieces. The first piece is a Perl script (called buildit)
which recursively descends the source tree and applies commands to the files within based on the
particular quirks of the host operating environment. buildit obtains pertinent information about the
host environment from the second logical piece of the build system, the ports files. These files, so named
because they are located in the ports subdirectory of the distribution, simply contain Perl code which is
directly evaluated at the beginning of the build process. One ports file may include other files, to form a
hierarchy of overlapping definitions so that common information can be centralized in a single file. Thus,
factors common to all POSIX systems are contained in the POSIX ports file, which is then included by
other ports which are POSIX-like environments.

Once the system-specific declarations in the ports file(s) have been evaluated, buildit proceeds to
look for a rules file called Buildfile in the current working directory. This file contains a series of
Perl subroutines which are analogous to the names of make targets. If no target name is provided on
the command-line, the default subroutine is executed (typically all source files will be rebuilt if the
corresponding object file is stale). This process is often recursive, with buildit descending into each
subdirectory in the tree and executing the same subroutine.

Extensive documentation on the Perl language is available on the World Wide Web or in book form, and
no attempt will be made here to duplicate it.

Performing a Build

The first step in performing a Seminole build is to select a ports file that most closely describes your
particular environment. Choosing an appropriate ports file greatly reduces the amount of customization
that must be done to generate a successful build. See Table 15.1, “Standard Ports Files” for a list of ports
files provided with the distribution.

Table 15.1. Standard Ports Files

Port Description

Linux GNU/Linux with GCC

OpenBSD OpenBSD with GCC

FreeBSD FreeBSD with GCC

Solaris-gcc Solaris® with the GCC compiler

Solaris-CC Solaris® with the Sun Studio compiler

MSVC Windows NT® with Microsoft Visual C++

Watcom Windows NT® with Watcom C++

MacOSX-gcc MacOS X® development kit (using Apple-provided
GCC

MacOSX-xlc MacOS X® development kit (using IBM's
VisualAge C++)

Tornado Wind River Systems' Tornado® development kit for
VxWorks®

eCos eCos embedded development environment

QNX6 The QNX distributed operating system

Android The Linux based Android platform

When using ports such as Tornado and eCos which represent cross-compilation environments, it is
critical to properly identify the target architecture and binary type by assigning the appropriate variables.

Integrating Seminole
With An Application

326

In most situations the best method is to take advantage of the hierarchical nature of ports files and create a
customized file matched to your specific needs. The file containing your customizations would then include
other ports files "above" it in the hierarchy; for example, a new ports file intended to build Seminole for an
ARM-based embedded target running the eCos® operating system might be called eCos-arm. Since all
the default definitions acceptable and only a few parameters are being changed, eCos-arm might look
something like this:

Example 15.1. Using Inherited Definitions in a Ports File

 $ECOS_ARCH = 'arm-elf';
 $CPUENDIAN = 'little';
 $ECOS = '/ecos-tree';

 # Load the definitions for eCos targets.
 definitions(samepath($DEFINITION_FILE, 'eCos'));

Once a usable ports file has been selected or customized as described above, the build process can begin.
Depending on the host operating system, the buildit script must be invoked slightly differently. In
POSIX-like environments, something similar to the following command may be executed from the root
directory of the Seminole distribution:

./buildit ports/PORTFILE

PORTFILE should specify the desired ports file to be evaluated. If your Perl interpreter is located in a
non-standard directory (/usr/bin/perl is assumed), you will need to change the path manually in
buildit with a text editor or create a filesystem link.

In Microsoft Windows NT® and related environments, the build system should be invoked as follows:

PERL buildit ports\ PORTFILE

In this case, PERL should be the name and/or path of your system's Perl interpreter (perl will probably
work if you are unsure).

When complete, the results will be in built/PORTFILE. The header files needed by the client
application are placed in include and the libraries needed are placed in lib. In addition, most ports
provide a standalone binary that can be used to verify the build of Seminole.

The files that are created during the build are referred to as the SDK (Software Development Kit). Once
Seminole is compiled the files from the SDK are the only things required to build applications that use
Seminole. The location of the SDK can be changed by overriding the build system configuration variables
in the ports/Seminole file.

After building Seminole for the first time, one should be verify that the resulting libraries are functional.
When targeting a POSIX (or more generally, UNIX®-like) target, this can be done by invoking the
Seminole executable.

Once proper operation is verified with a web browser, you have successfully built Seminole.

Build System Internals

The build system contains three major components. The first is a support library of subroutines that do
basic operations useful for building software. The most important of these is cx. This function executes
an external command such as running the C++ compiler or linker.

Integrating Seminole
With An Application

327

Another important support routine is stale. This routine takes two array references as arguments. Both
are lists of files, the first argument describing a list of target files and the second argument describing a
list of source files. If the source files are newer than the target files or the target files do not exist then
this routine returns true.

The definitions is used to load a file containing auxiliary Perl code for building Seminole. This is
how the hierarchy of port files are implemented. The top-level port file imports lower-level port files
using this function. In turn those lower-level files may import other files. The filename provided to the
definitions subroutine should be an absolute path. In general all of the build system files are in the
same directory and the samepath subroutine can be used to make a full path name. The global variable
$DEFINITION_FILE contains the full path name of the build file requested on the buildit command
line.

The subdirs subroutine performs a recursive build in the named subdirectories. The file Buildfile in
the root of the Seminole source tree shows how the src directory is built. The optsubdirs subroutine
is similar to subdirs except that non-existant directories are non-fatal. The role of Buildfile is
explained below.

The cx and stale subroutines can be combined to produce make-style functionality with the and
operator. For example:

 stale(['foo.o'], ['foo.cpp', 'foo.h', 'common.h']) and
 cx('g++', '-c', 'foo.cpp');

In the above example, foo.cpp will be recompiled if foo.o does not exist or is older than the source
file or the two header files. This functionality is used to implement the second major component of the
build system: the target routines. These are subroutine references that point to routines that perform basic
tasks used to build Seminole:

• $target_link - Perform a link step if to produce a loadable or executable image from object modules
and libraries.

• $target_xform - Generate the object file name of a source file. In most cases this is a straight
transformation such as changing a file extension.

• $target_binary - This subroutine computes the output file name used for the link step.

• $target_cxx - This subroutine compiles a source module to an object module by invoking the C+
+ compiler for the target system.

• $target_addlib - This subroutine adds one or more object files into a library (or archive) file. If
the library file does not exist it should be created.

• $host_c_xform - Translate the name of a C source module to the file name needed to run the C
program. The host tools always consist of a single C source file that is compiled (using the host compiler)
to run as a standalone program.

• $host_compile_c - Invoke the C compiler for the host system.

The final component of the build system is the buildit script. This script drives the build system by
preparing the environment and then executing the build instructions for each source directory. The build
environment is prepared by loading definition files that define subroutines and variables that are used
during the build phase.

Once the environment is prepared the directory tree is traversed and the Buildfile files are loaded. The
Buildfile defines one or more named subroutines that perform a build action. Depending on the build

Integrating Seminole
With An Application

328

target (if any) specified on the buildit command line the subroutine in the Buildfile is executed
to perform the build step.

It is best to think of the subroutines in the Buildfiles as make targets (such as all or clean). These
subroutines use the variables and subroutines defined in the build environment to accomplish their tasks.
In fact the traversal of the directory tree is done using the built-in subroutines subdirs or optsubdirs
and is not explicitly part of buildit.

Building Seminole using an alternative build environment

There is nothing particularly unique that Seminole's Perl-based build system does that can't be done with
other build environments. Sometimes in a large project the Seminole build system is not appropriate. For
these situations it is possible to build the source code for Seminole with make or an IDE.

One important point to underscore is that even if the build system is not used it is still necessary to have
an operating Perl environment if the Host Tools are used.

The first step in building Seminole manually is to copy over the files ending in a .in extension to a file
with the same base name but ending in .h. Then edit the .h files replacing the text within the ${…}
directives with the actual configuration values desired.

The second step is to create an appropriate set of build options for your compiler. It is important to add
any of the directories that contain header files to the include path of the compiler.

Finally using whatever is appropriate for your host environment add the .cpp files to your build list. Only
add the files that are appropriate for your target; i.e. do not add the files under src/targets/Win32
if you are targetting a POSIX system.

The above approach puts all of the effort of building Seminole and your application on the developer. A
different alternative is building Seminole is a hybrid approach. For example. Build Seminole using the
provided build system then simply reference the built libraries and header files in a completely separate
build environment.

Another approach is to integrate the Seminole build system into the existing environment. For example,
an external “Makefile” project can be created within Microsoft Visual Studio® and call the Seminole
build system. This kind of integration gives the benefits of “push button” builds without requiring in depth
knowledge of either build environment.

Whichever approach is taken for the build machinery it is important that the correct compiler options are
set for efficient code generation. Seminole does not use templates, exceptions or run-time type information.
So these features can be disabled if the code it calls (user-provided handler code) does not. This will
often result in a performance increase and a code size reduction. Choosing the right level of optimization
(size versus speed) is also important and depends on the performance requirements and the capabilities
of the target platform. Often the only way to correctly choose these options for a complex project is by
experimentation.

Toolchain

Regardless of what build system is being used builds are performed by calling tools to operate on files.
Some of these tools, such as the C/C++ compiler are not part of Seminole. Other tools, such as mimegen or
bin2c are part of Seminole. Understanding how the various tools interact is what this chapter is all about.

A very common usage of the toolchain is to take web content and package it for use by the ROM filesystem.
This is typically done by embedding the content directly in the system image. This configuration is
described by the following figure:

Integrating Seminole
With An Application

329

Figure 15.1. Toolchain for Combining Content in the System Image

Web Content

SCPGcontent.cfg ROMfs Image

bin2cC/ C+ +
Compiler

Source Code

Header File

= Toolchain = Authored Files = Intermediate Files

As you can see each tool tries to do a single task. In this case SCPG processes the web content and builds
an image that the ROM filesystem code can mount. To get this data inside the system image the bin2c
command converts this binary file to a source and header file. The source file is compiled in to the system
image and the header file allows the binary data to be referenced.

A much more complex orchestration of tools is involved in building an application using the application
framework.

Figure 15.2. Toolchain for Building a Web Application

Web Content
SCPG

content.cfg

ROMfs Image

bin2c

C/ C+ +
Compiler

ROMfs
Source+ Header

= Toolchain = Authored Files = Intermediate Files

Localized Text

Interface
Specif icat ion

MSGCMP

SPECGEN

Webapp
Source+ Header

Message Catalog
Header

Integrating Seminole
With An Application

330

As you can see from the above figure there are quite a few tools involved with a complex web of
dependencies. The msgcmp tool is used for localization support and builds a binary “string package” file
that is included in the ROM filesystem along with the content. The output of SCPG is then utilized by
specgen to verify the interface specification is correct.

The output of specgen which contains the support code for the web application is combined with the ROM
filesystem image and compiled into a single system image.

Using SSL

Seminole supports SSL if the underlying socket stack provides an implementation of the SSL protocol.
The OpenSSL [http://www.openssl.org/] library is a free implementation of SSL and works on most
platforms. The Seminole build system currently has OpenSSL [http://www.openssl.org/] support in the
following ports: Linux, OpenBSD, Watcom, MacOSX-gcc, MacOSX-xlc, FreeBSD, and MSVC.
Adding support to other build environments should be relatively simple, by following the example of these
ports files.

To use the SSL library on, check the appropriate ports file for a commented-out set of directives referencing
OpenSSL [http://www.openssl.org/]. Follow the instructions and uncomment the necessary Perl directives.
This will enable SSL support in all subsequent builds.

There are special considerations for SSL in the Win32 environment. Since there is no standard location
for the OpenSSL [http://www.openssl.org/] library, the location of OpenSSL [http://www.openssl.org/]
must be assigned to the OPENSSL_DIR variable in the ports file being used. If the SSL stack is to be
dynamically linked using DLL files, then the variable OPENSSL_DLL should also be defined to a non-
null value.

Once enabled, it may be necessary to supply additional parameters to the SSL protocol stack. This is done
by passing an array of strings to the Httpd::Start method. A typical set of options for OpenSSL
[http://www.openssl.org/] would be similar to this:

 pem:server.pem
 sock:ssl
 rand-file:4096,/dev/urandom

The most important line is:

sock:ssl

That parameter tells the transport selector (enabled via INC_MULTIPLE_TRANSPORTS) to use the SSL
socket type instead of the standard TCP type.

The line

pem:server.pem

instructs the SSL socket to use the private key and PKI certificates from the file server.pem.

Note

The options file and the certificate data can be generated with the makecert utility.

http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/

Integrating Seminole
With An Application

331

Using MatrixSSL

The OpenSSL [http://www.openssl.org/] library is quite large and not suited to many embedded systems.
Seminole includes support for the MatrixSSL [http://www.peersec.com/matrixssl.html] commercial SSL
library from PeerSec. This library is smaller and easier to work with in embedded environments.

To enable MatrixSSL™ support the MATRIX_SSL_PATH variable must point to the location of the
library (called libmatrixssl.a on most POSIX-like systems) and header files. The INC_SSL and
USE_MATRIX_SSL configuration variables also need to be enabled in the p variables must be defined in
the port file. The fragment in the build file should be similar to the following:

 MATRIX_SSL_PATH = 'location/of/matrixSSL';
 config(INC_SSL => 1,
 USE_MATRIX_SSL => 1,
 INC_MULTIPLE_TRANSPORTS => 1);

Once enabled, MatrixSSL support is activated by passing a set of options to the Httpd::Start method.
The most important of which is sock:ssl which informs Seminole to use the SSL transport layer.

When using MatrixSSL the following additional options should be specified in addition to sock:ssl:

• cert:certificate - This configures the server certificate as the inline contents of the string.

• key:key - This configures the encryption keys of the server as the inline contents of the string.

For more information on configuring MatrixSSL, see the documentation for the
matrixSslReadKeysMem.

Operating Environment Abstraction Layers

Introduction

The Seminole portability layer insulates the portable code from the following system specific areas:

• Memory allocation

• Multi-tasking

• File system access

• Networking

• Entropy (randomness) generation

• Time accounting

Of the services listed above only the memory allocation and networking services must be provided by
implementations of the portability layer. Multi-tasking in Seminole is optional and if a platform does
not support it then requests are processed serially. Native filesystem access is rarely needed because the
HttpdRomFileSystem class provides an efficient self-contained file service optimized for web serving.

The memory allocation abstraction is likely to be of particular interest to embedded systems programmers.
Since all dynamic memory allocation in Seminole is obtained through the API in HttpdOpSys it provides
a convenient place to constrain or measure memory usage. This is especially important to prevent denial-
of-service attacks from disabling the primary function of an embedded system.

http://www.openssl.org/
http://www.openssl.org/
http://www.peersec.com/matrixssl.html
http://www.peersec.com/matrixssl.html

Integrating Seminole
With An Application

332

Another place where operating systems differ widely is in their support of networking models. Within
Seminole these differences are abstracted by the HttpdSocket class which manages the creation of
socket objects that implement the HttpdSocketInterface interface.

The interface described by HttpdSocketInterface resembles that of BSD sockets. On any platform
offering the sockets interface, porting the provided TCP (and optionally SSL) implementations ought to
require little or no modification. Other transports supporting at least the general concepts of addressable
communications endpoints and bi-directional data flow should be capable of abstraction within via
HttpdSocketInterface. If a given platform's interface does not support byte-oriented I/O, some
adaptation will be required in the ReadN() and WriteN() methods.

The reference implementations for POSIX and Win32 include support for shutting down sockets in
operation through a control interface. This makes these implementations more complex than a naive
implementation but makes server shutdown more responsive. In many cases there is no need for a graceful
shutdown concept and the implementation of the TCP socket abstraction can be greatly simplified.

The multi-tasking interface assumes very little in terms of operating system functionality. It is assumed
that mutual exclusion and a flag-style semaphore are available for task synchronization. Care has been
taken to not require recursive mutexes although they cause no harm. Event semaphores are one-shot flag
style semaphores. Thus either counting or binary semaphores may be used. It is not required that one thread
waits for the termination of another. This is explicitly done (using event semaphores) when necessary.

The generation of entropy is needed by a few Seminole support classes. Better quality randomness results
in a more secure system although if a good entropy source is not present a few system variables (current
thread id, stack pointer, tick counter) with some processing can result in acceptable entropy. If SSL is
employed then it is important that entropy provided to the SSL protocol stack is of very high quality and
that entropy should also be exposed via the HttpdOpSys::Entropy method.

Seminole is not critical about the resolution of the system clock as error timeouts are the main use of
a system clock. If a real-time clock is present then Seminole can utilize the current time in the HTTP
responses although it is not necessary.

Adding New Abstraction Layers

The process of porting Seminole to a new target or host platform generally involves one or both of the
following steps:

• Create a new build framework definition file in ports/, named after the host environment, and
populate it with appropriate make meta-commands and variables to carry out the Seminole build
process. This step is only necessary if the included build system is used.

• Create the sem_sys.h, sem_syssock.h, and sem_sysconfig.in files. The sem_sys.h
header must define the HttpdUint8, HttpdUint16, HttpdUint32, HttpdIpAddress (unless
HTTPD_HAVE_BULKY_SOCKET_ADDRESSES is non-zero), and HttpdIpPort types. The
sem_syssock.h file should define a class named HttpdIpAddressObject if
HTTPD_HAVE_BULKY_SOCKET_ADDRESSES is non-zero

• The sem_sys.h header contains the declarations of the HttpdOpSys, and the optional
HttpdMutex, HttpdEventSemaphore classes. The sem_syssock.h header file defines the
HttpdTcpSocket and optional HttpdSslSocket classes.

• Within whatever source file structures are necessary the implementation of these classes should be
written using the native services of the target platform.

As noted earlier it may often be simpler to use an existing portability layer as a skeleton for a new port.
There are many ways to architect the portability layers and care has been taken such that the examples

Integrating Seminole
With An Application

333

cover as many of the approaches as possible. When contemplating a new port it is often instructive to read
the existing portability layers to gain insight into what techniques are ideal for the new target.

It is also helpful to realize there is nothing “magical” about the portability layer. It is simply a set of routines
that Seminole uses to support its operations. Sometimes the best approach is to see where a particular
portability routine is called and design it for the way in which it will be called. For example the POSIX and
Win32 portability layers provide two different multi-tasking models. One approach simply creates a new
thread in response to a call to HttpdOpSys::Fork. This approach is simple and compact but can be
a performance limitation. So an alternative implementation is provided that keeps a pool of ready worker
threads that can be assigned to a task rather than created when Fork is called.

Although this alternative implementation is useful for POSIX and Win32 it may not be for some real-
time operating systems where thread creation is very fast or already pooled. Many of the decisions in the
portability layer are like this.

Essentially, the job of the abstraction layer implementor is to rewrite the classes mentioned earlier in this
section, keeping to the public interfaces defined elsewhere in this document. The total effort involved in
writing or porting each method is highly dependent on the nature of the new target and what services it
offers to applications. The more familiar an implementor is with the target platform the easier this task is
likely to be. Keep these facts in mind when planning a port.

There are also some parameters that are defined by the portability layer that determine the capabilities of the
target platform. These parameters may be adjustable depending upon the specifics of the portability layer.
For example, floating point support is often an optional concept on many embedded operating systems
but the concept is always present on the POSIX targets. Therefore the POSIX portability layer always
enables floating point support. These parameters can be used in your own application code to make it more
portable. When implementing a new portability layer the following macros must defined in sem_sys.h,
sem_sysconfig.h, or in the configuration of the compiler:

• HTTPD_OS_NAME - This macro expands to a quoted string that is the name of the host operating system
or target. It is sent in the Server:MIME header line in response to an HTTP request. If this macro is
undefined then no additional data is appended to the server name.

• HTTPD_HAVE_BIG_ENDIAN - This macro should evaluate to a non-zero (true) value if the target
platform uses “big endian” byte ordering.

• HTTPD_HAVE_REENTRANT_LIB - This macro should be defined to a non-zero (true) value if the
runtime library supports the reentrant versions of the standard ANSI C library.

• HTTPD_HAVE_NATIVE_FILE_SOURCES - This macro should be defined to a non-zero (true)
value if the platform has a native file system and that native file system is exposed via the
HttpdOpSys::NativeFileSystem method.

• HTTPD_HAVE_BULKY_SOCKETS - This macro should be defined to a non-zero (true) value if the
size of the HttpdTcpSocket is significant. Under normal circumstances a HttpdTcpSocket
holds a handle to a TCP socket. However some very simple TCP implementations all of the
protocol state is held within the HttpdTcpSocket. In these cases enabling this option when the
INC_LOW_STACK_PRESSURE option is enabled the HttpdTcpSocket is stored on the heap
instead of on the stack.

• HTTPD_HAVE_CLOCK - This macro should be defined to a non-zero (true) value if the target has a
clock capable of keeping the current date and time.

• HTTPD_TIMESTAMP_IS_TIME_T - This macro should be defined to a non-zero (true) value if the
HttpdOpSys::TimeStamp type is represented using time_t. If this is not known then it is always safe
to leave this option 0 which results in some micro-optimizations being disabled.

Integrating Seminole
With An Application

334

• HTTPD_HAVE_THREADS - This macro should be defined to a non-zero (true) value if the target
platform supports simultaneous execution of two or more threads.

• HTTPD_HAVE_OPSYS_REALLOC - If the porting layer has its own native implementation of
HttpdOpSys::Realloc then this macro should be defined to a non-zero (true) value. If this
macro is defined to 0 then a pre-defined implementation of HttpdOpSys::Realloc that uses
HttpdOpSys::SafeRealloc.

There are several parameters that are common more than one portability layer implementation. Many of
these parameters adjust the internal operation of the portability layer. These are configurable through the
generalized configuration mechanism of the build system:

• HCLOSE_TIMEOUT - This parameter represents the maximum amount of time to allow the TCP
connections managed by Seminole to exist in the FIN_WAIT_2 state. The default value is 3600
seconds. If sockets are a limited resource on the target platform the lowering this value may help in
recovery from failed network connections.

• AVOID_LINGER - Enabling this option causes the portability layer to manually keep closed sockets that
still have undelivered data open. This option is necessary because on most platforms the SO_LINGER
option does not work at all or do what is needed for an HTTP server. Disabling this option should only be
done on TCP stacks that specifically implement the expected behavior with regards to HTTP pipelining.

• CONN_BACKLOG - This value is sent as the second argument to the listen() system call. Under
most operating systems this controls the depth of the queue that holds incoming but not processed TCP
connections. The default value for most targets is 5.

• MAX_HEAP_USAGE - If non-zero this places a hard limit on the amount of memory Seminole will use.
Attempts to keep more than this amount (in bytes) allocated will result in memory allocation failures
that Seminole will handle gracefully.

• MAX_THREAD_USAGE - If non-zero this places a hard limit on the number of threads that Seminole
may spawn.

• MAX_WAIT_FREE_TASK - If MAX_THREAD_USAGE is non zero (or thread pooling is enabled) then
Seminole will wait for up to MAX_WAIT_FREE_TASK milliseconds for the number of running threads
to go below MAX_THREAD_USAGE. If MAX_WAIT_FREE_TASK is 0 then spwaning a thread when
over quota results in an immediate failure return from HttpdOpSys::Fork which Seminole handles
gracefully.

• INC_THREAD_POOLING - If this symbol is defined to a non-zero (true) value then threads will be
reused as requests come in (within certain limits). For devices that function primarily as web servers,
significant gains in performance can be obtained with this option; depending on operating system and
hardware platform.

• MAXIMUM_FREE_THREADS - If INC_THREAD_POOLING is enabled then this is the maximum
number of free threads to keep on the free list. Any additional threads will eventually be scrubbed.

• MONITOR_POLL_TIME - If INC_THREAD_POOLING is enabled then this is how often (in seconds)
the pool of threads is trimmed to no more than MAXIMUM_FREE_THREADS entries. Decreasing this
delay will make Seminole less able to adapt the thread pool to sporadic load however it may reduce
resource usage (at the expense of CPU time).

• INITIAL_THREAD_COUNT - If INC_THREAD_POOLING is enabled then this is how many threads
will initially populate the free list.

Additionally, the provided POSIX target layer makes use of a few preprocessor symbols which may
be relevant in adapting it to new POSIX variants. These are listed below and may be set as described
previously.

Integrating Seminole
With An Application

335

• HTTPD_USE_SINGLE may be defined to a non-zero (true) value to cause Seminole to have only one
thread of execution; each Fork()'ed function runs to completion from the caller. This option is very
useful when debugging because many debuggers do not deal well with threads.

• HTTPD_USE_CLOCK_GETTIME tells the portability layer that the operating system supports the
clock_gettime system call. Most modern UNIX® systems do. Define this macro to 0 if this system
call is not available or broken on the target platform.

• HTTPD_HEAP_DEBUG can be used to enable a debugging version of the memory interface in
the HttpdOpSys class (see HttpdOpSys::Malloc). The debugging version verifies pointers, collects
statistics about memory usage, and tracks memory leaks.

• HTTPD_USE_POLL should be defined to a non-zero (true) value if the target platform supports
poll(). The poll() system call is far more efficient than the select() system call. If your system
supports poll() then this symbol should be defined to make use of it.

• Setting USE_INTEGER_DIFFTIME to 1 avoids the use of the ANSIdifftime() routine. This
routine subtracts two time_t values and returns the difference in seconds as a floating point value. In
many embedded systems floating point is undesirable. In most POSIX environments the time_t type is
understood to be a count, in seconds, from a well defined epoch. In this case a simple integer subtraction
can be performed instead of calling difftime().

• Enabling INC_PRIORITY_ADJUST causes the priority of the threads to be adjusted when they are
performing work. This feature is only possible if the pthreads implementation supports scheduling
parameters. The POSIX_PRI_ACCEPT, POSIX_PRI_WORKER, and POSIX_PRI_SCRUBBER
parameters, if not set to 0 control the scheduling priority of the task.

• Enabling USE_USLEEP causes the HttpdOpSys::TaskSleep method to use the usleep()
system call. If USE_USLEEP is disabled then select() or poll() is used to delay execution
instead.

• If INC_OVERLOAD_PROTECTION is enabled the POSIX portability layer requires an unused signal
to interrupt idle but in-use threads. This signal is configured with SOCK_INTR_SIG. The default value
is SIGUSR1. If your application uses SIGUSR1 for itself then change this parameter to an available
signal that has no significant side effects.

• If INC_OVERLOAD_PROTECTION is enabled the POSIX portability layer may encounter a small
race condition window in sending the signal to the blocked thread. The race is won by retry with a delay.
The SOCK_ABORT_POLL parameter controls how long (in milliseconds) to sleep during retries. This
should be set to a very low time value. The default value of 120 milliseconds should be sufficient. For
high volume processing this timer can be reduced to improve throughput at the (slight) expense of CPU
time.

• If SOCKET_SEND_TIMEOUT is greater than zero the send timeout of the underlying TCP stack is
set to this value (in milliseconds).

Extending Seminole

Introduction
For programmers used to the functionality offered by HTTP servers such as Apache, Seminole's sparse
feature-set and intimate API may seem like liabilities. Embedded systems programmers, on the other hand,
will recognize those attributes as its greatest strengths. However, since it is neither possible nor desirable to
predict every application which will incorporate Seminole, extending Seminole's functionality is a natural

Integrating Seminole
With An Application

336

requirement in most cases. This chapter attempts to answer basic questions implementors are expected to
raise, and provide a starting point to begin making changes in a logical way.

As discussed in the introductory sections of this manual, Seminole's design is quite modular. Great care was
taken to abstract mundane protocol issues and hide irrelevant complexity within a set of clean interfaces.
For these reasons, the difficulty of adding code to Seminole ranges from trivial (adding handlers or
tweaking isolated routines) to slightly involved (porting the environmental abstraction layers to a radically
different system, or heavily altering a core class).

Adding Handlers

Basics

By far the easiest way to extend Seminole is by adding new handlers. In many cases, the combination of a
few custom handlers with the utility classes provided out of the box are sufficient to successfully integrate
Seminole into your application or system.

As discussed briefly in the first chapter, Seminole services incoming requests by calling each registered
handler until one willing to service the request is found, or all handlers have declined. When handlers
are instantiated during Seminole's initialization, one of the constructor arguments represents a URL-space
prefix used to discriminate requests for which that handler is responsible. The handler chain maintained
by Seminole is sorted in decreasing prefix order, such that the longest match for any given request will
always be taken.

Two handlers are provided with Seminole because of their common necessity; the HttpdRedirector
class provides for HTTP redirections, and the HttpdFileHandler class implements a POSIX
filesystem reader suitable for providing file service through Seminole. Both classes are fully documented
in the preceding chapters.

All Seminole handlers are derived from the abstract HttpdHandler class, which provides appropriate
linkages for the handler chain as well as any common handler methods. Classes derived from
HttpdHandler must provide their own version of the virtual method Handle(), which serves as the
primary entry point and request dispatch routine for a handler. Needless to say, in threaded environments,
multiple instances of a given handler may be processing requests simultaneously.

Conventions

Most conceivable types of handlers will need to follow certain conventions. Since they must be registered
with a certain URL prefix, and the checking of each request's URL takes place within every handler (until
a handler dispatches the request), it is necessary for each installed handler instance to know its own prefix.
The prefix is given as a constructor argument when the handler object is instantiated, and subsequently
used to populate the member mpPrefix (inherited from HttpdHandler). Care should be taken in
deciding how to do this; if the implementor can be certain that the pointer passed into the constructor will
remain valid throughout the handler's lifetime, then a simple assignment will suffice. Otherwise, a call to
StrVCat() (or anything else allocating dynamic storage) may be appropriate, as shown in Example 15.2,
“A Skeletal Handler”).

mpPrefix is used by the IsMe() method (also inherited from HttpdHandler) to determine whether
a request is appropriate for the calling handler. Typically the first thing done in each handler's Handle()
is a call to IsMe(), passing a pointer to the current request being examined by Handle(); if the return
value is NULL, then there is no further work to be done, and Handle() returns false, indicating that
Seminole should continue to traverse the handler chain looking for a better candidate. Otherwise, IsMe()
returns the request path with the prefix portion removed (so in the case of a handler registered to service
“/abc/def”, the handler-specific portion of “/abc/def/ghi” would be “/ghi”). Note that there are

Integrating Seminole
With An Application

337

certain scenarios where the longest match according to IsMe() is not, in fact, the most desirable. For
example, given the URL “/productlogo.jpg”, with handlers installed on the prefixes “/” and “/
product”, requests for “/productlogo.jpg” would actually be accepted by the handler registered
on “/product”, which in this case is unlikely to be the intended behavior. For these situations, the
IsMyPath() method is provided in HttpdHandler. The calling conventions are the same, except
that IsMyPath() takes a second argument, a const char specifying the path delimiter (which is usually
“/”, but the option is left to the implementor). IsMyPath() is somewhat more discriminating; it checks
the request path and ensures that prefix actually maps to one segment in a hierarchical URL rather than
merely a matching substring of a path belonging to another handler. Thus, in the previous example,
since “/productlogo.jpg” does not contain “/product” as a path segment (as a URL like “/
product/info.html” would), that handler would receive a NULL return value from IsMyPath()
and allow the succeeding handlers to pick up the request. The typical scenario in which this problem might
be encountered is serving files from a hierarchical filesystem, but many other possibilities exist. Both
interfaces are provided for flexibility, and they are almost equivalent in terms of processing cost.

Once the question of acceptance or rejection is settled, the handler is responsible for processing the request
in its entirety; after Handle() returns, the client network connection is shut down with no further work
done.

Example 15.2. A Skeletal Handler

 class NewHandler : public HttpdHandler
 {
 // some public data members
 public:
 NewHandler(const char *p_prefix);
 virtual ~NewHandler();

 virtual bool Handle(HttpdRequest *p_request);
 // some public functions
 };

 // …

 NewHandler::NewHandler(const char *p_prefix)
 {
 mpPrefix = HttpdUtilities::StrVCat(p_prefix, (const char *)0);
 }

 NewHandler::~NewHandler()
 {
 HttpdOpSys::Free((char *)mpPrefix);
 }

 // …

 bool NewHandler::Handle(HttpdRequest *p_request)
 {
 const char *p_req_path = IsMe(p_request);

 // or perhaps this instead, if we're worried about the IsMe()
 // ambiguities mentioned above:
 //

Integrating Seminole
With An Application

338

 // const char *p_req_path = IsMyPath(p_request);

 if (p_req_path != NULL)
 {
 // this request is a match.

 // perform some processing …

 return (true);
 }
 else
 return (false); // this request doesn't match our prefix.
 }

CGI Processing

Most non-trivial handlers needing to accept input from a dynamic source will need to use the Common
Gateway Interface, CGI. By making use of the provided HttpdCgiParameter class, handler
implementors can quickly take care of retrieving CGI input and concentrate on their real work.

CGI permits an arbitrary number of name/value pairs to be passed to an HTTP server, either
as part of the URI (known as URL-encoded parameters) or as request data via the POST
method. HttpdCgiParameter::ParsePostData handles POST data, and expects a pointer to the current
HttpdRequest. HttpdCgiParameter::ParseUriString parses parameters encoded in a URI string,
and expects a string pointer to same. In either case, the parsing method returns a pointer to a
HttpdCgiParameter object representing the start of a chain. This chain is a singly linked list with each
node containing the name and value (specifically, an HttpdPair member called mPair) of each parameter
found. The mpNext member serves as a pointer to the next HttpdCgiParameter, or NULL if the end
of the chain has been reached.

Example 15.3, “Parsing CGI Parameters” shows a chunk of code that might be found in a custom handler.
In this simple example, we can accept up to three URL-encoded arguments, named foo, bar, and baz.
Each of these in turn is used to set integer variables in the handler, and presumably to control behavior
somewhere else. If the arguments were to be passed via the HTTP POST method, one need only call
HttpdCgiParameter::ParsePostData instead with a pointer to the HttpdRequest being handled. In all
other respects the example would be the same.

Example 15.3. Parsing CGI Parameters

 // …

 int foo = 0;
 int bar = 0;
 int baz = 0;
 HttpdCgiParameter *paramhead, *paramcur;

 // …

 // Retrieve all the CGI parameters that were encoded in our URI,
 // previously saved into *p_uri by Handle().

 paramhead = paramcur = HttpdCgiParameter::ParseUriString(p_uri);

Integrating Seminole
With An Application

339

 if (paramhead != NULL)
 {

 // If we're here, then we must have gotten something. Iterate
 // through the parameter list.

 while (paramcur != NULL)
 {

 // We only care about foo, bar, and baz. Other parameters
 // are ignored (a real handler might throw a syntax/usage
 // error instead).

 if (strcmp("foo", paramcur->mPair.mpKey) == 0)
 foo = atoi(paramcur->mPair.mpValue);

 if (strcmp("bar", paramcur->mPair.mpKey) == 0)
 bar = atoi(paramcur->mPair.mpValue);

 if (strcmp("baz", paramcur->mPair.mpKey) == 0)
 baz = atoi(paramcur->mPair.mpValue);

 // Follow the forward link to the next parameter.
 paramcur = paramcur->mpNext;
 }

 // All done, so free the parameter list.
 // It's important that the *head* of the list be freed, obviously.

 HttpdCgiParameter::FreeList(paramhead);

 }

 // …

Dynamic Memory Allocation

Introduction
Seminole performs all memory allocation through an API provided by the HttpdOpSys class. The API
is similar to the malloc package provided by ANSI C.

For efficiency reasons, when objects are allocated with the new operator, it is always done using
“placement new”. In addition, vector construction and destruction are not used. These choices were made
to allow Seminole to be comparable in code size to straight C code with as much efficiency as possible.

Creating Objects
Objects that are created on the heap are defined using a custom version of new:

Integrating Seminole
With An Application

340

 class MyObject
 {
 public:
 void *operator new(size_t, void *p_buffer)
 { return (p_buffer); }

 void operator delete(void *p_buffer)
 { HttpdOpSys::Free(p_buffer); }
 };

To instantiate a version of that object requires a sequence like the following:

 void *p_buffer = HttpdOpSys::Malloc(sizeof(MyObject));
 if (p_buffer == NULL)
 return (HttpdOpSys::ERR_OUTOFMEM); // Handle error

 MyObject *p_obj = new(p_buffer) MyObject; // Construct object.

This approach allows error handling to happen before the actual allocation. In the case of Seminole, out
of memory handling is critical to building robust systems. In most cases, the web interface is exposed to
a (potentially) hostile network. Denial of service attacks against the web interface should not result in a
failure of unrelated parts of the system.

By putting the error handling up front (before the constructors are called) it is easier to avoid partial
construction of objects. The allocations of several objects can be batched and then the entire action can
fail if insufficient memory exists before any constructors (which may modify state) are called.

341

Chapter 16. Host Tools
Introduction

Seminole attempts to do as much processing on the host as possible. Embedded systems are typically
limited in space and speed and adding a web interface to an existing embedded system should have the
smallest impact possible.

Most of the host-based tools are written in Perl. They were specifically coded to run on Perl 5.005_03
or better. Some of the tools (such as the compressors) are written in C (not C++) and need to be compiled
with a C compiler for the host environment — not with the target's C++ compiler.

Note

It is important to make sure that the build system uses the correct tools for the correct modules
when using a cross-compiler.

Host Tool Input Format
All of the host-based tools use a common preprocessor mechanism that is similar in function to the C
preprocessor; providing conditional compilation, file inclusion, and compile-time variables. The most
common syntax for the preprocessor is a line that begins with the bang character (!) and terminates with
a newline. Although, depending on the way the preprocessor is used (such as an HTML filter), directives
can be identified in different was depending on the input format.

Most strings in the preprocessor can use escape sequences similar to C strings.

Table 16.1. SCPG Escape Sequences

\xXX This interprets the two characters following the
x as a hexadecimal representation of the ASCII
character.

\{V} This extracts the environment variable named V. For
example: “path \{HOME}/public_html”

\p This is the current process identifier of the
SCPG process. Commonly used with the vmfile
directive to specify a temporary working file.

\s A space.

\n An ASCII newline.

\r An ASCII carriage return.

\t An ASCII tab.

\q A single-quote character.

\d A double-quote character.

\\ A literal \ character.

The preprocessor allows sections of the input to be conditionally included or not. A simple conditional
can be expressed like this:

Host Tools

342

 !if env(INCLUDE_HW_DOCS)
 path hwdocs
 !endif

The above example would only apply the path statement if the environment variable
INCLUDE_HW_DOCS were set to a non-zero or empty value. There are also much more complex things
possible:

 !if env(INCLUDE_HW_DOCS)
 ! if env(HW_MODEL) eq 'X5530'
 path hwdocs/X5530
 ! elif env(HW_MODEL) eq 'X6001'
 ! if env(INCLUDE_HOTPLUG) or env(LARGE_CHASSIS)
 path hwdocs/X6001/hotswap
 ! else
 path hwdocs/X6001/nohotswap
 ! endif
 ! endif
 !else
 path hwdoc_stub
 !endif

The expression syntax is quite simple and includes the logical operators and, or, and not. Strings
are single or double quoted and contain escape sequences (see Table 16.1, “SCPG Escape Sequences”).
Strings can be compared with the eq and ne operators. Environment variables are queried with the env
function. In addition, arithmetic can be performed using the traditional arithmetic operators + (addition),
- (subtraction), * (multiplication), / (division), and % (modulus). The osname operator is the name of
the operating system running the host tool.

Numerical comparisons are done using the = (equality), != (non-equality), > (greater than), < (less than),
>= (greater than or equal to), and <= (less than or equal to).

Expressions can test for the existence of a file in either the host file system (hostexists). In addition,
tools can add their own functions. For example, the SCPG tool adds a function called romexists:

 !if hostexists("/usr/share/special.html")
 EXTRN hostman.html /usr/share/special.html
 !endif

 !if not romexists("secure/debug")
 nodebug.html
 !endif

In addition, Perl code loaded with the !script directive can be called. For example:

 !script /usr/local/lib/capabilities.pl

 !if perl:HasCapability('INCLUDE_HW_DOCS')
 path hwdocs
 !endif

Host Tools

343

The above example would call a Perl routine named HasCapability. The return value of that function
determines the path of the conditional.

There is no reason to even limit the argument to literal values. For example:

 !if perl:CheckFeature(env(FEATURE_ID) + 2, osname)
 path somefeature
 !endif

Will call the routine with the value of the environment variable FEATURE_ID plus two and the operating
system name. Albeit, redundant (because those values are available directly in Perl), it is possible.

Environment variables can be set using the !set directive. There are two forms of this directive. The
first form of name = value will set the environment variable called name to the value “value” (taking
into account any escape characters). Double quotes are not recognized as special characters in the above
form. For example, this:

 !set my_var = "This is in environ[]"

Would actually set the variable my_var to the string containing the double quotes and spaces. Even though
quoting is not relevant for setting environment variables, the escape sequences defined above work on the
left hand side and can be used to put special characters into environment variables.

Alternatively, the := operator can be used. This evaluates the right-hand side of the expression as if it
were part of a !if directive. For example:

 my_var := env(OTHER_VAR) + 2

Conversely an environment variable can be deleted using the !unset directive.

The set and unset commands manipulate the environment of the host tool. This environment persists
for as long as the tool is running. For tools that process more than one file when run (such as SCPG) this
may not be the most useful thing. Instead it would be better if a variable could be set only for the duration
of processing a file. The local and localunset commands behave just like their global counterparts
only the changes they make are undone after preprocessing is complete.

File paths can be manipulated somewhat portably with the catfile and catdir functions which
concatenate the components of a file path and a directory path, respectively. The current directory can
be obtained with the cwd function. The updir function returns the path component used to mean the
previous directory.

For example, to construct a fully qualified path to a file in an environment variable:

 !set CONFIG_FILE := catfile(cwd, updir, 'foo', 'bar.cfg')

The value of an expression can also be inserted “in line” using the eval directive. For example:

 default_value {

Host Tools

344

 !eval env(DEFAULT_VALUE) + 16
 }

Files can also be included using the !include directive:

 !include stdconfig.cfg

 # Refer to the objects in stdconfig.cfg

Using the SCPG Tool
Introduction

SCPG runs on the development host and compacts content from the filesystem to form a single binary
image that can be served from the embedded host's ROM filesystem. The term “ROM filesystem” is really
a misnomer, because the content package can actually be stored anywhere as long as it can be accessed
as a HttpdDataSource. Optionally, SCPG can even compress certain components of the content so that it
takes less space. The data source is then interpreted by a HttpdRomFileSystem object.

SCPG is written in Perl but calls upon other tools for certain things (such as compression). In addition
to the main tool, other tools such as bin2c are provided that can be useful for dealing with the content
package after it's assembled.

Usage
When Seminole is built, SCPG is placed in built/tools. It can be run from that directory and can
(usually) locate all of its required files from the path that it is executed in.

During the build process of some of the example applications a small content package is built from the
content in the html subdirectory. The content.cfg in the examples directory is a good starting point
for creating your own content packages.

The following command-line options are accepted by SCPG:

Table 16.2. SCPG Command Line Options

-h Show help and usage information for command line
arguments.

-v Verbose. Give a summary of the content as it is
processed.

-o Set the output filename. If this option is not
specified, it defaults to content.pkg.

-c Set the configuration filename. If this option is not
specified, if defaults to content.cfg.

-x Treat any error as fatal. SCPG removes the output
file and exits with an error code in the case of any
warnings or errors.

-T Preprocess and compile a template file. This option
overrides the normal behavior and is used for per-
file processing. See Standalone Templates.

Host Tools

345

-t Compile a template file. This option overrides the
normal behavior and is used for per-file processing.
See Standalone Templates.

-w If -t or -T is specified this option also causes
whitespace to be minimized. See Standalone
Templates.

Input Configuration File Format
The format of the configuration file is similar to most UNIX® command line shells. Tokens of one or more
non-whitespace characters are separated by one or more whitespace characters. Both single and double
quotes may be used to specify tokens containing whitespace. The beginning and ending quoting characters
must match. If single quotes are used, then double quotes are ignored inside quoted strings. If double
quotes are used, then single quotes can be used inside a double quoted string.

Comments are allowed. They are begun by the # character and extend to the end of that line. Comments
can begin at any point in a line and terminate with the end of the line.

As with most other host tools, the input files are first processed by the host tool preprocessor. SCPG adds
an additional expression function to determine if a file exists in the file system that is being generated for
the target (romexists).

Lines in the configuration file that are neither blank nor comments are interpreted as directives by SCPG.
Long lines may be continued to the next line with a trailing backslash (\) on the end of the previous line.
This does not apply to conditionals (conditionals must be on a single line). This allows conditionals to
work on a single, continued line. Line continuation does, however, apply to variable assignments.

The following directives are available:

Table 16.3. SCPG Configuration File Directives

use Set or clears options and flags. One or more options
may be listed on the command line following this
directive. If the option is preceded by a “-” then
the option is disabled, otherwise it is enabled.
Available options are listed in Table 16.4, “SCPG
Configuration File Options”.

mime Add an entry to the extension-to-MIME type
mapping table. As SCPG processes the directory
hierarchy it will try to guess the MIME type of any
files that aren't explicitly given MIME types. The
guess is done based upon the extension of the file.
Each mime statement adds one or more extensions
to a MIME type. For example, “mime text/
html html htm hypertxt” would mean that
files ending in .html, .htm, and .hypertxt are
assumed to be have the MIME type text/html.
More than one mime statement can be issued for
each MIME type; each additional mapping is added
to the list (the example statement could easily be
written as three statements, one for each extension).

mime_map Specify an Apache-style mime.types file. This
is an alternative to specifying the MIME mappings
manually using the mime directive described

Host Tools

346

above. If you have a mime.types file in the
standard Apache format, then this directive causes
it to be sucked in and thus populate the MIME
mapping table. For example, “mime_map /var/
www/conf/mime.types” would read in the
common MIME mappings from a standard Apache
installation on an OpenBSD system.

filter Specify a series of filters to apply to a specific
MIME type. The first argument is the MIME type to
trigger on. The second argument is the MIME type
to actually encode the file as (this is what the HTTP
client gets). Optionally, the output MIME type may
be a - which means the input MIME type is the same
as the output MIME type. The remaining arguments
are all filter specifiers that are executed from left to
right. See Filters.

encoding Specify the recommended encoding for a specific
MIME type. The format of the ROM filesystem
allows for different files to be encoded using
different means. For example, some files may use a
compressed encoding or perhaps a tokenized form.
As with MIME types, SCPG tries to guess the
correct encoding based upon a file's MIME type
(of course, this can be overridden on a file-by-file
basis). Its syntax is otherwise similar to the mime
directive.

path Specify the directories containing the root files
for the package. Using the example of an average
Apache installation (crunching a document root
into a ROM filesystem): “path /var/www/
htdocs”. More than one directory may be
specified in this statement. In that case the content
package contains the union of all the files in all the
root paths.

listing Specify the filename of the listing files. Each
directory that is to contain actual files (not
intermediate directories) must have an associated
“listing file”. The listing file explicitly determines
which files in a directory go into the ROM
image (to avoid working files being mistakenly
added). Listing files also allow MIME and encoding
parameters to be overridden on a file-by-file basis.
By default, listing files are called content.lst
(one per directory). However, some people may
wish to name them something else, such as
.content.lst so that they are hidden files. This
directive permits such a change.

define This statement is used to define new constructs
(such as encodings) to SCPG. The first argument
to define is the type of the object to define.
Subsequent arguments are depend on the type of
construct. Further discussion of encoding types (for

Host Tools

347

when the second argument is “encoding”) is found
in the next section. Alignment is covered in its own
section as well.

Table 16.4. SCPG Configuration File Options

subdirs Setting this option will include additional
information in the ROM image so that directory
listings can be constructed. By default, subdirs is
disabled to save image space.

have-attribute-decoder This option tells SCPG that the
INC_ROM_ATTRIBUTES option is enabled. Both
of these options should be enabled if you plan to use
attributes for files (such as charset). There are
also certain corner cases that require this option for
extremely large ROM file systems. If this option is
not enabled and it is required then SCPG will inform
you with a fatal error.

bad-filter-error Normally if a filter does not complete successfully
construction of the content package is aborted and
an error is returned. If this option is set and a filter
fails, it is just skipped and processing continues
normally.

Filters

SCPG allows preprocessing to be done on content before it is packaged. For each possible MIME type
one or more filters may be run on the input. The output of each filter is passed as the input to the next in
succession. After all filters have been applied to a file the MIME may optionally be changed and the file
is passed to the appropriate encoder.

Filters are specified with the filter keyword and attached to a specific MIME type. The following are
the built-in filters:

Table 16.5. SCPG Filter Types

html-squish This filter should only be applied to HTML (or
similar files). It removes redundant whitespace
when possible to shorten the final content length.
This reduces storage requirements and transmission
time of the file. For a further reduction in storage
the file can also be encoded with a compressor.
This encoding can optionally take an argument of
keep-comments to prevent removal of HTML
comments. An argument of avoid-tokens can
be used to handle the tokens of the preproc or
template filters appropriately. Both options may
be specified with a comma.

css-squish This filter should only be applied to CSS files.
It removes redundant whitespace when possible
to shorten the final content length. This reduces

Host Tools

348

storage requirements and transmission time of the
file. For a further reduction in storage the file can
also be encoded with a compressor. This encoding
can optionally take an argument of keep-first-
comment to prevent removal of the first comment
in the file. This is useful to keep a copyright notice
or other important comment at the start of the file
but to remove programming comments.

external This represents a filter operation that is performed
by an external program. The supplied argument
is the operating system command to run. If
the argument to this filter contains the string
__input__ and __output__ then those strings
are substituted with the input and output file names
of the filter, respectively. Otherwise the external
filter is given its input on standard in and the output
is read from standard out.

perl This filter relies on the fact that SCPG is written
in Perl. Using code loaded with the !script
preprocessor directive, subroutines in that code can
be called. If the subroutine returns true the filter
operation is considered successful, otherwise failure
is assumed.

preproc This filter provides compile-time preprocessing for
textual content, typically HTML. If the html-
squish filter is used, be sure to enable the
avoid-tokens option. For a complete reference
on the syntax of the preprocessing directives see
Content Preprocessing.

template This filter compiles a template into binary form.
Because the output of this filter is binary it should
always be the last filter applied to content. If
the html-squish filter is used, be sure to
enable the avoid-tokens option. For a complete
reference on the syntax of the template directives
see Template Syntax.

The external filter can be quite useful for quick transformations using UNIX® tools such as tr. For
example, to remove all of the $ from a document, use the following filter rule:

 filter text/html - "external:tr -d '$'"

The perl filter is quite powerful because all of the constructs of Perl are available for processing content.
The syntax of the perl filter argument is similar to that of normal Perl subroutine calls:

perl:mysub(1,2,foo)

The above filter argument would result in a call to an included subroutine called mysub with four
arguments. The first argument is always passed in by SCPG and is a reference to a hash that contains the
following members:

Host Tools

349

Table 16.6. SCPG Perl Filter Hashref Contents

input_file This is the name of the input file, which is also
opened for reading with a handle of INPUT.

output_file This is the name of the output file, which is also
opened for writing with a handle of OUTPUT.

The remaining parameters are 1, 2, and the literal string “foo”.

Encoding Types
As briefly described in the previous section, the define directive can be used to add new encoding types.
This section describes the particulars of how SCPG implements encoding.

By default, there is one encoding type predefined by SCPG: stored. This is the most basic encoding
method. The content is stored in the ROM image “as is”. This is the most efficient encoding in terms of
speed but the least efficient in terms of space. In fact, on some operating systems that map the ROM package
into the address space a direct send to the TCP/IP stack can be performed without any copying overhead.

However, other encodings can be established by use of the define directive. Seminole supports
several compression schemes that cover a range of performance characteristics. A simple but effective
compression scheme based upon the LZRW1/KH algorithm that has been floating around the net for some
time. Alternatively the LZJB algorithm gets good compression while being very easy to decompress.
Seminole also supports a more agressive (but slower) compression engine based on LZ with arithmetic
coding. The compressors are bundled as helper applications compiled during the normal Seminole build.
A description of how to add the compressors as encoding types will be illustrated below.

The initial part of an encoding type definition in the input configuration file is define encoding.
After encoding, the next argument is the symbolic name by which the encoding is known to SCPG with
the ID number used by Seminole to decode the data in parentheses.

Following the symbolic name and ID is the encoding access method. Currently, all encodings are accessed
as external “helper” applications signified by the argument helper. However stored may also be used
to indicate no transformation. Stored encodings should have an ID of 0.

The arguments following the access method are the command and arguments to execute. Certain tokens
are replaced during execution of the helper:

Table 16.7. SCPG Encoder Symbols

__is_ascii__ Set to either the string “ascii” or “binary” depending
on whether the input file's MIME type requires any
format conversion.

__source_file__ This is expanded to the name of the input file that is
to be used as the source of data.

__output_file__ This is the name of the file that the encoded data
should be written to. This file should be opened in
binary append mode as there may be existing data
that can not be clobbered in the file.

Additionally, it is very important that the encoder report any changes to the content such that the decoded
content is a different length than what is delivered (e.g. by altering the line endings of ASCII files). This
is done by having the encoder emit the string content-length: NNN to standard output.

Host Tools

350

For example, to attach the supplied compression helper apps to encodings called lzrw1kh, lzjb, and
lzari, you can add the following directives to your input configuration file:

 define encoding lzrw1kh(1) helper lzrw1kh_compress 16384 \
 __source_file__ \
 __output_file__

 define encoding lzari(2) helper lzari_compress 16384 \
 __source_file__ \
 __output_file__

 define encoding lzjb(3) helper lzjb_compress 16384 \
 __source_file__ \
 __output_file__

The number in parenthesis after the encoding name is the codepoint that is used to reference the encoding
in the runtime portion of Seminole. It is important that the numbers always are associated with the correct
encoding. It is correct to define two lzari encodings with different block sizes as long as the code point
is always 2.

The first parameter is the compressor (lzrw1kh_compress or lzari_compress), 16384, is the block size
that the tool tries to compress with. There is a fixed amount of overhead per compressed block, however;
the larger this value, the more memory is required by Seminole during decompression of the file.

Alignment
For efficiency reasons, it is often desirable to align content on specific addresses. This can be especially
true of certain kinds of flash memory. Alignments can be specified either globally or on a per-mime-type
basis.

To define an alignment specific to HTML pages of 16 bytes, for example, add the following to the
configuration file:

 define alignment text/html 16

To define an alignment for all content that does not have a specific alignment of 8 bytes, the following
may be added to the configuration file:

 define alignment * 8

Note

An alignment of 0 means no alignment. This can be used to override a default alignment to
not align various infrequently used MIME types.

Note

Currently, no attempt is made to optimize content by placing files with larger alignments
first. It is expected that some common sense is used when assigning alignments.

Host Tools

351

Listing File Format
After setting up an appropriate input configuration file, the only remaining step is to create listing files in
each of the subdirectories beneath the directory named by the path directive.

The format of a listing file is similar to the SCPG configuration file format. Each line starts with a directive
and then a series of parameters. The directives define files that are to be included in the content package
as well as optional parameters (such as MIME type or encoding). Comments are designated using # to the
end of the input line. Preprocessing directives are also allowed throughout the listing file.

The simplest directive is file. This directive includes a single file. By default the file is included from
the current directory of the host filesystem into the same (relative) directory of the target filesystem. For
example, to include several HTML files:

 file "order.html"
 file "pizza.html"
 file "sandwich.html"
 file "frootloops.html"

Note

The same escape sequences defined in Table 16.1, “SCPG Escape Sequences” are allowed
in the filenames placed in the listing file. If the string constants do not include any characters
outside normal alphanumeric characters and a period (.) then the quotation marks may
be omitted and the value is not subject to escape sequences. Adjacent string constants are
concatenated just as in C.

Options that override the defaults may follow the filename. For example, let's assume that a directory
contains a tar.gz file. In that case, you would like to override the default MIME type that SCPG normally
guesses from the file name:

 file "testdata.tar.gz" mime "application/x-funky-tar"

In addition it is also possible to use a different encoding type (such as lzrw1kh, for example). In this
case both overrides can be specified separated by a comma (,).

 file "testdata.tar.gz" mime "application/x-funky-tar", \
 encode lzrw1kh

Note

Notice how the single line was continued to the next using a backslash as the last character
on the line.

The HttpdFileInfo class also supports arbitrary name-value pairs called “attributes” to describe
additional data about a file. These attributes can be set in the listing file using an assignment-like syntax.
Adding to the example above two attributes are set on the file:

Host Tools

352

 file "testdata.tar.gz" mime "application/x-funky-tar", \
 encode lzrw1kh, security = "restrict", password = "my file"

By default files are placed in the ROM file system in the directory of the listing file that describes them
relative to the path directive in the configuration file. For example, if the path directive is content/
webapp and the listing file is located in content/webapp/settings/hardware then the files
would be placed in the ROM filesystem under settings/hardware.

This default location can be changed with the location directive. Continuing with the above example:

 file "testdata.tar.gz" mime "application/x-funky-tar", \
 encode lzrw1kh, security = "restrict", password = "my file", \
 location "/downloads"

With very complex content descriptions two or more listing files may try to insert the same file. Ordinarily
this results in an error from SCPG. However the ignoredups keyword prevents this from happening.

It can become tedious to place every file in the listing file. SCPG allows filename globbing with a different
directive:

 glob "*.html"

It is possible that a particular pattern may match nothing. This is especially possible when generic listing
files are used with automatic content generators. For these situations the optional attribute ignores any
file patterns that do not match any files.

When using the glob directive any attributes or parameters associated with the directive are applied to
all the files.

Sometimes it is necessary to ensure a file has a different name in the ROM filesystem than on the host
filesystem. This can be accomplished using the extern directive. This directive is identical to the file
directive except that two file names must be specified. For example:

 extern "romfs.name" ("data.html")

The above example includes data.html from the host filesystem as romfs.name in the ROM
filesystem. Of course, as with other directives modifiers and attributes can follow the left parenthesis.

Standalone Templates
For development or where the ROM filesystem is not used it may be desirable to use the template
mechanism independently. With the correct command-line options SCPG can generate binary template
files from one or more input files without going through the content packaging or compression steps.

To simply compile a series of template files the following command would suffice:

scpg -c std.cfg -t t1.thtm t2.thtm t3.thtm

Host Tools

353

Note

Notice that it is still valid to specify a configuration file so that global options can be set.
Directives specific to packaging and compression are ignored when the -t (or -T) options
are specified.

Sometimes compile-time pre-processing is also desired. For those cases the -t option can simply be
substituted with a -T. In addition, with either -t or -T the -w option can be added to remove redundant
whitespace as if the html-squish filter was applied.

Content Preprocessing

In many embedded systems multiple models of the same product require slight alterations to content. This
can lead to the annoying situation of maintaining similar but slightly different versions of content for each
product.

SCPG provides a filter, called preproc that provides a mechanism for preprocessing content similar to
the C preprocessor. This is the same mechanism that is employed in the SCPG configuration and listing
files.

As a quick example let us assume a PBX as our embedded device. Smaller models store all of their data
in flash memory, while larger models offer a hard disk. The first issue is that commands relating to a hard
disk are not present in some models, so we want to be able to select this at compile time. So we assume
that an environment variable named MODEL contains the model number of the PBX that we are building
the content for.

Using the filter directive in the content.cfg we tell SCPG to preprocess all text/html files:

 filter text/html text/html preproc

We then use a special sequence to denote preprocessor commands in the content:

 <html>
 <body>
 <h2>Actions</h2>

 Reboot system
 Configure line card
 Update dialing plan
 %[if (env(MODEL) eq 'P3000') or (env(MODEL) eq 'P3500')]%
 Format hard disk
 Check consistency of hard disk
 %[if env(MODEL) eq 'P3500']%
 Copy disk to spare
 %[endif]%
 %[endif]%

 </body>
 </html>

Host Tools

354

When SCPG runs the preproc filter on this file it evaluates the %[directives. If the model is P3000 or
P3500 (the models with hard disks) the extra options are included. Furthermore, if the model is P3500
(two hard disk slots) an additional option of backing up the hard disk is included.

The preprocessor can do much more than just conditionally select content. The same expression engine
used for SCPG configuration file format is used for the content preprocessor.

Table 16.8. SCPG Content Preprocessing Commands

Command Description

eval Evaluate an expression and substitute the value for
this directive.

include Include (and additionally pre-process) another file.

if, elseif, else, and endif Conditionally include sections of content.

Using the bin2c Tool
Introduction

The bin2c tool is a simple utility that can be used to take binary files and encode them as statically
initialized C arrays. This is mainly useful for encoding content packaged with SCPG, which produces a
single binary file as output.

This is often the most efficient (and easiest) way to get content included into an embedded system.
The included data can then be encapsulated as a HttpdMemoryDataSource and passed to an instance of
HttpdRomFileSystem.

Usage
When Seminole is built, the bin2c tool is placed in built/tools.

The following command-line options are accepted by bin2c:

Table 16.9. bin2c Command Line Options

-o Set the output filename. This option is required. A
usage message is generated if it is not set.

-h If this option is specified, a header file is generated.
The filename of the header file must follow this
option.

-p Use this option to generate C++ code. There is a
subtle difference in the way constant data is declared
between C++ and C.

Anything else is taken to be the file name of a file to turn into an initialized array and the corresponding
symbol name to call that array (see below). More than one file may be generated in a single output file.

Typically, bin2c is used to encapsulate a content.pkg file:

bin2c -o content.c -h content.h website=content.pkg

The above would generate a header and source file that define an array called website. The header file
would look similar to the following:

Host Tools

355

unsigned const char website[16384];

Because the size of the array is included even in the header file, the size of the file can be easily determined
with a construct such as:

 HttpdMemoryDataSource website_data(website, sizeof(website));

Using the makecert Tool

Introduction
The makecert tool is a simple utility that helps to create SSL certificates and private keys. This tool
requires that the openssl program be correctly installed.

The tool performs several steps including generating a private key, creating a certificate request, and self-
signing the certificate. Once complete, the certificate and private key are in separate files as well as being
available in a single PEM file that can be given to Seminole

The server certificate is also generated in DER format. This format is sometimes needed to install the
certificate in a browser. In particular, this is the format expected by Microsoft Internet Explorer.

Usage
makecert takes no command-line parameters. It is interactive. To automate the generation of server keys
and certificates the openssl tool should be used directly.

Once executed, makecert will ask several questions. The most important one is:

 What should the cert be called?

This is the base name of the generated files. If “foo” is entered, then the files generated will be:

foo.key (Server private key)
foo.csr (Certificate signing request)
foo.cert (Server identification certificate)
foo.pem (Server key and certificate)
foo.der (DER-encoded certificate for distribution)
foo.opts (Seminole options file)
foo_dh1k.pem (1024-bit DH parameters; only if Diffie-Hellman is enabled)
foo_dh512.pem (512-bit DH parameters; only if Diffie-Hellman is enabled)
Only foo.opts and foo.pem are required to start the server.

At some point during the generation of the certificates the script will ask for some geographical and
identification parameters. The most important of these is the “common name.” This field must be the DNS
name or IP address that the server will be identified as to the browser. The browser verifies the information
about the current page with the value of this field in the certificate.

A typical run of makecert would be:

Host Tools

356

Do you want to see the commands used for this run? [y/N] n
What should the cert be called? test1
Do you want a password protected key? [y/N] n
Generating a 1024 bit RSA private key
.++++++
..++++++
writing new private key to 'privkey.pem'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US
State or Province Name (full name) []:Florida
Locality Name (eg, city) []:Boca Raton
Organization Name (eg, company) []:Acme General Widgets, Inc.
Organizational Unit Name (eg, section) []:Engineering Department
Common Name (eg, fully qualified host name) []:www.example.com
Email Address []:jrandom@example.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
writing RSA key
Signature ok
subject=/C=US/ST=Florida/L=Boca Raton/O=Acme General Widgets, Inc./OU=Engineering Department/CN=www.example.com/emailAddress=jrandom@example.com
Getting Private key
Generating default options file test1.opts

For more security, symmetric key encryption should not use the
server's private key. Instead, a key should be exchanged using
the Diffie-Hellman algorithm. Generating the parameters for this
algorithm may take some time but it will not adversely impact
server performance.

Do you want to use DH ephemeral keying? [y/N] n

The files test1.opts and test1.pem contain all that is
necessary for the server to operate in SSL mode.

Using the msgcmp Tool
Introduction

The msgcmp tool is used to compile a textual message catalog into a binary file that can be accessed using
the string bundle class (HttpdStringBundle).

Host Tools

357

The input to this tool is a single file containing the logical names for the strings (how they are represented in
the code) as well as one or more physical strings in different languages. The tool builds one or more binary
files, each containing one particular set of physical strings. Optionally, a header file may be generated
containing the identifiers for the logical strings defined as constants (with a prefix of MSG_).

The idea is to generate a different binary file for each locale that is to be supported but only a single header
file. The same header file is always produced for the same input set of logical messages. Therefore, a
generic code image can be compiled for all locales. Then a specific locale can be bound at a later time
(typically by with the HttpdRomFileSystem). Alternatively, multiple binary files can be kept in a single
device so the locale can be switched at runtime.

Usage
When Seminole is built, the msgcmp tool is placed in built/tools.

The following command-line options are accepted by msgcmp:

Table 16.10. msgcmp Command Line Options

-r If this option is specified, the binary file is
generated. The filename of the binary file must
follow this option.

-h If this option is specified, a header file is generated.
The filename of the header file must follow this
option.

-l This option must be present if the -r option is
specified. The requested locale name must follow
this option.

-d This option specifies that all of the locales in the
input file should be build into appropriately named
files and placed in the directory specified by this
option. This is most commonly done to produce
images containing all specified languages. If this
option is specified then the -l and -r options are
not allowed.

At least one of -r or -h must be specified. Alternatively, both can be specified to generate all of the
required files in one pass.

Anything else is taken to be the file name of a file to process. At a minimum one file must always be
specified. To keep things consistent the same set of filenames must always be specified in the same order
between each invocation of msgcmp.

Input File Format
The input file is a text file that contains one or more “message definitions.” Each message definition
contains a name and one or more physical strings associated with locale names.

 [INVALID_CHARACTER_IN_NAME]
 english: Invalid character in name
 german: Unzulässiger Buchstabe im Namen
 italian: Carattere non valido nel nome

Host Tools

358

A locale of * can be used to mean all other locales. So if for a particular message was the same for
everything except English, a shortcut would be:

 [FILE_SYSTEM_FAILURE]
 english: Please contact us at 1-800-BAD-HARDWARE.
 *: Please contact our overseas offices at 1-561-212-5555.

Using the specgen Tool

Introduction
The specgen is an extensible tool for generating complex code sequences from clear, concise specification
files. In particular, specgen is well suited for generating some of the code for interfacing with the more
complex API's of Seminole.

The format of specification files is similar to C or C++. In addition, host tool preprocessor directives are
understood. The actual syntax of specification files is open ended. Initially, a few commands are defined
by specgen internally. The most important of which, package loads additional capabilities into specgen.
The package directive loads a Perl module from a file. That module can then add new directives to
specgen.

By default, the specgen tool always creates a header file and a C++ (or C) source file. Typically the header
file is included in other (hand-written) source modules to use the definitions declared by specgen in the
source file.

The produced source file is then compiled and linked with the resulting application. The most common uses
for specgen are for generating template symbol maps (HttpdSymbolMap parameters) or application
framework objects.

Usage
When Seminole is built, the specgen command is placed in built/tools.

The following command-line options are accepted by specgen:

Table 16.11. specgen Command Line Options

-c This mandatory option should be followed by the
filename or the source file that will be generated.

-h This mandatory option specifies the filename of the
generated header file.

Anything else is taken to be the file name of a file to process. At a minimum one file must always be
specified.

Input format

General conventions

As with most other host tools, comments are indicated with the pound character and terminate at the end of
the line. Identifiers follow the rules of C++ identifiers. In particular, the scoping operator (::) can be part

Host Tools

359

of an identifier. For example, System::Heap is a valid identifier but System:1234 is not. Quoted
strings and numeric constants also follow the rules of C and C++ as well.

Directives are identifiers with special meanings. Similar to C keywords they are almost always all lower
case (although the directives are at the discretion of the package and not under the control of specgen).
All directive bodies should be terminated with a semicolon just as C++ statements are terminated with a
semicolon. Blocks are typically indicated using curly braces. Unlike C++, components of a block must
also be terminated by a semicolon.

So a typical structured block in a specification file would look like:

 object myObject
 {
 anattribute 0x100;
 blockattribute
 {
 value 1;
 othervalue 2;
 };
 };

Often times it is necessary for specification files to contain small snippets of C or C++ code. This is done
using an arrow operator (<-). After this operator specgen will scan forward and absorb a single statement.
The code fragment can contain nested blocks; specgen will copy a full statement, including any nested
blocks.

For grouping multiple statements, the <= operator begins a block of native C or C++ code that is terminated
by the end keyword.

 pass source <=

 static unsigned int gCounter = 0;
 static char gFileName[16] = "default.file";
 end;

Built-in directives

When initially processing an input file, specgen understands a few initial directives.

Table 16.12. specgen Default Directives

package This directive loads a specgen “package” specified
by the identifier name following the directive.
There are several pre-built packages and additional
packages can be built by a skilled Perl programmer.

include This directive is used to specify a header file that
should be included in the generated output. A quoted
filename should follow the directive.

There are also two modifiers that can precede the
filename. The first, standard instructs specgen

Host Tools

360

to use an include directive with angle brackets.
Typically this tells compilers to find the include
file using the specified include path. The second
modifier, header causes the include declaration to
be emitted to the generated header file as well as the
generated source file.

If both modifiers are present, the standard
modifier must always precede the header
modifier.

pass The pass directive is used to simply pass code
straight through to the output files. It must be
followed by one of: source (send the following
block to the generated source file only), header
(send the following block to the generated header
file only), or all (send the following code to both
files).

The option is then followed by a C or C++ code
fragment preceded by the arrow operator.

Typical specification files will first use the include directive to pull in the appropriate header files (the
Seminole API and whatever application-specific header files are necessary). The specific packages are
then loaded using the package directive, followed by the actual specification bodies.

Included Packages
Seminole installs a few packages by default that can be used without any Perl programming. Each of these
packages provides a few new directives that assist in programming a particular API.

The templates package

The templates package provides directives for programming some of the more tedious interfaces to
the template engine.

The template_constants directive will build the necessary tables for using the
HttpdConstantSymbolTable class:

 template_constants PresentationParameters
 {
 style = "border: 2px; margin: 1em;";
 theme = "/themes/slate.css";
 attrs = "readonly maxlength=\"25\"";
 };

That specification will result in the following declaration:

 extern const HttpdPair PresentationParameters[3];

If the HttpdPair table were to be declared manually, it would have to be sorted by
key (HttpdConstantSymbolTable uses a binary search). However, when using the

Host Tools

361

template_constants directive, the tool automatically sorts the entries for you. Removing these kinds
of error prone, tedious tasks is the primary reasoning behind specgen).

The symmap directive is used for generating HttpdSymbolEntry tables to support the HttpdSymbolMap
and HttpdScopedSymbolMap classes. Briefly, a symbol table map is an array of named fields that
specify an offset in a structure and one or more handler procedures. These maps make displaying data
from C (or C++) data structures easy.

As with HttpdConstantSymbolTable tables, the sorting is done automatically and fields can appear
in any order. A structure name must be associated with the map name, as an example we will assume a
structure named Person is defined in an application-specific header file as follows:

 struct Person
 {
 char first_name[64];
 char last_name[64];
 unsigned long age;
 bool married;
 const char *occupation;
 char sex;
 };

Given the structure above, we can use the symmap directive to map this into template directives. Most
of the fields can be handled using the standard handlers provided by HttpdSymbolMap, except sex.
Of course, we can write some simple code to handle the character field and do anything we want. In fact,
we can make that particular field more complicated. It can be M for male, F for female, or zero if the sex
is not known.

We can make the identifier sex both a template conditional (not zero) and a template evaluation (the
appropriate label).

 symmap PersonMap: Person
 {
 first_name = stringbuf;
 last_name = stringbuf;
 age = ulong;
 married = bool;
 job (occupation) = string;
 sex
 {
 cond <-
 {
 const char *p_char = (const char *)p_data;
 return (HttpdSymbolTable::ReturnBool(*p_char != 0));
 };

 eval <-
 {
 const char *p_char = (const char *)p_data;
 const char *p_label = (*p_char == 'M') ? 'Male' : 'Female';
 return (p_eval->Output()->WriteString(p_label));
 };

Host Tools

362

 };
 };

For the types that symmap knows about we can use the simplified sequence as is done for the first four
fields. The field occupation is mapped to job in the template, but it is still a predefined type.

For the sex field, we provided a conditional code fragment and an evaluation code fragment (we also
could have provided code for a loop fragment). Therefore, the template symbol sex can be used in
conditionals (to determine if it is present) and can be evaluated to produce the actual value.

Alternative names can also be provided for specifically defined types. In addition, in place of the code
blocks, an identifier can be provided. Care must be taken to ensure that the prototype of the provided
identifier is included and matches what is needed. With those two additional changes in mind, the last
field could be specified like this:

 gender (sex)
 {
 cond <-
 {
 const char *p_char = (const char *)p_data;
 return (HttpdSymbolTable::ReturnBool(*p_char != 0));
 };

 eval OtherClass::FormattingMethod;
 };

Table 16.13. symmap predefined types

Type Function

string HttpdSymbolMap::EvalString

stringbuf HttpdSymbolMap::EvalStringBuffer

ulong HttpdSymbolMap::EvalUlong

long HttpdSymbolMap::EvalLong

hexlong HttpdSymbolMap::EvalHexUlong

bool HttpdSymbolMap::CondBool

363

Appendix A. Obtaining Support
All Seminole licenses include 8 hours of support. Additional support can be purchased at a cost of $90US
per hour. Please contact a sales representative for more information.

(+1) 1-561-213-6177
E-mail <sales@gladesoft.com>
http://www.gladesoft.com/

http://www.gladesoft.com/

364

Glossary
A
Alignment Locating data such that it is at an address that is appropriate for its type.

For example, many CPU architectures can only access words on their natural
boundary. Thus, a 16-bit value can not be accessed at an odd address (on a byte-
addressable machine). Unaligned data may not always result in failure but may
often result in performance degradation.

ANSI The American National Standards Institute. A standards body responsible for
various standards incuding those in computers and engineering. Typically the
acronym ANSI is used to refer to the C programming language standard.

Application Programming
Interface (API)

The interface that to developers who are utilizing Seminole to build web interfaces
and applications see. The term “Application Programming Interface” is used in
this manual to refer to all the documented public interfaces of Seminole.

Application Any code that is not part of the Seminole library. Typically this term is used to
refer to user-written code that implements a web-based interface.

ASCII American Standard Code for Information Interchange. A 7-bit character encoding
that assigns the letters of the Roman alphabet, the decimal numbers and various
special symbols and control sequences to numeric codepoints.

B
Base-64 An encoding scheme used to make 8-bit (binary) data safe for transfer over

protocols and interfaces that can only send ASCII text. This is a common encoding
for large binary data when transmitted using older Internet protocols that do not
tolerate binary data well.

Blocking When an operation (such as reading from a socket) halts the current thread until
the operation can be completed. An operating system may perform other tasks
while the thread performing the blocking operation is suspended. If an operation
is said to be non-blocking then it will return immediately (often with failure) if the
operation can not be completed at the current moment.
See Also Thread, Real-Time Operating System.

C
Certificate A cryptographically signed blob of data that is used for identification. SSL-

enabled webservers should present a certificate that allows the client to prove the
validity of the server. Typically server-side certificates are signed by a hierarchy
of third-party registrars where some type of physical proof was presented. It is
also possible for servers to verify clients with certificates when using SSL.

CGI Formally a standard for external software to interface with a web server.
Informally this term is used to refer to any kind of dynamic web page generated
with parameters sent along with the request. In Seminole there is no concept of a
process or separate address space so the formal meaning does not apply.

Glossary

365

Cookie A small chunk of data that is stored within the HTTP client and sent back to the
HTTP server on subsequent requests. A cookie is often used like an ID card or the
key to a building. It allows the stateless HTTP protocol to associate a particular
client with incoming requests.

D
DOM A tree data structure representing a structured document. This data structure is

typically created from an XML representation.

E
Endian The organization of multi-byte words in computer memory. There are two very

common byte orderings used by modern CPU's today. In big endian byte ordering
the most significant byte (the big end) comes first (at the lowest address of the
word). Little endian byte ordering is the opposite of big endian, the least significant
byte comes first.

Entropy Randomness, usually in the form of random byte values. Typically when referred
to as “Entropy” it is being used in a cryptographic context where high quality
randomness is essential.

H
Hash Function A function that reduces a large amount of data (call the input) to a smaller sample

of data (called the hash result). Typically the length of the hash result is fixed.
The larger the input is compared to the length of the hash result the higher the
chances of a “collision” are. A collision is when two different inputs produce the
same hash result.

The hash result, although not unique, can in many cases be used as a shorthand
for the input. There are two principle uses of hash functions: hash tables and
cryptographic purposes. In the cryptographic case a hash can be used to detect the
tampering of data (such as a digital certificate). Hash table use the hash result as
a hint to make searches much more efficient.

Hash Table A data structure used for quick lookups of exactly-matching keys. A typical style
of hash tables, open-chained, consist N linked-lists (called buckets) and a hash
function that produces a result from 0 to N-1. A key value can then be placed
through a hash function and used to identify which list the associated record can
be found in. The larger the value of N the less nodes per bucket therefore the less
time spent searching for the correct record.

Host The machine where development with Seminole takes place. In embedded systems
this is often not the same machine where the resulting software is executing.
Seminole is designed with the idea that the host system has much greater
performance and resources than the target system. This is typical of embedded
development environments.
See Also Target.

Glossary

366

I
Idempotent The property of an action where the same results are obtained reguardless of the

number of times the operation is performed.

M
Multimedia Internet Mail
Extensions (MIME)

A standard encoding mechanism for E-mail extensions. Portions of this standard
have been employed in the HTTP protocols. In particular requests and responses
include name-value pairs encoded the using MIME header format.

Multicast A multicast packet is an IP packet that is directed to a group of hosts rather
than a single host. Multicast packet delivery takes advantage of the properties of
broadcast networks (such as Ethernet) to efficiently transmit data in a one-to-many
fasion.

N
Nagle Algorithm An algorithm that delays the sending of a packet in a TCP socket in the face of

single-byte writes to reduce the number of packets that are transmitted. The Nagle
algorithm is often a benefit for interactive data transfer but a detrement for bulk
transfers. Seminole attempts to transmit data intelligently when possible and does
not require the Nagle algorithm.

P
Perl Practical Extraction and Reporting Language. Perl is a powerful scripting

language with many text processing features. Well written Perl scripts are
independant of the host operating system and can be run on any host platform
without modification. Most of the host tools are written in Perl for portability
reasons.
See Also Host.

Porting The process of adjusting Seminole so that it can run in a new environment
(e.g., different CPU, operating system, or compiler). Often time this is simply
accomplished by modifying the porting layer or re-implementing it for the
new target. This process is described in detail in the section called “Operating
Environment Abstraction Layers”.

R
RFC Request For Comment. A forum of peer-reviewed documents that are used to

define and develop Internet protocols.

ROM A form of non-volatile storage that maintains its data even in the even of a power
loss. In this document ROM is used to refer to the type of storage used to hold
compiled code and constant data. In most cases this is typically flash or disk.

Real-Time Operating System An operating system, typically designed for embedded systems, that provides
certain guarantees about the scheduling of tasks. Although Seminole does not
require real-time behavior it is often necessary for the kinds of environments

Glossary

367

Seminole is used in. This term is often used to describe the operating system that
is supervising the execution of Seminole even if that operating system does not
provide real-time guarantees.
See Also Thread, Blocking.

S
Seminole A tribe of Native American Indians that have since settled in South Florida, where

Seminole was written. The name Seminole means “run away.” Aside from the
similarity to the Apache webserver we hope that Seminole can run-away web-
interface problems.

Socket An endpoint of the TCP protocol that is either used to accept new incoming
connections (a “listening socket”) or to transport data to another socket elsewhere
in a TCP/IP network.

Static Class A class which is only used to provide a namespace. Instances of a static class
should never be declared.

T
Target The CPU that is executing Seminole. In embedded systems this is often not the

same machine where development takes place.
See Also Host.

Thread One instance of code in execution. In many operating systems multiple threads
of execution exist and execute simultaneously. When one thread must wait for an
event an operating system can make more efficient use of the CPU by running
other threads during the wait.
See Also Real-Time Operating System, Blocking.

Transport The layer(s) of a protocol stack used to perform the reliable stream-oriented data
exchange that is used by the HTTP protocol. Normally this is either TCP or SSL
but there is nothing inherent in the HTTP protocol that prevents the use of other
transports if appropriate.

WebDAV WebDAV is an extension to HTTP to allow for distributed authoring and
versioning. New methods are defined to upload resources (files), create collections
(directories), delete resources, as well as iterate collection listings in a machine
readable way.

368

Colophon
This book was produced using the XML DocBook [http://www.docbook.org/] schema and the xsltproc processor to
create an XML FO (Formatting Object) file. The FO file was rendered to PDF using Apache™ FOP. Illustrations were
created using Inkscape and saved in SVG format.

http://www.docbook.org/
http://www.docbook.org/

	Seminole Developer's Guide
	Table of Contents
	Introduction
	Chapter 1. Overview
	About Seminole
	Performance

	Chapter 2. Core API Reference
	Using the API
	Seminole Constants, Macros, and Types
	Introduction
	Constants
	HTTPD_U8_BYTES
	HTTPD_U16_BYTES
	HTTPD_U32_BYTES
	HTTPD_SESSION_KEY_LEN

	Types
	HttpdUint16
	HttpdUint32
	HttpdBitWord
	HttpdPair
	HttpdIpv4Address
	HttpdIpAddress
	HttpdIpPort
	HttpdSocketWaitHandle
	HttpdTransport
	HttpdProtocolVersion
	HttpdAuthSchemes
	HttpdUnicodeCharacter
	HttpdMD5Digest
	HttpdSHA1Digest
	HttpdClientCounter

	Macros
	HTTPD_NUMELEM
	HTTPD_BASED_PTR
	httpd_often
	httpd_rarely

	HttpdUtilities Reference
	Introduction
	Public Methods
	StrLimitCopy
	StrVCat
	SaveString
	StrChop
	MatchPattern
	StringIsEmpty
	StrCmp
	StrCmpi
	StrnCmpi
	UriStringCompare
	SkipWhitespace
	SkipNonWhitespace
	UrlPrefixMatches
	UrlPathPrefixMatches
	RemoveChars
	FilterChars
	GetLcExtension
	GetComponentPath
	Normalize
	NormalizeUrl
	Hash
	HasTrailingSlash
	HasPrefix
	IsUriPathPrefix
	IsUriProtocol
	HostPortion
	UriEncode
	NeedsUriEncoding
	UriDecode
	UriDecodeSingle
	HtmlQuote
	NeedsHtmlQuoting
	CQuoteString
	BinToHex (static buffer version)
	BinToHex (dynamic string version)
	AssembleU16
	AssembleU32
	Lookup (Generic)
	Lookup (Pairs)
	FormatTime
	Encode64
	Decode64 (binary version)
	Decode64 (String version)
	NextCharInUtf8
	AppendUtf8
	DequoteToken
	QuoteToken
	TokenPresent
	RandomString
	ParseHttpVersion
	TokenizePortions
	MemPBrk
	MemCountByte
	FindBoundary
	IsLastBoundary

	Public Data
	mRoot
	mNetTimeFormat
	mPastTime
	mContentLength
	mContentType
	mLineTerm

	HttpdMD5 Reference
	Introduction
	Thread Safety
	Public Methods
	Update (Buffer version)
	Update (String version)
	Final
	Reset

	HttpdMimeParser Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdMimeParser
	Initialize
	ReadLine (socket version)
	ReadLine (HttpdReceiver version)
	ParseLine
	Finish
	Header
	Count
	Pair
	ParseHeaders

	HttpdTimeStamp Reference
	Introduction
	Thread Safety
	Public Methods
	Parse
	Convert
	Validate
	FindDayOfWeek
	Compare
	Set
	Format
	FormatAsISO8601
	TimeInGMT

	Public Data
	mDay
	mWeekDay
	mMonth
	mYear
	mHour
	mMinute
	mSecond

	HttpdWritable Reference
	Introduction
	Public Methods
	Write
	WriteString
	WriteStringAndFree
	NewLine
	Printf
	Indent

	Httpd Reference
	Introduction
	Public Methods
	Httpd
	Init
	ServerName
	Start
	Stop
	Install
	ServerHost
	Remove
	Port
	ListenSock
	ServerWideRequest

	Protected Methods
	Allowed
	ResponseHeader
	ResponseBody
	Respond

	HttpdRequest Reference
	Introduction
	Public Methods
	Server
	Method
	IsHeadRequest
	IsGetRequest
	IsPostRequest
	IsOptionsRequest
	PostIsMultipartMime
	ContentAvailable
	Protocol
	Path
	Query
	ClientAddr
	Socket
	Output
	Header
	Headers
	CompleteUri
	LastReq
	ResponseHeadersSent
	SetLastReq
	RequestedHostName
	ResponseHeader
	NeedHeaders
	ResponseBody
	Respond
	CustomResponse
	Redirect
	RedirectWithQuery
	NoCacheHeaders
	QueueHeader

	Public Data

	HttpdHandler Reference
	Introduction
	Protected Data
	mpPrefix

	Protected Methods
	IsMe
	IsMyPath

	Public Methods
	Prefix
	Handle

	HttpdResponseMsg Reference
	Introduction
	Thread Safety
	Public Methods
	Find (by response code)
	Find (by response code and protocol version)

	Public Data
	mStatus
	mpName
	mpDescription
	mVersion

	HttpdRedirector Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdRedirector

	Public Data
	mpNewUri
	mStatusCode

	HttpdFileHandler Reference
	Introduction
	Directory Processing
	Character sets & Encodings
	Public Methods
	HttpdFileHandler
	FileSystem (getter)

	Protected Methods
	CheckMethod
	ValidMethod
	TranslateUri
	ProcessUri
	DoOptions
	DoFileInfo
	DoFile
	Cleanup
	SendFile
	NeedToSendOut
	ResultHeader
	SendIndexFile
	DoDirectory
	SendContentType
	FullRange
	CheckByteRanges
	IsRangeASubset
	ValidRange
	InvalidValidRangeResponse
	CheckForRangeCondition

	HttpdRequestForwarder Reference
	Introduction
	Public Methods
	HttpdRequestForwarder

	HttpdUrl Reference
	Introduction
	Thread Safety
	Public Methods
	Parse
	Cleanup
	Path
	Host
	Scheme
	Transport
	Query
	Port
	StandardPort
	Url
	Authority
	IsRelative
	Relative
	IsSecure
	HostNameMatchesHeader
	SeparatePath
	FreePathList
	TrimLastEntry
	PathIsSubset

	HttpdCgiParameter Reference
	Introduction
	Thread Safety
	Public Methods
	ParseUriString
	ParsePostData
	ParseFormData
	ParseString
	FreeList
	Find
	FindNode
	Lookup
	CompareLists
	CopyList

	Public Data
	mPair
	mpNext

	HttpdCgiHash Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdCgiHash
	~HttpdCgiHash
	Append
	Find
	Remove

	HttpdMultipartCgiParser Reference
	Introduction
	Subclassing Using a Push Model
	Subclassing Using a Pull Model
	Thread Safety
	Public Methods
	HttpdMultipartCgiParser
	List
	TakeList
	OpenDestination
	CloseDestination
	HandlePart
	Parse

	HttpdCgiWriter Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdCgiWriter
	Write
	WriteNode
	WriteList
	Reset

	HttpdAttributeParser Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdAttributeParser
	NextAttribute

	Public Data
	mpKey
	mpValue
	mpFront

	HttpdCookies Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdCookies
	NextCookie
	Key
	Value
	SendCookie (Stream version)
	SendCookie (Dynamic version)

	HttpdAuthenticator Reference
	Introduction
	Public Methods
	Authenticate (Default version)
	Authenticate (Specific version)
	Create
	SecureStrEqu

	Protected Methods
	Realm
	GetPassword
	ValidatePassword
	DigestAuthHeader
	AuthorizeDigest
	BasicAuthHeader
	AuthorizeBasic
	NotAuthorized

	HttpdSessionManager Reference
	Introduction
	Thread Safety
	Public Methods
	Create
	CycleTime (setter)
	MaxSessionAge (setter)
	ScrubbingBatchSize (setter)
	CycleTime (getter)
	MaxSessionAge (getter)
	ScrubbingBatchSize (getter)
	Insert
	UnlockedInsert
	Find
	UnlockedReference
	Unlock
	Delete
	Mutex

	HttpdSessionObject Reference
	Introduction
	Public Methods
	SessionId
	Deleted

	HttpdDynamicOutput Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdDynamicOutput
	Header
	HeaderComplete
	Body
	Headers

	HttpdInboundTransfer Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdInboundTransfer
	Receiver

	HttpdOutboundTransfer Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdOutboundTransfer
	Receiver

	HttpdTracer Reference
	Introduction
	Using the Tracing Macros

	Chapter 3. Support Classes
	HttpdFileSystem Reference
	Introduction
	Thread Safety
	Public Methods
	FileInfo (From path)
	FileInfo (From parent & path tuple)
	OpenFile
	OpenDirectory
	Open
	LoadFile (ASCII)
	LoadFile (binary)
	Delete (Parent & path tuple)
	Delete (via HttpdFileInfo))
	MakeDirectory
	MakeFile
	CopyFrom
	MoveTo
	GetQuota

	SupportsQuota
	Protected Methods
	CommonFileInfo

	Public Data

	HttpdFileInfo Reference
	Introduction
	Thread Safety
	Public Methods
	IsDir
	FileSystem (getter)
	MimeType (getter)
	Size (getter)
	LastModificationTime
	CreationTime
	FileSystem (setter)
	ChangeLastModificationTime
	ChangeCreationTime
	Size (setter)
	IsDir (setter)
	MimeType (setter)
	Location (getter)
	Location (setter)
	ETag (setter)
	ETag (getter)
	ETagIsWeak
	Attributes (setter)
	Attributes (getter)

	Public Data

	HttpdFile Reference
	Introduction
	Thread Safety
	Public Methods
	Read
	ReadObject
	Write
	SetSize
	Seek
	Tell
	PushToSink
	PushFileSegment

	Public Data

	HttpdDirectory Reference
	Introduction
	Thread Safety
	Public Methods
	Name
	Next
	Close

	Public Data

	HttpdReadOnlyMemoryFile Reference
	Introduction
	Public Methods
	HttpdReadOnlyMemoryFile

	HttpdMemoryFile Reference
	Introduction
	Public Methods
	HttpdMemoryFile

	HttpdRedirectResponse Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdRedirectResponse
	Begin
	End

	HttpdSocket Reference
	Introduction
	Public Methods
	Initialize
	Write
	EnterReadMode
	ReadN
	Read
	Read (multiple wait version)
	LeaveReadMode
	Gets
	AbortGets
	Socket
	Close
	Listen
	Connect
	ConnectTo
	Shutdown
	Accept
	Cancel
	Socket
	GetLocalAddress
	ForceShutdown
	Transport

	Public Data
	mEmptySocketOptions

	HttpdSocketInterface Reference
	Introduction
	Public Methods
	Socket
	Socket
	Factory

	HttpdSocketFoundation Reference
	Introduction
	Public Methods
	CreateAddress
	AddressEqual
	CopyAddress
	FreeAddress
	CreateAddress (Portability Layer Support)
	HashAddress
	FormatAddress

	HttpdUdpServerSocket Reference
	Introduction
	Public Methods
	Socket
	Close
	ForceShutdown
	ReadPacket
	SendPacket

	HttpdIpAddressBase Reference
	HttpdMemoryAllocator Reference
	Introduction
	Public Methods
	Create
	Allocate
	Free
	Reallocate

	Public Data

	HttpdAllocatorCache Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdAllocatorCache
	Create
	Prune
	AllocateObject
	FreeObject
	PurgeAllCaches

	HttpdList and HttpdListNode Reference
	Introduction
	Public Methods (HttpdListNode)
	Owner (Getter)
	Owner (Setter)
	Next
	Prev
	InsertBefore
	InsertAfter
	Remove
	MakeCircular

	Public Methods (HttpdList)
	Initialize
	IsEmpty
	AddToHead
	AddToTail
	Head
	Tail
	CountChildren
	Concatenate
	MakeCircular

	Iterating over lists

	HttpdBitSet Reference
	Introduction
	Thread Safety
	Public Methods
	Size
	Elements
	RemoveLeadingSet
	Storage

	HttpdMacroProcessor Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdMacroProcessor
	Expand (sink version)
	Expand (string version)

	Protected Methods
	Command
	WriteString

	HttpdCgiMacroProcessor Reference
	Introduction
	Public Methods
	HttpdCgiMacroProcessor

	HttpdHtmlQuoter Reference
	Introduction

	HttpdDataSource Reference
	Introduction
	Public Methods
	ReadAt
	ReadValue (32-bit)
	ReadValue (16-bit)
	AddressOf
	ReleaseAddress

	HttpdMemoryDataSource Reference
	Introduction
	Thread Safety

	Public Methods
	HttpdMemoryDataSource

	HttpdFileDataSource Reference
	Introduction
	Thread Safety
	Caching
	Public Methods
	HttpdFileDataSource
	Create

	HttpdContentSink Reference
	Introduction
	Thread Safety
	Public Methods
	ContentLength
	SendData
	Purge

	HttpdBatchWriter Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdBatchWriter
	Flush

	HttpdNullSink Reference
	Introduction
	Thread Safety
	Public Methods
	Null

	HttpdStringSink Reference
	Introduction
	Thread Safety
	Public Methods
	String
	Buffer
	TakeBuffer
	Length
	Clear
	ClearAndRelease
	Prepare
	ReleaseBuffer

	HttpdBufferWriter Reference
	Introduction
	Thread Safety
	Public Methods
	Count
	Buffer

	HttpdFifo Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdFifo
	AvailableWriteBuffer
	TransferSize
	GetWriteBuffer
	Produce
	Used
	ReadData
	Consume
	Read
	ReleaseBuffer
	Finish
	ReadBody

	HttpdCountingSink Reference
	Introduction
	Thread Safety
	Public Methods
	WrittenSize (Getter)
	WrittenSize (Setter)

	HttpdChunkedSink Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdChunkedSink
	Open
	Finalize

	HttpdRomFileSystem Reference
	Introduction
	Thread Safety
	Public Methods
	Mount

	HttpdReceiver Reference
	Introduction
	Public Methods
	HttpdReceiver
	ReadUntil
	Read
	Pump
	ReadN
	Gets
	More
	Pump

	HttpdBoundaryReader Reference
	Introduction
	Public Methods
	HttpdBoundaryReader
	Read (pull model)
	Read (push model)

	HttpdMuxFileSystem Reference
	Introduction
	Thread Safety
	Public Methods
	Mount

	Chapter 4. Portability Layer Reference
	Platform Specific Definitions
	HttpdOpSys Reference
	Introduction
	Public Methods
	Init
	Malloc
	Free
	Realloc
	SafeRealloc
	Fork
	TaskSleep
	Now
	DiffTime
	Randomize
	Entropy
	NativeFileSystem
	OpenSystemFile
	CloseSystemFile

	Public Data

	HttpdTcpSocket Reference
	Introduction

	HttpdSslSocket Reference
	Introduction

	HttpdMutex Reference
	Introduction
	Public Methods
	HttpdMutex
	~HttpdMutex
	Create
	Lock
	Unlock

	HttpdEventSemaphore Reference
	Introduction
	Public Methods
	HttpdEventSemaphore
	~HttpEventSemaphore
	Create
	Wait
	Wait (with timeout)
	Signal

	Chapter 5. Generating Dynamic Content with Templates
	Understanding the Template Engine
	Why Templates?
	Compiled Templates
	Template Syntax
	Programming Template Interfaces

	HttpdSymbolTable Reference
	Introduction
	Public Methods
	HandleEval
	HandleLoop
	HandleCond
	ReturnBool

	HttpdPrefixSymbolTable Reference
	Introduction
	Public Methods
	HttpdPrefixSymbolTable
	Prefix
	Command

	HttpdTemplateCommand Reference
	Introduction
	Public Methods
	Name
	Attribute
	Attributes
	Output
	Processor

	HttpdEvalCommand Reference
	Introduction
	Public Methods
	Format
	FormatInteger
	FormatFloat

	Common Formatting Attributes

	HttpdLoopCommand Reference
	Introduction
	Public Methods
	Iterate
	Counter

	HttpdConditionalCommand Reference
	Introduction
	Public Methods
	Test (String Version)
	Test (Integer version)
	Test (Unsigned version)
	Test (Floating-point version)

	HttpdTemplateScope Reference
	Introduction
	Public Methods
	HttpdTemplateScope

	HttpdTemplateProcessor Reference
	Introduction
	HttpdTemplateProcessor Internals
	Public Methods
	HttpdTemplateProcessor (Clone constructor)
	StartProcessing
	Top

	HttpdFSTemplateShell Reference
	Introduction
	Public Methods
	HttpdFSTemplateShell
	State
	TopState
	Execute

	HttpdFSTemplateRequest Reference
	Introduction
	Public Methods
	HttpdFSTemplateRequest
	Execute

	HttpdConstantSymbolTable Reference
	Introduction
	Public Methods
	HttpdConstantSymbolTable

	HttpdSymbolMap Reference
	Introduction
	Public Methods
	HttpdSymbolMap

	HttpdScopedSymbolMap Reference
	Introduction
	Public Methods
	HttpdScopedSymbolMap

	CGI-template Interfacing
	Introduction
	Public Methods
	HttpdCgiSymbols
	HttpdCgiListSymbols
	HttpdCgiHashSymbols

	Protected Methods
	Find

	HttpdLoopCounterSymbols Reference
	Introduction
	Public Methods
	HttpdLoopCounterSymbols

	Public Data

	Chapter 6. Processing XML
	“Streamy” Processing of XML
	HttpdXmlAttribute Reference
	Introduction
	Public Methods
	FreeList
	Find
	FindValue
	FindValue (Namespace version)
	CopyList

	Public Data
	mpNext
	mpName
	mpValue
	mpNamespace
	mpSelector

	HttpdXmlHost Reference
	Introduction

	HttpdXmlTokenizer Reference
	Introduction
	Public Methods
	HttpdXmlTokenizer
	Finish

	Protected Methods
	TranslateEntity
	StartText
	FinishText
	BeginDoctype
	EndDoctype
	ParameterEntity
	Token
	String
	TakeQuotedString
	Identifier
	Error

	HttpdXmlParser Reference
	Introduction
	Public Methods
	HttpdXmlParser
	Create
	Finish

	Protected Methods
	ProcessingInstruction
	RootBody
	CloseRootBody
	AllocateNode
	InnermostNode
	IsPath

	HttpdXmlNode Reference
	Introduction
	Public Methods
	HttpdXmlNode
	Tag
	Namespace
	Selector

	Protected Methods
	BodySink
	CloseBodySink
	Attribute (First Pass)
	AttributesComplete
	Close

	HttpdXmlDomBuilder Reference
	Introduction
	Public Methods
	HttpdXmlDomBuilder
	Create
	Root
	Lookup
	LookupNode
	Set

	HttpdXmlDomNode Reference
	Introduction
	Public Methods
	Children
	Parent
	Attributes
	Body
	BodySignificant
	CopyToHead
	CopyToTail
	Lookup
	LookupNode
	Set
	AddAttribute (namespace version)
	AddAttribute
	RemoveAttribute
	InsertLastChild
	InsertFirstChild
	InsertBefore
	InsertAfter

	HttpdXmlDomWriter Reference
	Introduction
	Public Methods
	HttpdXmlDomWriter
	WriteMarkup
	WriteChildren
	WriteDom

	Chapter 7. Processing JSON
	“Streamy” Processing of JSON
	HttpdJsonTokenizer Reference
	Introduction
	Public Methods
	HttpdJsonTokenizer
	Finish

	Protected Methods
	Keyword
	Identifier
	QuotedString
	Token
	Error

	HttpdJsonParser Reference
	Introduction
	Public Methods
	HttpdJsonParser
	Create
	Finish

	Protected Methods
	TrueValue
	FalseValue
	NullValue
	StringValue
	NumericValue
	Push
	Pop

	HttpdJsonBuilder Reference
	Introduction
	Public Methods
	HttpdJsonBuilder
	Create
	Finish
	Datum
	TakeDatum

	HttpdJsonDatum Reference
	Introduction
	Public Methods
	WriteQuotedString
	Destroy
	Type
	Serialize
	Get (by key)
	Get (by index)
	Copy
	IsUndefined
	IsNull
	IsTrue
	IsFalse
	IsString
	IsArray
	IsObject
	IsDouble
	IsLong
	IsNumber
	GetLong
	GetDouble
	GetString

	HttpdJsonUndefined Reference
	Introduction
	Public Methods
	Undefined

	HttpdJsonNull Reference
	Introduction
	Public Methods
	Null

	HttpdJsonTrue Reference
	Introduction
	Public Methods
	True

	HttpdJsonFalse Reference
	Introduction
	Public Methods
	False

	HttpdJsonString Reference
	Introduction
	Public Methods
	Create
	Wrap
	String
	Set

	HttpdJsonLong Reference
	Introduction
	Public Methods
	Create
	Long
	Set

	HttpdJsonDouble Reference
	Introduction
	Public Methods
	Create
	Double
	Set

	HttpdJsonArray Reference
	Introduction
	Public Methods
	Create
	Set
	Count
	Contents

	HttpdJsonObject Reference
	Introduction
	Public Methods
	Create
	Set
	Insert
	Count
	Remove
	GetTuple

	HttpdAbstractJson Reference
	Introduction
	Public Methods
	Copy
	DeleteAfterDestroy

	Chapter 8. WebDAV Extensions
	WebDAV
	HttpdWebDAVHandler Reference
	Introduction
	Public Methods
	HttpdWebDAVHandler
	Create
	LockSessions

	Protected Methods
	GetLockCredentials
	DestroyLockCredentials
	LockActionAllowed

	HttpdWebDAVConfiguration Reference
	Introduction
	Public Data
	mCapabilities
	mMaxInfiniteDepth
	mPutTimeout
	mMaxLocks
	mMaxLockLifetime

	Chapter 9. Error Logging and Reporting
	Introduction
	HttpdConsoleLog Reference
	Introduction
	Thread Safety
	Public Methods
	Create
	Log
	Dump

	Public Data

	HttpdConsoleHandler Reference
	Introduction
	Public Methods
	HttpdConsoleHandler

	Protected Methods
	Authorized

	Public Data

	Chapter 10. The Application Framework
	Introduction
	Overview
	HttpdStringProvider Reference
	Introduction
	Public Methods
	Read (static buffer version)
	Read (dynamic buffer version)
	Free

	HttpdStringBundle Reference
	Introduction
	Public Methods
	Open

	HttpdStringTable Reference
	Introduction
	Public Methods
	HttpdStringTable

	HttpdWidgetConfig Reference
	Introduction
	Public Methods
	Resource
	Release
	Strings

	Protected Methods
	HttpdWidgetConfig
	FindResource

	HttpdResourceMap Reference
	Introduction
	Public Types
	Public Methods
	HttpdResourceMap
	Load

	HttpdAppTemplateEnvironment Reference
	Introduction
	Template Directives
	Public Methods
	Widget
	Painter

	HttpdAppTemplateProcessor Reference
	Introduction
	Public Methods
	HttpdAppTemplateProcessor
	StartProcessing
	WriteResourceString
	GetPainter
	GetWidget

	HttpdAppStringConstants Reference
	Introduction
	Public Methods
	WriteConstant

	Public Data
	mpIndex
	mCount
	mppStrings

	HttpdWidget Reference
	Introduction
	Public Methods
	HttpdWidget
	Destroy
	LocalId
	Config (Getter)
	Config (Setter)
	Flags (Getter)
	Flags (Setter)
	GlobalId
	Parent
	Session
	Event
	ActionVa
	Action
	Paint
	Key
	Key

	Protected Methods
	PaintingResource
	ExecuteTemplate

	HttpdWidgetContainer Reference
	Introduction
	Template Directives
	Public Methods
	HttpdWidgetContainer
	DestroyAllChildren
	FindByLocalId
	Children

	Protected Methods
	RemovingChild

	HttpdAppEvent Reference
	Introduction
	Public Data Members
	mpPath
	mpEvent
	mpRequest
	mpTarget
	mpHandler
	mpSession
	mParameters
	mPerformPaint

	HttpdAppPainter Reference
	Introduction
	Public Data Members
	mpEvent
	mpOutput

	HttpdAppEventHandler Reference
	Introduction
	Public Methods
	HttpdAppEventHandler
	HandlerNode
	Release
	HandleEvent

	HttpdAppEventDispatcher Reference
	Introduction
	Public Methods
	List
	Insert
	Default
	HandleEvent

	HttpdAppSession Reference
	Introduction
	Public Methods
	HttpdAppSession
	Root
	Dispatcher
	Mutex
	Strings
	Create
	Attribute

	HttpdAppHandler Reference
	Introduction
	Protected Methods
	GetSession
	ReleaseSession
	ContentType

	HttpdSingleSessionApplication Reference
	Introduction
	Public Methods
	HttpdSingleSessionApplication

	Writing Single-Session Application Specifications

	HttpdSessionApplication Reference
	Introduction
	Public Methods
	HttpdSessionApplication
	Create
	Insert

	The Config Structure
	The Logon Procedure
	Writing Multi-Session Application Specifications

	Menus
	Introduction
	HttpdMenu Reference
	Public Methods
	HttpdMenu
	Create
	Dispatch
	Enabled
	Count
	FindItem

	HttpdMenuItem Reference
	Public Data Members
	mItem
	mpAction

	HttpdMenuSymbols Reference
	Template Directives
	Public Methods
	HttpdMenuSymbols

	Writing Menu Specifications

	HttpdWidgetDesktop Reference
	Introduction
	Template Directives
	Public Methods
	HttpdWidgetDesktop
	MenuHidden
	Menu
	Top
	Status
	Desktop
	CreateDesktop

	HttpdAppModal Reference
	Introduction
	Public Methods
	HttpdAppModal

	Dialogs
	Introduction
	Data Types
	HttpdDialogTemplate Public Data Members
	mpName
	mpLayout
	mpFields
	mFieldCount
	mpMenuItems
	mMenuCount
	mpInit
	mpValidate
	mpOnComplete
	mpOnCancel
	mCompletedMsg
	mCancelledMsg
	mFlags

	HttpdDialogField Public Data Members
	mpName
	mpTemplate
	mOffset
	mpManager
	mLabel
	mpConfig

	HttpdWidgetDialog Reference
	Public Methods
	HttpdWidgetDialog
	Template
	Data
	Modified
	ControlCount
	Control
	Field
	ValidateFields
	AreFieldsValid
	ValidateAll
	MoveValues
	Cancel
	Complete
	ManageField
	ManageField
	Create
	InitOptionalField
	ShowOptionalField

	HttpdWidgetField Reference
	Template Directives
	Public Methods
	HttpdWidgetField
	SetError (string version)
	SetError (localized version)
	ClearError
	HasError
	Manager

	HttpdWidgetScalar Reference
	Template Directives
	Public Methods
	HttpdWidgetScalar
	GetValue
	SetValue
	Manager

	HttpdWidgetOption Reference
	Template Directives
	Public Methods
	HttpdWidgetOption
	GetCurSelection
	SetCurSelection
	Manager

	HttpdWidgetBoolean Reference
	Template Directives
	Public Methods
	HttpdWidgetBoolean
	GetCurState
	SetCurState
	Manager

	HttpdWidgetMulti Reference
	Template Directives
	Public Methods
	HttpdWidgetMulti
	Index
	GetValue
	SetValue
	Manager

	HttpdFieldManagers Reference
	Public Methods
	StoreUnsigned
	StoreSigned
	FetchUnsigned
	FetchSigned
	EnumManager
	BoolManager

	Public Structures
	UnsignedInteger
	Data member mMinimum
	Data member mMaximum
	Data member mBelowMinimum
	Data member mAboveMaximum
	Data member mInvalid
	Data member mType
	Data member mBase

	SignedInteger
	Data member mMinimum
	Data member mMaximum
	Data member mBelowMinimum
	Data member mAboveMaximum
	Data member mInvalid
	Data member mType

	StaticStringBuffer
	Data member mBufferSize
	Data member mTooLong

	TimeDateStamp
	Data member mInvalid
	Data member mUseAmPm

	Ipv4Address
	Data member mInvalid
	Data member mpValidate

	Dialog Specifications

	Collections
	Introduction
	HttpdCollectionData Reference
	Public Methods
	Current
	First
	Next
	Prev
	IsFirst
	Event

	HttpdCollectionObjectRenderer Reference
	Public Methods
	SetObject

	HttpdCollectionWidget Reference
	Template Directives
	Public Methods
	HttpdCollectionWidget
	Menu
	HaveSelection
	Data
	Renderer
	Manager

	HttpdCollectionListAdaptor Reference
	Public Methods
	HttpdCollectionListAdaptor

	HttpdCollectionArrayAdaptor Reference
	Public Methods
	HttpdCollectionArrayAdaptor

	HttpdWidgetBackBlocker Reference
	Introduction
	Public Methods
	HttpdWidgetBackBlocker

	Chapter 11. Imaging Library
	What is the Imaging Library?
	Introduction
	Using the Imaging Library

	HttpdRect Reference
	Introduction
	Thread Safety
	Public Data
	mTop
	mLeft
	mBottom
	mRight

	Public Methods
	Width
	Height
	Intersection
	Union
	Encloses
	Overlaps
	Offset
	Inflate
	Deflate
	Subtract

	HttpdCanvas Reference
	Introduction
	Public Methods
	Color
	Brush
	Pen
	Size
	DefaultBrush
	Box
	FilledRect
	HPixelLine
	VPixelLine
	Line
	Circle
	RoundRect
	Grid
	LineGraph

	HttpdSquareBrush Reference
	Introduction
	Public Methods
	HttpdSquareBrush

	HttpdFont Reference
	Introduction
	Public Methods
	HttpdFont
	CharWidth
	StringWidth
	Draw

	HttpdGif87aRenderer Reference
	Introduction
	Thread Safety
	Public Methods
	Create
	Render

	Chapter 12. Web Sockets
	Introduction
	HttpdWebSocket Reference
	Introduction
	Public Methods
	IsRequest
	Connect
	Setup
	Close
	SetMaxRxSize
	Send
	Received
	Received (multiple wait version)
	Finish

	Protected Methods
	UnhandledFrame
	Fragment

	Chapter 13. Endpoint Discovery
	Introduction
	Endpoint Location
	The Discovery Server
	The Discovery Client

	The Java Discovery Client
	Compiling
	Instructional HTML
	Attributes
	Formatting Attributes
	Sorting Endpoints
	Endpoint Icons
	Class Filters
	Change Highlighting

	HttpdDiscoveryServer Reference
	Introduction
	Configuration Structures
	Public Methods
	HttpdDiscoveryServer
	Create
	Start
	Stop

	Protected Methods
	ShouldHandleRequest
	BuildResponse
	PrepareResponse
	SendBeacon

	Protected Data
	mRebuildResponse

	HttpdDiscoveryClient Reference
	Introduction
	Configuration Structures
	Public Methods
	HttpdDiscoveryClient
	Create
	Start
	Stop

	Protected Methods
	CreateEndpoint
	DeleteEndpoint
	PurgeEndpoint

	HttpdDiscoveredEndpoint Reference
	Introduction
	Protected Methods
	HttpdDiscoveredEndpoint
	Update
	Display
	~HttpdDiscoveredEndpoint

	Protected Data Members
	mpAttributes
	mpOwner
	mpUrl

	The Win32 Discovery Client
	Compiling
	Configuring the Client

	Chapter 14. The Other Direction: An HTTP Client
	The HTTP Client
	Introduction
	Performing HTTP Transactions

	HttpdClient Reference
	Introduction
	Public Methods
	Create
	SetSocketOptions
	SetCookieJarSize
	SetProxyServer
	NoProxyServer
	SetKeyRing
	Flush

	HttpdClientFetch Reference
	Introduction
	Public Methods
	HttpdClientFetch
	Fetch
	MaxRetries
	MaxRedirects
	MaxLoginAttempts
	RetryDelay
	BodySource
	BodyContentType
	RequestBodySink

	Protected Methods
	SendHeaders
	ProcessResponse
	ResponseOk

	HttpdClientRequestBodySource Reference
	Introduction
	Public Methods
	Traits
	TotalSize
	Generate

	HttpdClientBufferRequestBody Reference
	Introduction
	Public Methods
	HttpdClientBufferRequestBody

	HttpdClientKeyRing Reference
	Introduction
	Public Methods
	HttpdClientKeyRing
	Create

	Protected Methods
	GetAuthority
	GetKey
	IsScheme
	IsDefunct

	Chapter 15. Integrating Seminole With An Application
	Porting and Integrating Seminole
	Introduction
	Seminole compile-time parameters and options
	The Seminole Build System
	Overview
	Performing a Build
	Build System Internals
	Building Seminole using an alternative build environment
	Toolchain
	Using SSL
	Using MatrixSSL

	Operating Environment Abstraction Layers
	Introduction
	Adding New Abstraction Layers

	Extending Seminole
	Introduction
	Adding Handlers
	Basics
	Conventions
	CGI Processing

	Dynamic Memory Allocation
	Introduction
	Creating Objects

	Chapter 16. Host Tools
	Introduction
	Host Tool Input Format
	Using the SCPG Tool
	Introduction
	Usage
	Input Configuration File Format
	Filters
	Encoding Types
	Alignment
	Listing File Format
	Standalone Templates
	Content Preprocessing

	Using the bin2c Tool
	Introduction
	Usage

	Using the makecert Tool
	Introduction
	Usage

	Using the msgcmp Tool
	Introduction
	Usage
	Input File Format

	Using the specgen Tool
	Introduction
	Usage
	Input format
	General conventions
	Built-in directives

	Included Packages
	The templates package

	Appendix A. Obtaining Support
	Glossary

