Seminole Developer's Guide

Seminole Developer's Guide
Copyright © 2014 GladeSoft, Inc.
This document and any software product(s) it accompanies are protected by United States and international copyright laws. All rights are hereby

reserved. Copying or reproduction of this document or any portion thereof without the express written authorization of GladeSoft, Inc. is strictly
prohibited.

Table of Contents

111 f0To [0 Tox 1o o [PPSR Xviii
@ Y= oY1= 1Y RPN 1
ADBOUL SEMINOIE ...t e e e e e e eans 1
S (0 0710 ot PP 2
2. COrE APl REfEIENCE ..ttt e ettt anas 3
USING The AP <ottt 3
Seminole Constants, MacroS, aNd TYPESueeuneein i e e e e e e e e e e e eanaeeees 3
111 (0o [0 Tox o o 1SR 3
(000] 01 = | £ T PSPPSR 3

B 1 TP PPPUPRN 4

1Y = od {01 S PPN 7
HitpdUti [ti €S REFEIENCE ... 8
111 (0o [0 Tox o o 1SR 8
PUBIIC MELNOOSeeeiiiiece e e e e 8
[T (o] T B T = L 19

Ht £ PANMDE REFEIEINCE ...t ettt e e 20
111 0o [0 Tox 1o o [P 20
THIEaO SEFELY ...oevee i 20
PUBIIC MELNOAS ... e e 20

Ht t pdM MEPar Ser REFEIENCEuiiiiiiii e 21
111 0o [0 Tox 1o o [P 21
THIEaO SEFELY ...oevee i 21
PUBIIC MELNOAS ... e e e e ens 21

Ht t pdTi mESt anp REFEIENCEcooeiii e 24
111 0o [0 Tox 1o o [P 24
THIEaO SEFELY ...oevee i 24
PUBIIC MELNOAS ... e e e 24
[T (o] T B T = L 26

Ht t pdW it abl @ REFEIENCEuiiiee e 26
111 0o [0 Tox 1o o 1R P 26
PUBIIC MELNOAS ... e e e 27

HE T PO REFEIENCE ... e 28
111 0o [0 Tox 1o o 1R P 28
PUBIIC MELNOAS ... e e e 28
Protected METNOASoviiiiii e 31

Ht t PAREQUEST REFEIENCEeiiiiii e 33
111 0o [0 Tox 1o o 1R P 33
PUBIIC MELNOASoeeiieiie e 34
[T (o] T T = 38

Ht t pdHandl €r REFErENCEoiiiii e 39
111 0o [0 Tox 1o o [P 39

[ol1= o= 0 [l D - - NP 39
Protected METNOASoviiiiii e 39
PUBIIC MELNOASoeeiieiie e 40

Ht t pPARESPONSEMSG REFEIENCE ...covviiiiiii e 40
111 0o [0 Tox 1o o [P 40
THIEaO SEFELY ...oeveeiieiii e 40
PUBIIC MELNOASceenieiie e 40
[T (o] T T = 41

Ht t pdRedi r eCt OF REFEIBNCEcovviiiiiei e 41
111 0o [0 Tox 1o o [P 41

Seminole Developer's Guide

I G0 IS = o PPURN 42
PUDIIC MEHNOAS ... e e 42
0o Tl T - 42
Ht t pdFi | eHandl €r REFEIENCEcovviiiiii e 42
g1 0o (1 1o o TP 42
DirECtONY PrOCESSING ..vvueetneiiieeei e et e et e et e e et e e et e e et e e et e e st e e et e e st e eetn e eaneeenns 44
Character SetS & ENCOOINGSuvvviiiiiiei e e e e e 44
PUDIIC MEHNOAS ... e e 44
Protected MEthOAScoovniii e 45
Ht t pdRequest Forwar der REFEIENCEccivviiiiii e 49
g1 0o (1 1o o TP 49
PUDIIC MEHNOAS ... e 49
[O oo LU B o == Vo PP 49
g1 0o (1 1o o TP 49
Bl G0 IS = oYU SPPURN 50
PUDIIC MEHNOAS ... e 50
Ht t pdCgi Par amet er REFEIENCEuiiiii i 52
g1 0o (1 1o o TP 52
Bl G0 IS = oYU SPPURN 52
PUDIIC MEHNOAS ... e 53
0o Tl T - 55
Ht t pdCgi Hash REFEIENCEvviii e 55
g1 0o (1 1o o TP 55
I G0 IS = oYU 55
[0o Tl V= g To o P 55
Ht t pdMul tipart Cgi Par ser REFEreNCeoevviiiiiiii e 56
g1 0o (1 1o o TP 56
Subclassing Using a PUsh MOGElcoooiiiiiiic e 57
Subclassing Using a Pull Modelc.ooiiiiiiii e 58
I o IS = oY PPRRN 59
PUDIIC MEHNOAS ... e 59
Ht t pdCgi Wit er REFEIENCEcoveiii e e 62
g1 0o (1 1o o TP 62
I o IS = oY PPRRN 62
PUDIIC MEHNOAS ... e 62
Ht t pdAttribut ePar ser REFEIENCEcc.uviiiiiiii e 63
g1 0o (1 1o o TP 63
I o IS = oY PPRRN 63
PUDIIC MEHNOAS ... 63
0o Tl T - 63
Ht t pACOOKI €S REFEIENCE . .ovviii e e e 64
g1 0o (1 1o o TP 64
I 0120 B 1= Y P 64
PUDIIC MEHNOAS ... e e 64
Ht t pdAut henti cat Or REFEIENCEiiiii i 66
g1 0o (1 1o o TP 66
PUDIIC MEINOAS ... e e 66
Protected MEthOAScoovniiic e 67
Ht t pdSessi onManager REFEIENCEccuuviiiiiiiii e 69
g1 0o (1 1o o TP 69
I o IS = oY PSPPI 70
PUDIIC MEINOAS ... e e 70
Ht t pdSessi onNCDj ECt REFEIENCEiiii e e 72
g1 0o (1 1o o TP 72

Seminole Developer's Guide

PUDIIC MEHNOAS ... e e 73

Ht t pdDynam cOUt PUt REFEIENCEuuiiiicc e e 73
g1 0o (1 1o o TP 73
THIEAA SEFELY ..eevviieiiii et 74
PUDIIC MEINOAS ... e 74

Ht t pdl nboundTr ansf er REFErENCEoiiiiiiii e, 75
g1 0o (1 1o o TP 75
THIEAA SEFELY ..eevviieiiii et 75
PUDIIC MEHNOAS ... e e 75

Ht t pdQut boundTr ansf er REFEENCEocivii i 76
g1 0o (1 1o o TP 76
THIEAA SEFELY ...evvve i 76
PUDIIC MEHNOAS ... e 76

HE t pATracer REFEIENCEc.uuiiiiiii e 76
g1 0o (1 1o o TP 76
UsSINg the TraCing MaCIOSciuuuiiiii e e e e e e 76

G 0] B O =P 79
Ht t pdFi | @SySt EMREFEIENCE . .oouniiii e 79
g1 0o (1 1o o TP 79
THIEAA SEFELY ...eevvniiiii et 79
PUDIIC MEHNOAS ... e 79
SUPPOT T SQUOL @ .iuiiiiiiie e 83
Protected MEthOAScoovniiii e 83
0o Tl T - 84

HEt pdFi | €1 NT O REFEIENCE ...ouiiii e 84
g1 0o (1 1o o TP 84

I 0120 B 1= Y 84

[0o Tl V= g To o P 84
0o Tl T - 87

HEt PAFI | @ REFEIENCE ...oenii e e e e e 87
g1 0o (1 1o o TP 87
THIEAA SEFELY ..oeeveiiieii e 87
PUDIIC MEHNOAS ... e 87
0o Tl T - 89

Htt pdDi reCt Ory REFEIENCE ..uuvviii e 89
g1 0o (1 1o o TP 89
THIEAA SEFELY ..oeevveeieii e 90
PUDIIC MEHNOAS ... 90
0o Tl T - 90

Ht t pdReadOnl yMenDryFil € REFErENCE ...coovveiviiiiiee e 20
g1 0o (1 1o o TP 90
PUDIIC MEHNOAS ... e 90

Ht t pdMVEMDI YFi | @ REFEIENCE . .ove e 91
g1 0o (1 1o o TP 91
PUDIIC MEHNOAS ... e e 91

Ht t pdRedi r eCt RESPONSE REFEIENCE . .ovuuiiiii i 91
g1 0o (1 1o o TP 91
THIEAA SEFELY ...eevvn i 91
PUDIIC MEINOAS ... e e 91

Ht t pASOCKEt REFEIENCEovveiii e e 92
g1 0o (1 1o o TP 92
PUDIIC MEINOAS ... e e 92
0o Tl T - P 98

Ht t pdSocket I nterface REFEIENCEc.oiiiiiiii e, 98

Seminole Developer's Guide

g1 0o (1 1o o TP 98
PUDIIC MEHNOAS ... e e 99
Ht t pdSocket Foundat i 0N REFEMENCEciiiiiiii e e 100
g1 0T (1 1 o o P 100
PUDIIC MEHNOAS ... e 100
Ht t pdUdpSer ver Socket REFEIENCEoiiviiiiii e 102
g1 0T (1 1 o o P 102
PUDIIC MEHNOAS ... e 102
Ht t pdl pAddr eSSBase REFEIENCEuiivi i e e e 104
Ht t pdMenDr YAl | 0cat Or REFEIENCE ... covviiiici e 104
g1 0T (1 1 o o P 104
PUDIIC MEHNOAS ... e e 105
0o ol T - 105
Ht t pdAl | ocat or Cache REFEIENCEcovniiiii e 105
g1 0T (1 1 o o P 105
THIEAA SEFELY ..oieeveiiiiii e e e 106
PUDIIC MEHNOGAS ... e e 106
Ht t pdLi st and Ht t pdLi st Node REFENENCEccvvviiiiiii e, 107
g1 0T (1 1 o o P 107
Public Methods (Ht t pdLi ST NOAE) ...cvvviiiiiiiieee e 108
Public Methods (Ht t PALT ST) cevniiii i e 109
Rz = o [0 = gl L P 110
HE t pdBi t SEt REFEIENCEovvicii e e 111
g1 0T (1 1 o o P 111
THIEAA SEFELY ..oievviiiieii e e e e 111
PUDIIC MEHNOAS e 112
Ht t pdVBCT OPr 0CeSSOr REFEIENCEuvivvniiii i e 112
g1 0T (1 1 o o P 112
THIEAA SEFELY ..oievviiiieii e e e e 113
PUDIIC MEHNOAS e 113
Protected MEthOAScovniiiii e 113
Ht t pdCgi Macr OProcessor REErENCEc.uoviuiiiiii e 114
g1 0T (1 1 o o P 114
PUDIIC MEHNOAS ... e e 114
Ht t pdHt M QUOL €5 REFEIENCE . .cvvi i e 115
g1 0T (1 1 o o P 115
Ht t pdDat aSoUr CE REFEIENCEu.iiii i e 115
g1 0T (1 1 o o P 115
PUDIIC MEHNOAS ... e e 115
Ht t pdMenDr yDat aSoUr C& REFEIENCEiviii i e 117
g1 0T (1 1 o o P 117
PUDIIC MEHNOAS ... e e 117
Ht t pdFi | eDat aSour Ce REFEIENCEcevuiiiii i e e 117
g1 0T (1 1 o o P 117
THIEAA SEFELY ..oievviieiii e e e e 118
L@ o 1 oo SN 118
PUDIIC MEHNOAS ... e e 118
Ht t pdCont ent Si NK REFEIENCE ...uiiviici e 119
g1 0T (1 1 o o P 119
THIEAA SEFELY ..oievviieiii e e e e 119
PUDIIC MEHNOAS ... e e 119
Ht t pdBat ChW it er REFEIENCEcovviiiiii e 120
g1 0T (1 1 o o P 120
THIEAA SEFELY ..ievviiiieii e e e 120

Vi

Seminole Developer's Guide

PUDIIC MEHNOAS ... e e 120

Ht t PANUL T Si NK REFEIENCE ...vuiiiiii e e e eaas 121
g1 0T (1 1 o o P 121
=0 IS 1= oY 121
PUDIIC MEHNOAS ... e 121

HEt pdStri NgSi NK REFEIENCE ...c.uviiiiic e 121
g1 0T (1 1 o o P 121
=0 IS 1= oY 121
PUDIIC MEHNOAS ... e 122

Htt pdBuf ferWiter REFEIENCEcouiiiiiiii e 123
g1 0T (1 1 o o P 123
=0 IS 1= oY 123
PUDIIC MEHNOAS ... e e 123

HE t PAFT O REFEIENCE ..o e 124
g1 0T (1 1 o o P 124
=0 IS 1= oY 124
PUDIIC MEHNOGAS ... e e 124

Ht t pdCount i NGSi NK REFEIENCE ... covviiiiicci e 126
g1 0T (1 1 o o P 126
=0 IS 1= oY 126
PUDIIC MEHNOGAS ... e e 126

Ht t pdChunkedSi NK REFEINENCE ... covviiiii e 127
g1 0T (1 1 o o TP 127
=0 IS 1= oY 127
PUDIIC MEHNOAS e 127

Ht t pdRoONFi | @SySt EMREFEIENCE . .ovviiii e 128
g1 0T (1 1 o o P 128
=0 IS = oY 128
PUDIIC MEHNOAS e 128

Ht t PARECET VEI REFEIENCE . .vuiiiiiiii e e e aaas 129
g1 0T (1 1 o o P 129
PUDIIC MEHNOAS ... e e 129

Ht t pdBoundar yReader REFEIENCEccuuiiiiiiiiiii e 130
g1 0T (1 1 o o P 130
PUDIIC MEHNOAS ... e e 131

Ht t pdVUXFI | @SySt EMREFEIENCE . .ovvuii e 132
g1 0T (1 1 o o P 132
=0 IS 1= oY 132
PUDIIC MEHNOAS ... e e 132

4, Portability Layer REFEIENCEuuiiiiieii e e e e e e e e aen 133
Platform Specific DEfINITIONScoouiiiii e e e 133
HE t PAOPRSYS REFEIENCE ...vu it e e e e e aaans 133
g1 0T (1 1 o o P 133
PUDIIC MEHNOAS ... e 134
0o Tl T - 138

Ht t pdTcpSocKket REFEIENCE ... ccvuiii i 138
g1 0T (1 1 o o P 138

Ht t pdSsl SOCKet REFEIENCE ... ccvviiiiii e 138
g1 0T (1 1 o o P 138

HE £ PAMUL X REFEIENCE ...viiiii e e e e e e 139
g1 0T (1 1 o o P 139
PUDIIC MEHNOAS ... e e 140

Ht t pdEvent Semaphor @ REFEIENCEcovviiiiiiie e 140
g1 0T (1 1 o o P 140

Vii

Seminole Developer's Guide

PUDIIC MENOOSo 141

5. Generating Dynamic Content With TEMPIALESocvviiiiiii e, 143
Understanding the Template ENQINEcovuiiiiiiiii e e e e 143
VAV A = 1] = (=Y PP 143
Compiled TEMPIAIESvuiii e e e e e e e e 143
TEMPIAEE SYNEAX +..ivvueiiiieiiie e e e e e e e e e e e et e e et e e et e e e e eateeeanearanaes 143
Programming Template INterfacesooviiiiiiiiii e 145

Ht t pdSynbol Tabl @ REFENENCEcoovniiii e 147
g1 [0 ot (' o PP 147
PUDIIC MENOOS ... 147

Ht t pdPr ef i xSynbol Tabl @ REfErence ..o, 148
g1 [0 ot (' o PP 148
PUDIIC MENOOS ... 149

Ht t pdTenpl at eCommBaNd REFEIENCEviviiiiii e 149
g1 [0 ot (' o PP 149
PUDIIC MENOOS ... 149

Ht t pdEval CommBand REFEIENCEccuuiiii e 151
g1 [0 ot (' o PP 151
PUDIIC MENOOS ... 151
Common Formatting AtHDULESooiiniiii e 153

Ht t pdLoOPCOMTBNG REFEIENCEivviicii e e 153
g1 [0 ot (' o PP 153
PUDIIC MENOOS ... e 154

Ht t pdCondi ti onal ConrBNd REFErENCEcvviiiiii e 154
g1 [0 ot (' o PP 154
PUDIIC MENOOS ... e 154

Ht t pdTenpl at €SCOPE REFEIENCEuuiiii e e e 156
g1 [0 ot (' o PP 156
PUDIIC MENOOS ... e 157

Ht t pdTenpl at eProcessor REFErENCEocvvniiiii i 157
g1 [0 ot (' o PP 157

Ht t pdTenpl at eProcessor InternalSooeviiiiiiiiin e, 157
PUDIIC MENOOS ... e 158

Ht t pdFSTenpl at eShel | REfErenCeoiviiiiii e 158
g1 [0 ot (' o PP 158
PUDIIC MENOOS ... e 159

Ht t pdFSTenpl at eRequest REFEIENCEoeiviiiiii e 160
g1 [0 ot (' o PP 160
PUDIIC MENOOS ... e 160

Ht t pdConst ant Synbol Tabl @ REFEreNCeoveiviiii i 161
g1 [0 ot (' o PP 161
PUDIIC MENOOS ... e 161

Ht t pdSynbol Map REFEIENCE ... ccouiiiici e 161
g1 18 ot [o PP 161
PUDIIC MENOOS ... i 164

Ht t pdScopedSynhol Map REFEIENCEiiiiiiiii e 164
g1 18 ot [o PP 164
PUDIIC MENOOS ... i 165

O(CT I (=il o] = (I L) (= - o1 (o [165
g1 18 ot [o PP 165
PUDIIC MENOOS ... i 166
Protected METNOOSoiieiiiei e 166

Ht t pdLoopCount er Synhol s REFEreNCeocvvviiiiii e 166
g1 18 ot [o PP 166

Seminole Developer's Guide

PUDIIC MEHNOAS ... e e 167
0o ol T - 167

B. ProCESSING XIML ..ovuiiiii i 169
“Streamy” Processing Of XIMLiiuiiiiiiiii e e e e e 169
Htt pdXm Attribut e REFEIENCEcovviiiicc e 169
g1 0T (1 1 o o P 169
PUDIIC MEHNOAS ... e 169
0o ol T - 170

Ht t pdXm HOSt REFEIENCE . .ovvniii e 171
g1 0T (1 1 o o P 171

Ht t pdXm Tokeni zer REFEIENCEuuiiiii e 171
g1 0T (1 1 o o P 171
PUDIIC MEHNOAS ... e e 171
Protected MEthOASoovniiii e 172

Ht t pdXm Par ser REFEIENCEuiiiiii e e 174
g1 0T (1 1 o o P 174
PUDIIC MEHNOGAS ... e e 174
Protected MEthOASoovniiii e 175

Ht t pdXm NOde REFEIENCEovniii e 177
g1 0T (1 1 o o P 177
PUDIIC MEHNOGAS ... e e 177
Protected MEthOAScoovniiiii e 178

Ht t pdXm DonBui | der REFEIENCEuiiiiciii e 179
g1 0T (1 1 o o P 179
PUDIIC MEHNOAS e 179

Ht t pdXm DonNOAE REFEIENCE i 181
g1 0T (1 1 o o P 181
PUDIIC MEHNOAS e 181

Ht t pdXm DOmW it er REFEIENCEcovviiii e 184
g1 0T (1 1 o o P 184
PUDIIC MEHNOAS e 184

A 01> 1o TS\ 187
“Streamy” Processing Of JSONcouiiiiiiiiiiii e e eaa s 187
Ht t pdJSONTOKENT ZEIr REFEIENCE ...ovviiiiiccii e e 187
g1 0T (1 1 o o P 187
PUDIIC MEHNOAS ... e e 187
Protected MEthOASccvniiii e 188

Ht t pdJSONPAr SEr REFEIENCE ...o.uiiiiiii e 189
g1 0T (1 1 o o P 189
PUDIIC MEHNOAS ... e e 189
Protected MEthOASccvniiii e 190

Ht t pdJSonBUi | der REFEIENCE ... covvniiii e 191
g1 0T (1 1 o o P 191
PUDIIC MEHNOAS ... e 191

Ht t pdJsonDat UMREFEIENCEuiiiiiiiii e 192
g1 0T (1 1 o o P 192
PUDIIC MEHNOAS ... e e 192

Ht t pdJdsonUndef i Ned REFEIENCEoiviiiii e 195
g1 0T (1 1 o o P 195
PUDIIC MEHNOAS ... e e 195

Ht t pdISONNUI | REFEIENCE ...vuiiiiiii e e 196
g1 0T (1 1 o o P 196
PUDIIC MEHNOAS ... e e 196

HE t PAJSONTI UG REFEIENCE ...vuiiiiiiiii e e e e e e e eaas 196

Seminole Developer's Guide

g1 0T (1 1 o o P 196
PUDIIC MEHNOAS ... e e 196

Ht t pdJsonFal S& REFEIENCE ... ccouiiiii i 196
g1 0T (1 1 o o P 196
PUDIIC MEHNOAS ... e 196

Ht t pdJSONSEri NG REFEIENCE . .oouiiii e 196
g1 0T (1 1 o o P 196
PUDIIC MEHNOAS ... e 197

Ht t pAJSONLONG REFEIENCE ...uuiiiiiiiii e e e eaas 197
g1 0T (1 1 o o P 197
PUDIIC MEHNOAS ... e e 197

Ht t pdJSONDOUDI @ REFEIENCE . .couviiii e 198
g1 0T (1 1 o o P 198
PUDIIC MEHNOAS ... e e 198

Ht t pdISONANray REFEIENCEcovniii i 198
g1 0T (1 1 o o P 198
PUDIIC MEHNOGAS ... e e 199

Ht t pdJSONQD] €Ct REFEIENCE . .oouiiiiii e 199
g1 0T (1 1 o o P 199
PUDIIC MEHNOGAS ... e e 200

Ht t pdAbst ract JSON REFEIENCE ... ccvviiiii e 201
g1 0T (1 1 o o TP 201
PUDIIC MEHNOAS e 201

8. WEDDAY EXIENSIONSuuiiiiiiiiiieiie e et e e e e e e e e e e e e e e e e e e et e e et e e et e e aaeeanns 202
WEDDAY ettt aa et 202
Ht t pdVWEDDAVHANA] €5 REFEIENCE ...ooviiiii e e 202
g1 0T (1 1 o o P 202
PUDIIC MEHNOAS e 202
Protected MEthOAScovniiiii e 203

Ht t pdVWebDAVCoNf i gurati 0N REFENENCEcccviiiiiiiii e 204
g1 0T (1 1 o o P 204
0o ol T - 204

9. Error Logging and REPOMINGuuiiiiieiiiieiie eaaas 206
g1 0o (1 1 o o T 206
Ht t pdConsol €L0g REFEIENCEuuiiiiii e 206
g1 0T (1 1 o o P 206
=0 IS 1= oY 206
PUDIIC MEHNOAS ... e e 206
0o ol T - 207

Ht t pdConsol eHandl er REEIENCEcovviiiiiiiii e 207
g1 0T (1 1 o o P 207
PUDIIC MEHNOAS ... e e 207
Protected MEthOASccvniiiii e 207
0o Tl T - 208

10. The APPliCation FramEWOIKiiieiiii e e e e e e e e eens 209
g1 0o (1 1 o o TSP 209
L@ = oV P 209
Ht t pdStri ngProvi der REFEIENCEcovniiiiiciie e 210
g1 0T (1 1 o o P 210
PUDIIC MEHNOAS ... e e 210

Ht t pdStri ngBundl @ REFEIENCE ... ccuviiiiiiii e 211
g1 0T (1 1 o o P 211
PUDIIC MEHNOAS ... e e 211

Htt pdStringTabl @ REFENENCE ... coovniiii e 211

Seminole Developer's Guide

g1 0T (1 1 o o P 211
PUDIIC MEHNOAS ... e e 212
Ht t pdW dget Confi g REFEIENCEcovuiiiicii e 212
g1 0T (1 1 o o P 212
PUDIIC MEHNOAS ... e 212
Protected MEthOASccvniiii e 213
Ht t pdResour CeENVAP REFEIENCE ... covviiiii e 213
g1 0T (1 1 o o P 213
[0o o Y/ o= 214
PUDIIC MEHNOAS ... e e 214
Ht t pdAppTenpl at eEnvi ronnent REFENENCEccoviiiiiiiiii e 214
g1 0T (1 1 o o P 214
LI 1 o= CE3] = ot (Y= 214
PUDIIC MEHNOAS ... e e 215
Ht t pdAppTenpl at eProcessor REfErENCEoevviiiiiiiiie e 215
g1 0T (1 1 o o P 215
PUDIIC MEHNOGAS ... e e 216
Ht t pdAppSt ri NgConst ant s REFEIENCEciviiiiii e 217
g1 0T (1 1 o o P 217
PUDIIC MEHNOGAS ... e e 217
0o ol T - 217
Ht t pdW dget REFEIENCE ... covviii e e 218
g1 0T (1 1 o o TP 218
PUDIIC MEHNOAS e 218
Protected MEthOAScovniiiii e 221
Ht t pdW dget Cont @i Ner REFEIENCEuiviiiiiii e 222
g1 0T (1 1 o o P 222
LI 1] o= 3] = ot (Y= P 222
PUDIIC MEHNOAS e 222
Protected MEthOAScovniiiii e 223
Ht t PAAPPEVENT REFEIENCE ...vuiiiiiii e e e e 223
g1 0T (1 1 o o P 223
Public Data MEMDBEIScoviii e 223
Ht t pdAPPPal Nt 5 REFEIENCE . .coui i e 225
g1 0T (1 1 o o P 225
Public Data MEMDBEIScoviii e 225
Ht t pdAppEvent Handl er REFErENCEoivviiiiii e 226
g1 0T (1 1 o o P 226
PUDIIC MEHNOAS ... e e 226
Ht t pdAppEvent Di spat cher REfErenCecocovviiiii i 227
g1 0T (1 1 o o P 227
PUDIIC MEHNOAS ... e e 227
Ht t pAAPPSESST ON REFEIENCE . .ovviiiii e 228
g1 0T (1 1 o o P 228
PUDIIC MEHNOAS ... e 228
Ht t pdAppHaNdl €r REFEIENCE i 230
g1 0T (1 1 o o P 230
Protected MEthOASccvniiiii e 230
Ht t pdSi ngl eSessi onApplicati on REFEENCEveviiiiiiiiiie e, 230
g1 0T (1 1 o o P 230
PUDIIC MEHNOAS ... e e 231
Writing Single-Session Application Specificationscooevviieiiiiiiiii i 231
Ht t pdSessi onApplicati on REFErENCEocvviiiiiii e 232
g1 0T (1 1 o o P 232

Xi

Seminole Developer's Guide

PUDIIC MENOOSo 232

The CoNnfig SITUCLUIEcevecii e e e e e aaaas 233

The Logon PrOCEAUNEciiieii e e e e e e e eaa s 234
Writing Multi-Session Application SpecifiCationsccoccuvveviiiiiiiiiciii e, 235

1Y 1= o [0 PP 236
g1 [0 ot (' o PP 236

Ht t pAMENU REFEIENCE .. e r s 237

Ht t pdMVENUL t EMREFEIENCE ...oviiiie e 238

Ht t pdMeNUSY MOl S REFEIENCEuivveici e 238
Writing Menu SPeCIfiCatioNSocvviiiiiii e 239

Ht t pdW dget Deskt Op REFEIENCEuiiiiiiii e e 240
g1 [0 ot (' o PP 240

LI 1 o= CE3] = ot (Y= 241
PUDIIC MENOOS ... 241

Ht t pdAPPMOdal REFEIENCEuiiiiiii e e 242
g1 [0 ot (' o PP 242
PUDIIC MENOOS ... 243

[T F= oo P 243
g1 [0 ot (' o PP 243

(D = R)Y =< TP 243

Ht t pdW dget Di al 0g REFEIENCE ... covvniiiiii e 248

Ht t pdW dget Fi el d REFETENCEovvniii e 251

Ht t pdW dget Scal ar REFErENCEovviiiiiiii e 253

Ht t pdW dget Opt i 0N REFEIENCE ... covvniii i 254

Ht t pdW dget Bool ean REFEIENCEcivviiiiii e 255

Ht t pdW dget Mul ti REFEIENCEoivvnii e 256

Ht t pdFi el dVBNAger s REFEIENCE iiiiiiii e 258
Dialog SPECITICAIONS ... cevuiiiiiieii e e e e e e e eanas 263
L00] 1 1= o 1 o) PP 265
g1 [0 ot (' o PP 265

Ht t pdCol | ecti onDat a REFEIENCEccuuviviniiiiicie e 265

Ht t pdCol | ecti onObj ect Renderer Referencecccovvvviviiiiiciiiniiiie e 266

Ht t pdCol | ecti onW dget REfErENCEcoevvniiiiiiiii e, 267

Ht t pdCol | ecti onLi st Adapt or Referencecoovvvviiiiiiiiiiiin i 269

Ht t pdCol | ecti onArrayAdapt or REfErENCEccocvvvviviiiiiiiiiiee e 269

Ht t pdW dget BackBl ocker REfErENCEocvvviiiiiiiii e 269
g1 [0 ot (' o PP 269
PUDIIC MENOOS ... e 269

O F o = g T = 271
What isthe Imaging Library? ... 271
g1 [0 ot (' o PP 271
Using the Imaging Library ... 271

HE t PARECT REFEIENCE ..o e e 272
g1 18 ot [o PP 272
THIEAA SEFELY ..oievviieiii e e e e 272
o)L Tol B - - P 272
PUDIIC MENOOS ... i 273

Ht t pdCanvas REFEIENCEiiiiiii e 274
g1 18 ot [o PP 274
PUDIIC MENOOS ... i 274

Ht t pdSquar €Br uSh REFEINENCE ... coovuiiii i 277
g1 18 ot [o PP 277
PUDIIC MENOOS ... i 277

HE t PAFONT REFEIENCE ..o e 277

Xii

Seminole Developer's Guide

g1 0T (1 1 o o P 277
PUDIIC MEHNOAS ... e e 277

Ht t pdG f 87aRender er REFEIENCEcvvniiiii e 278
g1 0T (1 1 o o P 278
=0 IS 1= oY 278
PUDIIC MEHNOAS ... e 278
YL TS o = P 280
g1 0o (1 1 o o P 280
Ht t pdVEDSOCKEt REFEIENCEcvvncii e 280
g1 0T (1 1 o o P 280
PUDIIC MEHNOAS ... e e 280
Protected MEthOAScovuiiiiic e 282

T o oo T g D TE ol 0LV YN 284
g1 0o (1 1 o o TP 284
[TooJo 1T o) I o= (o] o U PN 284

THE DISCOVENY SEIVELciiiiiiii e et e e e e e e e e e e e e e aneeeen 284

The DISCOVENY ClIENT ...covniii e e e e e e et e e e e aaa s 284

The Java DIiSCOVETY CLENME ...ouuiiii i e e e e e e e e e e e eanees 284
COMPIIING et 284
INStructional HTIML ..oovuiii e e e e e e e e e e 285

N 11] o1 (= 290
Formatting AttriBULEScoee i 290

o) (] o =0T oo] o) 292
[T oo T A o] N 293

(O 1= S SR T | (= 294
Change Highlightingcoouiiiiiii e e e 294

Ht t pdDi scover yServer REfErENCEviiiii i 294
g1 0T (1 1 o o P 294
Configuration SETUCLUIEScvueiiii e e e e e e e e e e e e e e e e et eean e eeees 295
PUDIIC MEHNOAS e 296
Protected MEthOAScovniiiii e 297

L 011> o (=0 DT - P 298

Ht t pdDi scover yQ i ent REFEIENCEc.uiiiiiiiiii e 298
g1 0T (1 1 o o P 298
Configuration SETUCLUIEScvueiiii e e e e e e e e e e e e e e e e et eean e eeees 299
PUDIIC MEHNOAS ... e e 299
Protected MEthOASccvniiii e 300

Ht t pdDi scover edENdpoi Nt REFErENCEc.vviiiiiiii e 301
g1 0T (1 1 o o P 301
Protected MEthOASccvniiii e 302
Protected Data MEMDBENSuiiiiii e 302

The WIn32 DisCOVEY CHEME ...ouuiiiiiiii i e e e e e e e e et e e e eeas 303
COMPIIING et 303
Configuring the CHENt ... e 303

14. The Other Direction: An HTTP CHENtccvuiiiiiii e e e 305
B0 I O = o SRR 305
g1 0T (1 1 o o P 305
Performing HTTP TranSaCtioNSc.uiviiiiiiiiieiiieesie e e ee e e e e e e e e e e e eaneees 305

HEt pdCl i €nt REFEIENCEcvve i e 305
g1 0T (1 1 o o P 305
PUDIIC MEHNOAS ... e e 306

Htt pdClient Fet Ch REFEIENCE ... covvniiii e 307
g1 0T (1 1 o o P 307
PUDIIC MEHNOAS ... e e 307

Seminole Developer's Guide

Protected MEINOOSooiiieiiei e 309

Ht t pdCl i ent Request BodySource REfErenCecocvviiiiiiiii e, 309
g1 [0 ot (' o PP 309
PUDIIC MENOOSo 309

Ht t pdCl i ent Buf f er Request Body REfErenCecocovveviiiiii i, 310
g1 [0 ot (' o PP 310
PUDIIC MENOOSo 311

Htt pdCl i ent KEBYRI NG REFEIENCE ...oovuiiii e 311
g1 [0 ot (' o PP 311
PUDIIC MENOOS ... 311
Protected MEINOOSiiiiiiieie e 312

15. Integrating Seminole With An APPliCaLIONooviiiiii e 314
Porting and Integrating SEMINOIEcouuiiiiii e e e e e e e 314
g1 [0 ot (' o PP 314
Seminole compile-time parameters and OPtioNSc.vvevveieiiiiieiiree e, 314

The Seminole BUild SYyStEMooviiii e 324
Operating Environment ADSIraction Layersceevvieiiiieiiin e eee e 331
EXtending SEMINOIEcovuiii e 335
g1 [0 ot (' o PP 335

Yo (o [gTo =T | = £ 336
Dynamic Memory ATOCEHIONeiiiiiiii e e e e aaas 339
g1 [0 ot (' o PP 339
(0= (o [o 1= o: £ 339

T o A oo = PP 341
F g1 [0 ot [o PR 341
HOSt TOOI INPUE FOIMELeiiiieii e e e e e e e e e e e e eaa s 341
USING the SCPG TOO0I ...cvviiiiii e e e e e e e e e e e e e e e e aanees 344
g1 [0 ot (' o PP 344
L= o PRSPPI 344

Input Configuration File FOrmMatcoooviiiiiiii e 345
L] = £SO SRP 347

[wo o [g To T 1Y 1= 349

N T 01327 o PPN 350
Listing File FOrMALcouniiii e e e e e e e e aa s 351
Standalone TEMPIALESvvveiiiiee e 352
L0010 0| = (=0l (000>] o 353
USING the DIN2C TOOI ...ceueiii e e e et e e e eaes 354
g1 [0 ot (' o PP 354
L= o PRSPPI 354
UsiNg the MakeCart TOOIcoouiiiii e e e e e e 355
g1 [0 ot (' o PP 355
L= o PRSPPI 355
UsiNg the MSOCMP TOO! . ..uuiiiiiiii e e e e e e e e e et e e eaaaes 356
g1 18 ot [o PP 356
L= o PRSPPI 357

INPUL FITE FOMMEEoveciii e e e e e e e eanas 357
UsiNg the SPECOEN TOOiiiiiii e e e e e e e e 358
g1 18 ot [o PP 358
L= o PRSPPI 358

7010 0 1 7= 358
INCIUAEA PACKBOESuiiiiiiiii e e eaa s 360

YN @ o= 11T 0o IS 0o AN 363
(10 364

Xiv

List of Figures

15.1. Toolchain for Combining Content in the System IMagecc.uvviiiiiieeiiiieee e

15.2. Toolchain for Building a Web Application

XV

List of Tables

2.1. Predefined HitpdProtocolVersion CONSLANESc.uuuiiirrineeieiiiie e 6
2.2. Supported Time Format SPECITiCaLIONSuuiiiiiiiiieiiii e 24
2.3. Supported Print FOrmat SPeCifiCatioNScoeuuuieiiiieiei e 27
2.4. HttpdFileHandler Request Processing Phasesvviviiiioiiiii e 43
4.1. OS Abstraction Layer Error COUESuiiiiiiiiiiiie ettt 133
4.2. FOrK() Priority HiNESoeeiii e 136
4.3. OpenSSL SOCKEL OPLIONSvuueiiiiieeeeti ettt ettt e e et e et e e et e e e ean s 138
5.1, TEMPIEE DIFECLIVESceeiiieeiit ettt et et e e et e e e e e enans 143
5.2. Ht t pdSynbol Map Default Handlersiiiiiiiiii e 161
10.1. EVAlUBLION DIFECHIVES ... iiiiiii ettt ettt et e et e e e b 215
10.2. CoNitioNal DIFECHIVEScveeitieeeeii ettt et e e e e e e an e e enaens 215
O AT Lo o< B o =" P PP PR 219
10.4. EVAIUBLION DITECHIVESiiiiiiieieii ettt ettt e e et e e 222
10.5. ConditioNal DIFECHIVESceeeetieieeii ettt ettt e e et e e e e e enaans 222
10.6. LOOP DITECHIVES ...ttt et e e e et e e et eeeaaa s 222
10.7. Directives available during MBNU- i T ITBiiiiiiiiiieii e 238
10.8. EVAIUSLION DITECHIVESiiiiiii ettt ettt e et e et e e 241
10.9. ConditioNal DIFECHIVESceeeetieeeiii ettt ettt e e et e e e e e ea e ennans 241
10.10. Didlog TeMPIEE FIAgSu ettt e et e e e e e eni e eees 246
10.11. Field Manager Procedure EVENESvoiiiiiieiiii ettt 247
10.12. Ht t pdW dget Fi el d Template DIr€CliVESviiiiiiiieiiiiieeee e 251
10.13. Ht t pdW dget Scal ar Template DIreCtIVEScoevuuiiiiiiiiiieeiii e 253
10.14. Ht t pdW dget Opt i on Template DIreCtIVESccevuvnieiiiiii e 254
10.15. Ht t pdW dget Bool ean Template DIireCtIVEScccuumeiiiiiiieeiiiie e 256
10.16. Ht t pdW dget Mul ti Template DIr€CiVESuviiiiiiiieiiii e 257
10.17. Components of a di @l 09 DOAYcc.uuiiiiiiii e 263
13.1. DiscoVEry CHEent ParamELErSccoeuuiieiiii ettt e e e et e eeena e eees 286
13.2. Attribute FOrmatting Parametersi oo 290
15.1. Standard POMS FITEScouuiiieiii e e et e e 325
16.1. SCPG ESCAPE SEOUENCESeevueirieeti ettt et e et et et et s et e et e e e e et e e e eee s 341
16.2. SCPG Command Lin€ OPLIONScceeuriieeiiiii ettt ettt e e e e e et e e e ena e aees 344
16.3. SCPG Configuration File DIrECHIVESoeiiiiiiieiiii e 345
16.4. SCPG Configuration File OPLIONSccuuuiiiiiiie et 347
16.5. SCPG Filter TS ..ottt ittt ettt ettt e et e e et eeeaaa s 347
16.6. SCPG Perl Filter Hashref CONENTSccouvuriiiiiiiiie e e 349
16.7. SCPG ENcoder SYMIOISuiiiiiiie et 349
16.8. SCPG Content Preprocessing COMIMANGScooeuuiieiiiieeieii et e e 34
16.9. bin2c ComMMEN LiNE OPLIONScieertieieiiie ettt ettt ettt e e e e e e e e enees 354
16.10. msgcmp Command Ling OPLIONSuueiiirieiiiie ettt e 357
16.11. specgen Command Ling OPLIONSoeeeuuuiiiiiiiieeieii et e e ettt e et e e et e e eenin e eees 358
16.12. specgen Defallt DIFECLIVEScccuuueiiii et 359
16.13. symmap Predefined tYPES .. .cooiii et 362

XVi

List of Examples

1.1. Handler Mapping PreCEOBNCEiiieiiieieii ettt e e e 1
15.1. Using Inherited Definitions in @ Ports Fileoviiiiiiiiiii e 326
15.2. A SKeletal HanIEroovuniiiiiie et 337
15.3. ParSing CGl ParaMELErScciiutiieeiiii ettt e ettt e e et e et e e e e ent e e eent e eees 338

XVii

Introduction

Thismanual isintended for anyone who will beincluding Seminolein another system, porting Seminoleto
anew platform or RTOS or extending Seminolein someway. Thisguideisintended asadetailed reference
rather than a tutorial. Beginners are encouraged to read the Getting Started Guide and work through the
examples before taking on more complex projects.

Oncefamiliar with the basicsthisreference guide should be used when writing code that usesthe Seminole
API to its fullest. Each class is documented with a general summary followed by its public interfaces in
excruciating detail. This document is the best way to understand the Seminole APl when thereisno desire
to "look under the hood."

Should this document prove insufficient our support department will be happy to help you with further
guestions. Also, comments and corrections concerning this documentation are welcome, and may be sent
viaInternet mail to <support @l adesoft. conp.

XViii

Chapter 1. Overview

About Seminole

Seminole is an embedded webserver toolkit. It is not designed to run as a standalone webserver although
it is capable of doing so. Instead, Seminoleis designed to be embedded into other software. Such software
is typicaly the firmware of an embedded system although application software can embed Seminole as
well. Itiswritten using a subset of C++ with an eye towards portability aswell as modularity. The services
of the underlying operating system are abstracted with afew simple functionsand t ypedef s.

Because Seminole is designed to be embedded in other software it has a small code footprint (especially
for embedded systems) and a small heap appetite. Another difference between traditional webservers and
Seminole is the interface to external code. Seminole allows application code to execute within Seminole
rather than an external process. Thisis especially important since many real-time operating systems have
no concept of a process. This also allows easier application programming with high-level C++ interfaces
rather than traditional “gateway” applications.

Most emebedded webservers are not used for serving static content. Although embedded devices can have
on-line user manualsviaHT TP the primary purpose of web-enabling adeviceisto provide auser interface.
To that end, unlike atraditional web server, Seminole does not require afile system and the core server is
not “file centric”. Instead, objects derived from the Ht t pdHandl er classlay claim to various portions
of the URL space. When a request comes in Seminole finds the appropriate handler and dispatches the
request to it. A default handler class, Ht t pdFi | eHandl er, is provided for serving up files from a
filesystem abstraction. In addition, both a native ROM filesystem and an interface to a POSIX file system
are included for more traditional web serving tasks. This default framework is suitable for testing and
development purposes on POSIX-oriented systems such as UNIX® or for production use on embedded
operating systems providing such afile system interface.

When Seminole is started, an instance of the class Ht t pd is created for each configured port. For each
possible URL prefix, aderivative of the abstract base class Ht t pdHandl er isinserted into alist within
the Ht t pd instance. Therefore, Ht t pd isacontainer for one or more Ht t pdHandl er instances.

When an incoming request is made, the Seminole instance will create a new thread (depending on the
services provided by the host platform, “task” or “job” may be the appropriate concept) to process the
request. The request handler will then create a new instance of Ht t pdRequest .

Ht t pdRequest will readinthe HTTP request and MIME headers and perform some basic parsing. Most
of the request processing centers around calling methods provided by the Ht t pdRequest class.

The handler codein Ht t pd will then call each of the registered Ht t pdHandl er sin series giving them
the URL and checking to see if they want it. They can either accept the request -- in which case the
request object is destroyed after the selected Ht t pdHandl er processes the request; or they can reject
the request, in which case, the next handler in the chain is called. If no more handlers are present default
error processing is performed.

Each Ht t pdHandl er is associated with a “prefix string”. This string represents the first N characters
that a URI must begin with for that handler to be considered “responsible” for that request. The Ht t pd
class maintains alinked list sorted by order of prefix length.

Example 1.1. Handler Mapping Precedence

/ web/ dynani c/ Handler 1

Overview

/ cgi - bin/ Handler 2
/ web/ Handler 3
/ Handler 4

Requests will always try the most specific URL prefix first. So a request for / web/ dynami c/
f 00. ht M would be passed to handler 1 inthisexample, whereasarequest for / web/ f oo. ht m would
be passed to handler 3.

Performance

Seminole is designed to scale well. On one end of the performance spectrum it can be configured to
consume few resources with adequate performance. On the other end of the spectrum Seminole can be
configured to handle a very high volume of requests. Getting the best performance from Seminole does
require tuning parameters in both Seminole and the target platform.

Seminole requires few amenitiesfrom the target platform. In fact even threads are not required — requests
will simply be processed serially. However this configuration should only be used for targets with the
most limited resources where performance is not an issue. This is because without threads the persistent
connection feature of HTTP can't be used.

When Seminole is using threads it is agnostic to how those threads are managed. On some platforms
creating athread isavery efficient operation. On other platformsthread creation is an expensive and time-
consuming process. For these platforms a pool of worker threads can be created in advance and wait for
requests. Most of the provided portability layers offer thread pooling as an option.

Regardless of how threads are managed (pooling or on-the-fly creation) the portability layer also needs
to limit the maximum number of threads Seminole uses. When the number of active threads exceeds the
maximum the portability layer can either return immediate failure or block waiting for a period of time
for athread to free up. The former approach is best for small systemsthat have at most a handful of users
performing requests. The latter approach is more appropriate if heavy activity is expected.

The semantics of sleeping when the thread pool is empty helps keep |oad managabl e because the acceptor
thread will be blocked while the worker threads finish up their processing. The acceptor thread is
responsible for handing off new reguests to worker threads. If afree thread is not available after blocking
then the portability layer can return failure and the new request will be discarded.

Thisworkswell when worker threads are quickly completing their work and exiting (or returning tothefree
thread pool). Persistent connections can cause idle threads to wait rather than perform useful work. This
effectisamplified if thetimeout valuefor persistent connectionsisgreatly increased. Seminoleincludesan
optional feature called “ overload protection” that attempts to rel ease threads occupied with idle persistent
connections.

Overload protection is invoked when the portability layer returns failure when spawning a thread. In this
case the oldest thread is signaled to abort its wait for arequest. The thread waiting for the request will be
inthe Ht t pdSocket : : Get s method. Overload protection calls the Ht t pdSocket : : Abort Gets
method on the socket. This method will cause Get s to return immediately rather than wait for the timeout.
If Abor t Get s returnsfailure the next oldest thread is selected for reclaimation. This processis repeated
afinite number of times until the thread can be spawned.

Chapter 2. Core API Reference
Using the API

The Seminole API is defined in several header files. The main header file, sem nol e. h, defines amost
al of the“core” API. Advanced features are contained in their own header files which should be included
after sem nol e. h.

The Seminole source tree contains some header files that are not public and should not be included by
applications. The Seminole build system knowswhich header filesare public and which are not. The public
header files are copied to the bui | t / PORT/ i ncl ude directory. This is the location where Seminole
applications should include their header files from.

All of the Seminole names begin with some permutation of Htt pd. This is to avoid clashes with
application code. This may be confusing when examining the Seminole APl because many of the
supporting classes can be used without any dependencies on the HTTP protocol. In fact, the APl was
designed so that some of the tools can be used without the webserver class (Ht t pd) at all.

The API is heavily object-oriented. It is important that programmers understand the basic concepts of
object oriented programming: encapsulation (abstraction), inheritance, and polymorphism. Each of the
classes has a particular useage model. Sometimes this model is different from other classesin the API This

inconsistency is typically due to some efficiency constraint (e.g. code size). However every attempt has
been made to keep the API as consistent and easy to program to.

Seminole Constants, Macros, and Types

Introduction

Seminole defines a small number of custom data types for internal purposes. Most of these are used in
public interfaces, and thus implementors should be aware of them. This chapter documents such types.

All definitions are portable (i.e. identical acrosstarget abstraction layer implementations) unless otherwise
noted.

Constants

HTTPD U8 BYTES
This constant is the number of bytes required to hold an 8-bit unsigned integer.
HTTPD U16_BYTES

This constant is the number of bytes required to hold a 16-bit unsigned integer. It is amost universally 1
except for very specialized environments.

HTTPD U32_BYTES

This constant is the number of bytes required to hold a 32-bit unsigned integer.

Core API Reference

HTTPD_SESSI ON_KEY_LEN

Thelength (in characters) of asession identifier. Thislocally uniqueidentifier is used to identify sessions
with incoming requests. This value is a function of the SESSI ON_NONCE_LEN build parameter. In
genera it is sufficiently small that buffers of this size can be allocated as local variables.

Types
HttpdUint16

t ypedef unsigned short HttpdUi nt 16;

Thistype is normally defined by the portability layer. It should be a 16-bit unsigned integer on the target
platform. Shown above is atypical definition for most architectures.

HttpdUint32

typedef unsigned |ong HttpdU nt 32;

Thistype is normally defined by the portability layer. It should be a 32-bit unsigned integer on the target
platform. Shown above is atypical definition for most architectures.

HttpdBitWord

t ypedef unsigned int HttpdBitWrd,

This type represents the unit of access by the Ht t pdBi t Set . It istypically defined as an unsigned int.
Thisisthe most efficient word size for the machine to access.

HttpdPair

struct HtpdPair

{
const char *npKey;

const char *npVal ue;

This struct is used to store name/value pairs, such as HTTP or MIME headers. HttpdUTtilities::Lookup
provides a method to search a sorted series of HttpdPairs.

Httpdlpv4Address

typedef HttpdUi nt32 Ht pdl pv4Address;

Provides a binary representation of an Internet Protocol (1P) V4 address. This type definition may vary
from onetarget platform to another. The POSI X abstraction layer definitionisshown here. If the definition
were of a more complex type, such as a structure then appropriate copy and comparison operators must
be provided by the portability layer.

HttpdIipAddress

typedef Httpdl pv4Address Htt pdl pAddress;

Core API Reference

Provides a binary representation of an Internet Protocol (1P) address.

@ Note
This type definition may vary from one target platform to another. The POSIX abstraction
layer definition is shown here when INC_IPV6_SUPPORT is disabled. If the definition
were of a more complex type, such as a structure then the portability layer should define
the preprocessor symbol HTTPD_HAVE_BULKY_SOCKET_ADDRESSES to a non-zero
value and instead define a class named Ht t pdl pAddr esshj ect derived from the
provided Httpdl pAddressBase.

HttpdlpPort

typedef HttpdUi nt16 H tpdl pPort;

Provides a binary representation of a TCP/IP port number.

@ Note
This type definition may vary from one target platform to another. The POSIX abstraction
layer definition is shown here.

HttpdSocketWaitHandle

typedef ...HttpdSocket Wit Handl e;

Thistypeisdefined by the portability layer. It abstracts an optional object that may be waited for alongside
socket events. This capability isonly used if the portability layer defines HAVE_SOCK_WAI T to 1.

Code that uses this type other than simply passing it along is inherently nonportable. Different systems
may use wildly different definitions to define this type. For example POSIX systems use afile descriptor
here while Win32 usesaWSAEVENT handle.

HttpdTransport

struct H tpdTransport

{
const char *nmpTransport Nane;
Ht t pdSocket I nterface *(*nmpFactory)();
i nt (*nplnitialize)();
const char *npUri Schene;
Ht t pdl pPort nPort ;

1

This type describes a particular transport associated with a Ht t pdSocket object. This type is only
defined if the INC_MULTIPLE_TRANSPORTS option is enabled.

HttpdProtocolVersion

typedef HttpdUi nt16 Htt pdProtocol Version;

Core API Reference

Used to encode HTTP version specifications, for purposes of comparison and matching appropriate
responses to requests made via a particular version. Predefined constants exist for the HTTP versions in
use at the time of this writing, as described in Table 2.1, “Predefined HttpdProtocol Version Constants”.
Version comparisons can be made through use of the standard numerical comparison operators.
HttpdUTtilities::ParseHttpVersion can be used to generate a HttpdProtocolVersion representation of an
ASCII version string.

Table 2.1. Predefined HttpdProtocol Version Constants

Constant Name HTTP Version

HTTPvUnknown Unknown

HTTPv09 HTTP/0.9

HTTPv10 HTTP/1.0

HTTPv11 HTTP/1.1
HttpdAuthSchemes

typedef enum

{

Basi c,
Digest, // Only present if HTTPD I NC DI GEST_AUTH i s non-zero.

End
} Htt pdAut hSchenes;

Thistypeidentifiesone of the supported authentication schemes. The enumeration End isused to terminate
lists of authentication schemes.

HttpdUnicodeCharacter

typedef HttpdUi nt32 Htt pdUni codeChar acter;

Used to represent a Unicode character. Unicode is a 21-bit character coding scheme. As such characters
are represented natively by a 32-bit unsigned value. Normally Unicode characters are encoded using a
more compact scheme. For example UTF-8 is a variable length scheme that encodes Unicode characters
that is optimized for compactly representing ASCII characters.

HttpdMD5Digest
typedef HttpdUi nt8 HttpdVD5Di gest[16];

Thistype holds an MD5 digest. It is always 16 unsigned octetsin size.

HttpdSHA1Digest
typedef HttpdU nt8 HttpdSHALD gest|[20];

Thistype holds a SHA-1 digest. It is always 20 unsigned octetsin size.

Core API Reference

HttpdClientCounter

t ypedef unsigned char Httpdd ientCounter;

This type is used as an event counter by the HTTP client component. Variables of this type are used to
keep retry counters and limits during fetch operations.

Macros

Seminole uses the C++ preprocessor when it makes the code clearer and easier to maintain. In some cases
there are some ugly preprocessor tricks used to optimize core routines but these are always kept localized
to the area being optimized and are never visible in the Seminole API in any way.

HTTPD_NUMELEM
#def i ne HTTPD_NUMELEM a)

This macro computes the number of elementsin an array a.

é Caution
The value of this macro isonly correct if the compiler knows the size of the array before the
macro isinvoked. For example declarations such as:

extern int array[]; // Unknown size.

will not work.

HTTPD_BASED_PTR
#def i ne HTTPD _BASED PTR(p, t, 0)

This macro will bias a pointer p by the the offset o bytes and return a pointer to type t . This macro is
a convenience macro when adding a byte offset to a pointer. Using this macro helps avoid errors where
the type is not properly casted to a byte pointer. Furthermore this macro aso helps document the intent
of code better than a pile of casts.

httpd_often

#defi ne httpd_often(x)

Some compilers, notably GCC can be given hints about conditionals to produce better code. Specifically
a compiler can produce more optimal code if it knows that the body of an if-statement is only executed
in the event of an error, for example.

For compilers that support these hints this macro indicates that the conditional branch is frequently taken.
The entire condition of the if-statement should be substituted for x.

Seminole usesthismacro (and httpd_rarely) extensively to hel pimprove code generation. Thereisnothing
preventing code written against Seminole's API from using these macros as well.

httpd_rarely

#define httpd_rarel y(x)

Core API Reference

This macro, like its counterpart httpd_often is used to give conditional hints to the compiler during code
generation. This macro indicates that a condition isinfrequently true. Thisis especially common for error
handling code.

H tpdUtilities Reference

Introduction

HttpdUtilities isastatic classthat is used to hold various helper routines that the Seminole core
dependson. All of the methods and datamembers of this class are static; thereisno need to ever instantiate
this class.

Most of these routines may be called by your handlers as well, so it is important that they be well

understood.
Public Methods
StrLimtCopy

bool HtpdUtilities::StrLimtCopy (char *p_dest, const char *p_src,
size_t maxlen);

This routine copies the string pointed to by p_sr ¢ to the buffer pointed to by p_dest . If the source
string plus the zero-termination byte exceed the length specified by max| en then the copy is a properly
null-terminated truncation of the original.

Thisroutine returnstrue if the copy did not perform any truncation or false if there was truncation.

Thisroutineis similar to the standard library routine st r ncpy with the exception that it always properly
null-terminates the resulting string and returns an indication of truncation.

St r VCat
char *HttpdUtilities::StrVCat (const char *p _first, .);

This routine will concatenate a NULL terminated list of strings and return a pointer to the resultant string
in storage obtained from HttpdOpSys::Malloc.

Itisimportant to terminate thelist with (char char *) 0, not NULL, because some CPU architectures
have different NULL pointer representations for different types and the compiler does not know the type
of the pointer because it is a variable argument list.

SaveString
char *HttpdUtilities::SaveString (const char *p_original);

This method makes a copy of astring (p_or i gi nal). Itisidentical in effect to:
StrVCat (p_original, (char *)O0)
It is designed to save code space where St r VCat would require that two arguments be passed.

SaveSt ri ng returns apointer to acopy of the string in storage obtained from HttpdOpSys::Malloc. On
error, NULL is returned.

Core API Reference

St r Chop
char *HttpdUtilities::StrChop (char *&p_string);

Thisroutine will tokenize awhite-space delimited string. A pointer to the next token (withinp_st ri ng)
isreturned by the function. In addition, p_st r i ng isupdated to point to the next token so that successive
callsto St r Chop will tokenize an entire input string. An empty string is returned when no more tokens
are available.

Mat chPatt ern

bool HttpdUtilities::MatchPattern (const char *p_pattern, const char
*p_string, unsigned short depth = HTTPD PMATCH MAX RECURSI ON) ;

This function determines if p_st ri ng matches a generic pattern, p_pat t er n. If the string matches
then trueisreturned if the pattern does not match then false is returned.

Patterns consist of the ? and * meta-characters. A ? matches any single character and a* matches zero
or more characters. For example the string “ Seminole Webserver” is matched by the pattern “Sem*ver”.
Charactersthat are not one of the special meta-characters or are quoted are called non-meta characters and
must match themselves in the string.

If the INC_CHARCLASS PATTERN_MATCH option is enabled then character classes are supported.
For example[abc] would match any of those three characters. Additionally arange of characters can be
provided, such as[a- c] whichisidentical tothe[abc] character class.

To match metacharacters any character can be escaped using abackslash (\).

The dept h controls the available recursion depth. In some cases this method may need to recursively
cal itsef. To prevent stack overflows the dept h parameter is decremented before each call to
Mat chPat t er n. If it reaches O then the match is considered afailure and false is returned.

Thedept h hasadefault valueof HTTPD_PMATCH MAX RECURSI ONsoit doesnot haveto be specified
in calls to this method unless some specific limit is desired for a particular call site.

Stringl senpty
bool HtpdUtilities::StringlsEmpty (const char *p_string);

Thisroutine determines if the stringp_st ri ng is composed of only whitespace chatacters.

StrCmp

int HtpdUtilities::StrCrp (const char *p_a, const char *p_b);

Carry out a case-sensitive lexicographic comparison between p_a and p_b. Returns O if they are equal,
lessthan O if p_a islexicographically lessthan p_b, or greater than O if p_a islexicographically greater
thanp_b.

Note

This method is identical to the st r cnp method and is used to prevent using the address
of strcnp directly. In some environments (due to calling convention) this can perturb
the runtime library or compiler. In genera a pointer to st rcnp is only needed for the
HttpdUtilities::Lookup method.

Core API Reference

St r Cnpi
int HtpdUtilities::StrCrpi (const char *p_a, const char *p_b);

Carry out acase-insensitive lexicographic comparison betweenp_a andp_b. Returns 0 if they are equal,
lessthan O if p_a islexicographically lessthan p_b, or greater than O if p_a islexicographically greater
thanp_b.

St r nCnpi

int HtpdUtilities::StrnCnpi (const char *p_a, const char *p_b, size_t
l en);

Carry out a case-insensitive lexicographic comparison between p_a and p_b. A maximum of | en
characters are compared. Returns 0 if they are equal, lessthan Oif p_a islexicographically lessthan p_b,
or greater than O if p_a islexicographically greater than p_b.

Uri St ringConpare

int HtpdUtilities::UiStringConpare (const char *p_encoded, const char
*p_string);

Carry out a case-sensitive lexicographic comparison between p_encoded and p_st ri ng. Characters
that are URL-escaped in p_encoded match against their unencoded counterpartsin p_stri ng. This
method returns O if they are equal, lessthan O if p_encoded islexicographically lessthanp_st ri ng,
or greater than 0 if p_encoded islexicographicaly greater thanp_stri ng.

If the escapes are malformed in p_encoded then INT_MIN isreturned.
Ski pwWhi t espace
char *HttpdUtilities:: Ski pWitespace (char *p_string);

This routine skips leading whitespace and returns a pointer to either the end of string (pointing at the null
terminator byte) or the first non-whitespace character.

Thereisaso anidentical version of this method that works on constant strings.

Ski pNonWhi t espace
char *HttpdUtilities::Ski pNonWiitespace (char *p_string);

This routine skips leading non-whitespace characters and returns a pointer to either the end of string
(pointing at the null terminator byte) or the first whitespace character in the string.

Thereisalso an identical version of this method that works on constant strings.

Url Prefi xMat ches

char *HttpdUtilities:: Ul PrefixMatches (char *p_string, const char
*p_prefix);

This routine determines if p_pr ef i x ispresentinthe URL p_st ri ng. Percent-escaped charactersin
p_stri ng match against their unescaped versionsin p_pr ef i X. This routine returns a pointer to the
suffix where the match ended or NULL if the prefix was not present.

10

Core API Reference

Thereisalso an identical version of this method that works on constant strings.

Ur | Pat hPr efi xMat ches

char *HttpdUtilities:: Ul PathPrefixMatches (char *p_string, const char
*p_prefix);

This routine determines if p_pr ef i x ispresent in the URL p_st ri ng. The match is only considered
successful if the match terminates on apath separator or theend of p_st r i ng. Percent-escaped characters
inp_st ri ng match against their unescaped versionsinp_pr ef i x. Thisroutine returns a pointer to the
suffix where the match ended or NULL if the prefix was not present.

Thereisalso an identical version of this method that works on constant strings.

RenoveChar s
void HitpdUtilities::RemoveChars (char *p_string, const char *p_set);

This function removes any charactersfromp_stri ng that areinp_set .

FilterChars

void HitpdUtilities::FilterChars (char *p_string, const char *p_set);

This function removes any charactersfromp_st ri ng that arenot inp_set .

Get LcExt ensi on

char *HttpdUtilities:: GetLcExtension (char *p file_nane);
Get the extension of afile name (in lower case).

Theinput string is modified in place and the return value points into that string. Y ou should make a copy
of the string for this routine if you need it after the extension is obtained.

Get Conponent Pat h

char *HttpdUtilities:: GetConponentPath (const char *p_uri, const char
*p_fil enane);

GivenaURI or root path concatenatethep_f i | ename tothep_uri pathto produce anew path. Trailing
forward slashes are adjusted so asto avoid duplicates.

Upon success a pointer to the newly formed path string is returned. It is the caller's responsibility to free
it (using HttpdOpSys::Free). Upon failure NULL is returned.

Nor mal i ze

char *HttpdUilities::Normalize (const char *p_path, const char
*p_prefix);

Prependsthestringp_pr ef i x tothestringp_pat h andremovesany . or .. references. It returnsapointer
to the resultant string in storage obtained from Mal | oc() . It isthe caller's responsibility to freeit (using
HttpdOpSys::Free).

11

Core API Reference

Because this method is typically used to convert URL paths into filesystem paths .. can not be used to
access any path above p_pat h.

Normal i zeUr |

char *HttpdUtilities::NormalizeUl (const char *p_uri, const char
*p_prefix);

This method is similar to the non-URL method HttpdUtilities::Normalize. One difference is that escaped
charactersinp_uri areinterpreted for their actual value. For exampleif apathwere/ exanpl e/ pat h/
we%e/ fil e thiswould benormalizedto/ exanpl e/ fi | e. Another differenceisthat .. can be used
to generate a URL that isthe parent of p_pr ef i x.

Hash

size t HtpdUilities::Hash (const char *p_key);

This method computes the hash index of p_key that can be used to speed up searches for that particular
key. The returned value is a (non-unique) function of p_key.

HasTrai | i ngSl ash

bool HtpdUtilities::HasTrailingSlash (const char *p_path);

Thisfunction returnstrueif p_pat h endsin aforward dash.

HasPrefi x

const char *HttpdUtilities::HasPrefix (const char *p_str, const char
*p_prefix);

Determineif astring has a certain prefix (caseinsensitive). If the prefix is present then the returned value
isthe point past the prefix portion of p_st r . If the prefix is not present then NULL is returned.

| sUri Pat hPrefi x

bool HtpdUtilities::IsUiPathPrefix (const char *p_path, const char
*p_prefix);

This method determines if the path pointed to by p_pat h contains the prefix specified by p_pr efi x.
The path isa URL-style path and must use/ as a path separator. The prefix must be at least one character
in length.

If the path contains the prefix (either in its entirety or from the start of the path to some component
boundary) thent r ue isreturned. Otherwisef al se isreturned.

| sUri Protocol

const char *HtpdUtilities::IsUiProtocol (const char *p_uri);
Determine if a URL contains a protocol. The currently supported protocols are:

e http:

e https:

o« ftp:

12

Core API Reference

e file:

Thisisuseful for decidingif aURL isrelativeor absolute. If the string isan absolute URL then thereturned
value is a pointer to the scheme-specific part of p_uri . If the string is a relative path then NULL is
returned.

Host Porti on

char * HttpdUtilities::HostPortion (const char *p_uri);

This helper method attempts to find a hostname portion in the standard URL schema. If no hostname is
found or there is no memory available to hold the host name then NULL is returned.

It isthe caller's responsibility to free the return value using HttpdOpSys:: Free.

Uri Encode

char *HttpdUtilities::UiEncode (const char *p_uri, bool conpact_space
= fal se);

URL-encode a string by quoting the metacharacters used in URL strings. Returns a pointer to an encoded
string on success, NULL on failure. It isthe caller's responsibility to free it (using HttpdOpSys::Free).

If conpact _space ist r ue then space characters (ASCII 0x20) arereplaced with plus characters (" +").

NeedsUri Encodi ng

bool HttpdUtilities::NeedsUri Encoding (const char *p_uri);

This method determinesif p_uri needsto be URL-encoded.

Ur i Decode

char *HttpdUtilities:: Ui Decode (const char *p_encoded, bool plus_xlat);

URL-decode a string, being safe about what we quote. A ? character terminates the decoding (any
characters following the ? are truncated from the output).

Ur i Decode returns a pointer to the decoded string on success, NULL on failure. It is the caler's
responsibility to freeit (using HttpdOpSys:.:Free).

This method has two basic modes of operation. If pl us_xI at isf al se, then Uri Decode operates
in URL mode. In this mode, the + character is not translated to a space. This mode is most often used to
obtain the path component of a URL while removing the query string portion.

If thepl us_xI at parameter ist r ue then it is assumed that the string being decoded is a substring of a
URL query string. In this case, the + character istranslated into an ASCII space (character value 32).

Uri DecodeSi ngl e

const char *HttpdUtilities:: Ui DecodeSingl e (const char *p_encoded, char
*p_out put) ;

This method URL-decodes the next character in p_encoded. When successful, the resultant character
is placed in the variable pointed to by p_out put . A pointer to the character after the one that was just
processed is returned.

13

Core API Reference

On failure, NULL isreturned. The string pointed to by p_encoded must contain at least one character.

Ht m Quot e
char *HttpdUtilities::H m Quote (const char *p_str);

Escape any HTML specific character entitiesinp_st r . Returns apointer to an encoded string on success,
NULL on failure. It isthe caller's responsibility to free it (using HttpdOpSys::Free).

NeedsHt ml Quoti ng
bool HttpdUtilities::NeedsH m Quoting (const char *p_str);

This method returns true if there are any charactersin p_st r that need escaping. Typically this method
can be used to avoid the memory allocation done by Ht ml Quot e if no work is needed.

CQuot eStri ng

char *HttpdUtilities::CQoteString (const char *p_str, unsigned int
flags = STR_QUOTE_O);

This method escapes any necessary charactersin p_st r according to the rules of C-like languages. It
returns a pointer to an escaped string on success, NULL on failure. It is the caller's responsibility to free
it (using HttpdOpSys::Free).

f | ags consists of zero or more of the following flags:

Flag M eaning

STR_QUOTE_UNI CODE Enabled the \u escape sequence for Unicode
characters.

STR_QUOTE_HEX Enabled the\ x escape sequence for byte valuesand
ASCII characters.

STR_QUOTE_APGCS If this flag is present then the single quote ('
character) is escaped.

STR_QUOTE_C This flag specifies that strings should be escaped in
amanner that is compatible with the C language.

STR_QUOTE_JSON Thisflag specifiesthat stringsshould beescapedina
manner that is compatible with the JSON encoding.

Bi nToHex (static buffer version)

char *HttpdUtilities::BinToHex (char *p_buffer, const void *p_data,
size_t nbytes);

This routine formats nbyt es of data pointed to by p_dat a into an ASCII representation in the buffer
pointed to by p_buf f er . The destination buffer must be large enough to hold the formatted data and the
resulting string is not zero terminated.

A pointer to the next slot in the buffer (i.e. one past the last written character) is returned.

Bi nToHex (dynamic string version)

char *HttpdUtilities::BinToHex (const void *p_data, size_t nbytes);

14

Core API Reference

Thisroutineformatsnbyt es of datapointedtoby p_dat aintoadynamically allocated buffer that iszero
terminated. If there is insufficient memory for the buffer then NULL is returned. It is the responsability
of the caller to free the allocated buffer using HttpdOpSys:: Free.

Assenbl eU16
HtpdUint16 HitpdUtilities:: Assenbl eUl6 (const unsigned char *p_buf);

To avoid processor architecture and endian issues, 16-bit values are encoded in a particular way by tools
like SCPG. This method decodes the encoded 16-bit value produced by the host tools. The buffer pointed
toby p_buf mustbeat least HTTPD _U16_BYTES bytesin length.

Assenbl eU32
HttpdUint32 HitpdUtilities:: Assenbl eU32 (const unsigned char *p_buf);

To avoid processor architecture and endian issues, 32-bit values are encoded in a particular way by tools
like SCPG. This method decodes the encoded 32-bit value produced by the host tools. The buffer pointed
to by p_buf must be at least HTTPD_U32_BYTES bytesin length.

Lookup (Generic)

const void *HttpdUtilities::Lookup (const void *p_ table, size_t
tabl e_size, size_t record_size, size_t key offs, const char *p_key, int
(*p_conp) (const char *p_a, const char *p_b));

Carries out a binary search for key p_key in the pre-sorted table p_t abl e, which contains
tabl e_si ze elements of r ecor d_si ze bytes. The location of the key (asaconst char *)is
determined by key _of f s which can be obtained with the standard of f set of macro.

The p_conp parameter points to a comparison function that should return a positive, non-zero value if
p_a is sorted higher in the table than p_b; or a negative, non-zero value if p_b is sorted higher in the
tablethan p_a; or zero if the two elements are equal.

The first parameter to the comparison function (p_a) is always the current entry being examined in the
table.

Returns the discovered record upon success, NULL upon failure.

Lookup (Pairs)

const char *HttpdUtilities::Lookup (const HttpdPair *p table, size_t
tabl e_size, const char *p _key, int (*p_conp)(const char *p_a, const
char *p_h));

Carries out a binary search for key p_key in the pre-sorted table p_t abl e, which contains
t abl e_si ze elements.

The p_conp parameter points to a comparison function that should return a positive, non-zero value if
p_aislexicographically greater than p_b; or anegative, non-zero valueif p_b islexicographicaly than
p_a; or zero if thetwo elements are equal.

This function is based upon the more general Lookup. It is provided for convenience because
Ht t pdPai r tables are so common.

Returns the discovered value upon success, NULL upon failure.

15

Core API Reference

For mat Ti ne

void HtpdUtilities::FormatTine (char *p_buf, size_ t bufsz, const char
*p_format, time_t t);

Formats ANSI C time_t value t according to the specification supplied in p_f or mat , and stores the
result in p_buf (previously alocated by the caller to be buf sz in length.)

For more information, please refer to your C library documentation on the standard strfti me()
function.

Encode64

char * HttpdUtilities::Encode64 (const unsigned char *p _data, size_t
l en);

This method encodes | en bytes of data located at p_dat a into Base-64. The encoded data is returned
as a NUL-terminated string in allocated memory. It is the caller's responsibility to free it (using
HttpdOpSys::Free).

Decode64 (binary version)

unsi gned char * HttpdUtilities::Decode64 (const char *p_encoded, size_t
&out put _l en);

This method decodes the Base-64 encoded data in p_encoded. Upon success, the decoded data is
returned in an allocated buffer and out put _| en is set to be the decoded length in bytes. Upon failure,
NULL isreturned. It isthe caler's responsibility to freeit (using HttpdOpSys::Free).

Decode64 (String version)
char * HitpdUtilities::Decode64 (const char *p_encoded);

This method decodes the Base-64 encoded data in p_encoded. Upon success, the decoded data is
NUL-terminated and returned in an allocated buffer. Upon failure, NULL is returned. It is the caller's
responsibility to freeit (using HttpdOpSys::Free).

Next Char | nUt f 8

bool HtpdUilities::NextCharlnUf8 (HttpdUni codeChar &uc, const char
*&p buffer, size t wi ndow);

Thismethod getsthe next Unicode character in the provided buffer of UTF-8 encoded Unicode characters.
The method returnstrue if the next character is obtained without error or falseif more than wi ndow bytes
are needed to decode the character, the value of wi ndowis 0, or the buffer is not avalid UTF-8 string.

If successful then the buffer pointer, p_buf f er isupdated to point to the byte after the decoded character
that is placed into uc.

The typical use of this function isin aloop to decode each Unicode character as a string is walked. For
example:

char *p_utf8
size_t *p_end

some_ut f8_source();
p_utf8 + strlen(p_utf8) + 1;

16

Core API Reference

Ht t pdUni codeChar act er uc;
while (HitpdUtilities::NextCharlnUf8(uc, p_utf8, (size_t)(p_end - p_utf8)))

{
if (uc == 0)
break; // End of string.
/'l Process character uc here.
}
AppendUt f 8

bool HttpdUilities::AppendUtf8 (HttpdUnicodeChar uc, const char
*& buffer, size_t &buflen);

This method appends a Unicode character to the buffer using the UTF-8 encoding. Trueisreturned if there
isenough room to hold the character and it can be properly encoded or falseif thereisan error. If successful
then p_buf f er isupdated to point to the byteafter the encoded dataand buf | en is decremented by the
number of bytes needed to encode the character.

Dequot eToken

char * HttpdUtilities::DequoteToken (const char *& front, const char
* p— .
p_term=.);

There are severa places in the HTTP protocol where strings within MIME headers are quoted. This is
very typical of token/value pairsfollowing aMIME value. This method dequotes those strings and returns
thereal values.

p_front should point to the start of the token. On success, a pointer to the dequoted string is returned
and p_front isupdated to point to just after the string value. It is the caller's responsibility to free the
return value (using HttpdOpSys::Free).

On failure, NULL isreturned and the value of p_f r ont isundefined.

By default anon-quoted string isterminated according to thedefinitionof t oken inRFC 2616.Ifp_term
is specified then it is the set of characters that terminate a token. Keep in mind that there are sometimes
subtle differences between the separator in different MIME headers.

Quot eToken

void HtpdUtilities:: QuoteToken (char *& dest, const char *p_plain);

This method quotes the string in p_pl ai n if necessary to make it safe for use as a MIME token. The
quoted result is placed into the buffer pointed to by p_dest . On return, the pointer p_dest is updated
to point to the unused byte after the quoted string.

I mportant
It is important to remember when using this function that no null terminator is stored in
p_dest . Itisthe responsibility of the caller to add one if necessary.

Another important attribute about this function isthat the buffer pointedtoby p_dest must
be sufficiently large to hold the worst-case scenario of every character requiring quoting.
Thisis 2 characters larger than double the length of p_pl ai n.

17

Core API Reference

TokenPr esent

bool HtpdUtilities::TokenPresent (const char *p_mnme, const char
*p_t oken);

This method searches for p_t oken in the MIME line that is a set of tokens, p_mi ne. If the token is
present (regardless of value, if any) then trueis returned. Otherwise false is returned.

Randontt ri ng

void HtpdUtilities::RandonString (char *p_dest, size t len);

This method fills p_dest with a string of random alphanumeric characters, | en characters long. The
buffer passed in must be at least large enough to hold | en characters and the terminating zero byte.

Par seHt t pVer si on

Ht t pdProt ocol Version HttpdUtilities:: ParseHttpVersion (const char
*p_version);

Given an HTTP version string p_ver si on, return a representative HttpdProtocolVersion value. If no
version can be distinguished, the constant referring to HTTP version 0.9 is returned (that protocol version
isrecognized by its lack of version identification on the wire).

The expected formatting of p_ver si on is“HTTP/ X. Y”, where X represents the major version, and Y
the minor version.

A list of current protocol version constants can be found in Table 2.1, “ Predefined HttpdProtocol Version
Constants’, to simplify comparisons.

Tokeni zePorti ons

bool HtpdUtilities::TokenizePortions (char sep, char *p_buf, char
**pp_target, .);

This method chops up the string pointed to by p_buf at boundaries specified by the character sep. The
address of thefirst character is placed into each successive parameter starting with pp_t ar get . Thelist
of pointers must be terminated with aNULL value.

This method does not copy the string in any way, the pointers assigned to pp_t ar get areonly valid as
long as the buffer pointed to by p_buf isvalid.

Itisimportant to terminate the list with (char **) 0, not NULL, because some CPU architectures have
different NULL pointer representations for different types and the compiler does not know the type of the
pointer because it is part of avariable argument list.

MenPBr k

void *HttpdUtilities:: MenPBrk (void *p_buffer, size_t n, const void
*p_term size t ternsz);

This method issimilar to the st r pbr k() routine. It searchesin upto n bytes pointed to by p_buf f er
for the termination bytes. The termination bytes are specified by p_t er mandt er nsz.

If the search bytes do not exist anywhere in the extent of the buffer then NULL is returned. Otherwise the
address of the byte preceeding the first termination byte found is returned.

18

Core API Reference

MenCount Byt e

size t HtpdUtilities:: MemCountByte (const void *p_ buffer, sizet
bufl en, unsigned char val);

This method scans the buffer and counts the number of timesval appearsin the buffer.

Fi ndBoundary

int HHtpdWilities::FindBoundary (HttpdReceiver *p receiver, const char
*p_boundary);

Before Ht t pdBoundar yReader : : Read can be caled, this method must be called to find the initial
starting point of the data (also delimited by p_boundar y).

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

@ Note
When 0 is returned, Htt pdUtilities::|sLastBoundary should be caled to
complete the parsing of the boundary string. It is entirely possible to have a multipart
MIME message that contains no subparts. In that case, the | sLast Boundary routine
will indicate that no more boundaries are expected. In this case, no instance of
Ht t pdBoundar yReader should be created.

| sLast Boundary

int HtpdWilities::lslLastBoundary (HtpdReceiver *p_receiver, bool
&f i ni shed);

After Ht t pdBoundar yReader: : Read or Ht t pdUti lities:: Fi ndBoundary are caled and
return success, this method should be called. Aside from compl eting some parsing activities, the parameter
fini shed will be set to f al se if more subparts are expected. Otherwise, f i ni shed will be set to
true.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Public Data
nmRoot

const char nRoot[];

This variable represents the path separator used in concatenating path segments, and other miscellaneous
uses. Its default value of “/” should not be changed without considerable thought, since URI formatting
standards specify it as a hierarchical separator.

mNet Ti neFor mat

const charnmNet Ti meFormat|[] ;

Supplied as a parameter to HttpdUtilities::FormatTime, this is a string representing the desired human-
readable format to which system time should be converted. In an ANSI C environment, the underlying

19

Core API Reference

library function ultimately responsible for this transformationisst rf t i me() . For further information
on the contents of this variable, local C library documentation on that function should be consulted.

mPast Ti me

const charnPastTine[] ;

Thisis ahard-coded time constant (formatted for HTTP) of the UNIX epoch, which is always considered
to bein the past.

nCont ent Lengt h

const charnContentLength[] ;

This hard-coded array isthe HTTP Cont ent - | engt h string used when generating headers.

nmCont ent Type
const charnCont ent Type[] ;

This hard-coded array isthe HTTP Cont ent - t ype string used when generating headers.

nmLi neTer m
const charnlLi neTerni] ;

This hard-coded array isthe HTTP newline sequence. Thereisno NULL terminating byte on this array.

Ht t pdVD5 Reference

Introduction

MD?5 is a one-way hashing function defined in RFC-1321. It is useful both as a checksum and (in some
cases) for cryptographic purposes. The Ht t pdMD5 class provides aimplementation of the MD5 hashing
function.

If the compile-time option INC_FAST_MD5 is enabled the Ht t pd VD5 class uses a high-speed but large

algorithm. Otherwise aslower but compact algorithm isused. In general, it isrecommended that the more
compact algorithm be used unless MD5 hashes are used extensively in the application.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Updat e (Buffer version)

voi d Htt pdVD5: : Update (const void *p_data, size_t count);

20

Core API Reference

Hash thedatapointed to by p_dat a thatiscount byteslong. After the Ht t pdMD5 object is constructed
(or reset) this method (and the string version of Updat e) may be caled as many times as necessary in
succession to hash al of the data.

Updat e (String version)

Fi nal

Reset

voi d HttpdMVD5: : Update (const char *p_string);
Hash the contents of the string pointed to by p_st ri ng, not including the terminating zero byte. After

the Ht t pdMD5 object is constructed (or reset) this method (and the buffer version of Updat e) may be
called as many times as necessary in succession to hash al of the data.

void HttpdMD5:: Final (HtpdVD5D gest digest);

After al of the data has been hashed (via Updat e) this method retrieves the digest from the Ht t pdMD5
object and copiesit to di gest .

<t1> I mportant
It isimportant to note that once thismethod is called the Ht t pdMD5 object isno longer valid
and no further hashing on that particul ar instance should be performed until Reset iscalled.

voi d Htt pdVD5: : Reset (void);

This method resets the state of the hashing engine. This method allows a single object instance to compute
any number of hashes.

Ht t pdM nePar ser Reference

Introduction

Ht t pdM nePar ser provides a general purpose parsing engine for MIME headers. These headers
are found in many Internet protocols, and HTTP is no exception. The Ht t pdRequest class uses
Ht t pdM nePar ser to process headers from incoming reguests.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Ht t pdM nePar ser

Ht t pdM nePar ser: : H t pdM neParser (void);

21

Core API Reference

The constructor just does a simple initialization. The heavy-weight initialization is done by the
I nitialize method. Thisallows the memory allocation to be avoided if no MIME headers need to be
parsed (but the object is owned by another object).

Initialize
bool HttpdM nmeParser::Initialize (void);

This method must be called before any other methods are called. If this method returns false, then the
Ht t pdM nePar ser object could not be initialized and should not be used. Success is indicated by a
return value of true.

ReadLi ne (socket version)

char * Htt pdM nePar ser: : ReadLi ne (char *p_|i ne_buf, HttpdSocket &socket,
unsi gned int tineout);

This static method reads a line, structured the way MIME lines are, from socket . Thep_I i ne_buf
pointer is used as a temporary working space and must point to at least HTTPD_MAX_INPUT_LINE
bytes of storage. The value of the HTTPD_MAX_INPUT_LINE constant is determined by the value of
the MAX_| NPUT_ LI NE build-time parameter.

Any kind of error reading the linefrom socket isindicated by areturn value of NULL. If avaidlineis
not received by t i meout seconds, it is considered an error and NULL is returned.

If aline (that is not empty) is read successfully, it is copied into afresh buffer and a pointer to that buffer
is returned. However, MIME headers are always terminated by a blank line. As an optimization to avoid
alocating a buffer for an empty string, thevalue of p_1 i ne_buf isreturned if alineisread, but empty.

Callers should check for this specia return value and consider that a marker for the end of the headers.
This approach allows three different outcomes (error, empty, or valid data) to be returned through asingle
pointer.

Note
This function is static and does not depend on an initialized Ht t pdM nePar ser object.

When ReadLi ne returnsapointer to aprocessed string (and not NULL orp_| i ne_buf),
it isthe caller's responsibility to free it (using HttpdOpSys::Free).

ReadLi ne (Htt pdRecei ver version)

char * HttpdM neParser::ReadLine (char *p_line_buf, HtpdReceiver
*p_receiver, unsigned int tinmeout);

This static method reads a line from p_r ecei ver . The semantics are identical to the socket version
(above).

Note

This function is static and does not depend on an initialized Ht t pdM nePar ser object.

Par seLi ne

bool HttpdM neParser:: ParseLine (char *p_line);

22

Core API Reference

This method processes a header line (typicaly read with ReadLi ne). If the header line contained in
p_l i neisvalid, trueisreturned. Onfailure, falseisreturned and no further method calls should be made
totheH t pdM nePar ser object.

Note
This method should only be called after thel ni t i al i ze method is called.

The string pointed to by p_| i ne is modified during the parse. It does not have to remain
valid after this method completes, but it should be in modifiable storage. This is normally
transparent as ReadLi ne returns a saved copy of the string.

Fi ni sh
voi d Htt pdM neParser: : Finish (void);
This method should be called after all header lines are parsed (using Par seLi ne).

Header

const char * Ht pdM neParser:: Header (const char *p_key);

This method is used to look up the value of a MIME header (only if it is unique by name). A pointer to
the value of the header named p_key is returned on success, NULL is returned if the specified header
does not exist.

Note
This method should only be called after the Fi ni sh method is called.

Count

size_t HtpdM neParser:: Count (void);

This method returns the number of available header entries.

Note
This method should only be called after the Fi ni sh method is called.

Htt pdPair * HttpdM neParser::Pair (size_t index);

Pai r

This method returns a pointer to the Ht t pdPai r object for the header specified by i ndex. This method
isuseful for certain types of headers which may appear more than once. Using the Count () method to
compute the upper bound of the index, all of the headers can be enumerated.

Note
This method should only be called after the Fi ni sh method is called.

Par seHeader s

bool HttpdM neParser:: ParseHeaders (HttpdReceiver *p_recvr);

23

Core API Reference

This method reads a series of MIME headers into the parser object. Upon success, true is returned. In the
case of an error, falseisreturned.

Note

This method automatically calls I ni ti al i ze and Fi ni sh. The state of the parser is
completely initialized by calling thisroutine. If it returns true then headers may be retrieved
from the object using the Header method.

Ht t pdTi neSt anp Reference

Introduction

The profusion of aternative time and date format conventions makes it advantageous to provide asingle
point of conversion and storage. Ht t pdTi meSt anp provides such an interface. Methods are provided
to populate its member variables from ANSI C time_t values and various character string formats, as well
asto compare a previously constructed Ht t pdTi meSt anp with acurrent one.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instanceis accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Par se

bool HttpdTi meStanp:: Parse (const char *p_str_rep);

Given formatted string p_st r _r ep, populate the parent object's member variables with time and date
information. The input character string may be formatted in a few alternative ways, as described by the
following table:

Table 2.2. Supported Time Format Specifications

Format Type Example

RFC 822 “Sun, 06 Nov 1994 08:49:37 GMT"
RFC 850 “Sunday, 06-Nov-94 08:49:37 GMT”
ANSI Casctine() “Sun Nov 6 08:49:37 1994”

Returns true upon success, false upon failure.

Convert

bool HttpdTi neStanp:: Convert (const struct tm*p tm;

Given a pointer to an ANSI C time structure p_t m populate the member variables of the current
Ht t pdTi neSt anp object.

Returns true upon success, false upon failure.

24

Core API Reference

Val i dat e

bool HttpdTi neStanp:: Validate (void);
Validate that the values of the Ht t pdTi me St anp structure are within their valid ranges.

Returnstrueif al thefields are valid, false otherwise.

Fi ndDayOf Week
voi d HttpdTi neSt anp: : Fi ndDayOf Week (voi d);

Thismethod adjuststhe MM ek Day parameter to reflect the day for specified by mDay, mvbnt h, myear .

Note
This routine can only compute the correct day from the year 1583 or later.

Conpar e
int HtpdTi mreStanp:: Conpare (const HttpdTi neStanp *p_to);

Compares the parent Ht t pdTi meSt anp object with the one indicated by p_t o, and indicates their
relationship along atimeline.

Returns less than zero if p_t o isin the future relative to the called Ht t pdTi neSt anp, 0 if they are
equal, or greater than zero if p_t o isin the past.

Set

void HttpdTi meStanp:: Set (const HttpdTi neStanp *p_to);

This method sets the time of the object to the same time of the object pointedto by p_t o.
For mat

bool HttpdTi meStanp:: Format (char *p_buffer, size t bufsiz, const char
*p_format);

Thisfunction formatsthetime asastring. The string iswrittento p_buf f er . If the written representation
would be larger than buf si z bytes (including the null termination byte) then false is returned. The
p_f or mat stringisaformatting template similar totheoneusedinst r f t i me. The supported specifiers
are: a (weekday), d (day of month), b (month), Y (four digit year), y (two digit year), H (hours), M
(minutes), and S (seconds).

For mat As| SC8601

voi d HttpdTi meSt anp: : For mat Asl SO8601 (char *p_buffer);

This function formats the time as a string in the 1SO 8601 format. The buffer pointed to by p_buf f er
must be at least Ht t pdTi neSt anp: : | SOB601_FMI_BUFSI ZE charactersin size.

Ti mel nGMT

bool HttpdTi meStanp:: TinelnGVI (time_t &tine);

25

Core API Reference

This method sets the time of the object to the specified timein GMT.

Public Data
nDay

unsi gned i nt nDay

The numerical day-of-month (e.g. 16).

mMAéek Day
unsi gned i nt nAekDay

The numerical day-of-the-week (e.g. 1 is Monday).

mvbnt h
unsi gned int mvonth

An internal table index resulting in an English representation of the month.

mvYear

unsi gned int n¥ear

The numerical year (e.g. 1996).

mHour

unsi gned int nHour

The numerical hour (e.g. 07).

mM nut e

unsigned int mM nute

The numerical minute (e.g. 54).

nSecond

unsi gned int nSecond

The numerical second (e.g. 33).

H t pdW it abl e Reference

Introduction

TheHt t pdW it abl e is abase class that represents a sink of data. Typically this is the base class for
a socket but can also be derived into other base classes. Many other Seminole classes implement the
H t pdW i t abl e interface such as HttpdSocket, HttpdContentSink, and HttpdCountingSink.

26

Core API Reference

Public Methods

Wite
int HtpdWitable::Wite (size_t sz, const void *p_data);
This pure virtua function is the interface for writing data to the sink. On success, sz bytes are written to
the sink from the buffer pointed to by p_dat a.
Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WiteString

int HHtpdWitable::WiteString (const char *p_string);
This method writes a string pointedto by p_st ri ng to the sink.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WiteStringAndFree

int HtpdWitable:: WiteStringAndFree (char *p_string);

If p_stringisNULL then Ht t pdOpSys: : ERR_OUTOFMEMISs returned. Otherwise, p_stri ng is
written to the sink and then released using Ht t pdOpSys: : Fr ee.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

NewLi ne
int HtpdWitable:: NewLine (void);
This method writes an HTTP line terminator (\ r \ n).

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Printf

int HHtpdWitable::Printf (const char *p_format, .);

This method implements a subset of the features provided by ANSI C's printf () library function.
Formatted output is written to the writable using the abstract Ht t pdW i t abl e: : Wi t e method.
Permissible format specifiers are as follows:

Table 2.3. Supported Print Format Specifications

Specification Arguments Formatting

% String (const char pointer) The string iswritten out “asis’.

27

Core API Reference

Specification Arguments Formatting

%l int The number is formatted as a
signed decimal number.

U unsigned long The number is formatted as an
unsigned hexadecimal number.

% unsigned long The number is formatted as an
unsigned decimal number.

%0 No arguments Produces aliteral percent sign (%

% Number of bytes to write|The fill character is repeated as

(unsigned int) and the filljmany times as indicated by the
character (char) first argument (count).

% String (const char pointer) Thestring iswritten out as defined
by RFC 2616 for quoted strings
appearing as attributes in MIME
headers.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS

Abstraction Layer Error Codes”).

| ndent

int HtpdWitable::lndent (unsigned int depth);

This method writes dept h space characters. For efficiency this routine attempts to avoid single byte

writes.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS

Abstraction Layer Error Codes”).

Ht t pd Reference

Introduction

TheHt t pd isaninstance of awebserver that isassociated with aparticular port and (optionally) transport.
Thisclassisalso the hub of request processing; it createsinstances of Ht t pdRequest and appliesthem
to subclasses of Ht t pdHandl er . It also contains support methods that Ht t pdRequest objects can

use to handle requests.

In addition to request processing the Ht t pd class also provides various administrative functions such as:

« Startup and shutdown of Seminole

 Security checks prior to request handler invocation

e Methods for adding and removing request handlers

Public Methods
Ht t pd

Httpd::Htpd (const char *p_host_nane, Httpdl pPort port = 80);

28

Core API Reference

I nit

Constructs aweb-server object. Thep_host _nane parameter should be avalid host name or |P address
for referncing this web server. The port parameter specifies the port address for this web server. By
default it is 80 but may need to be adjusted for other transports (such as SSL).

static int Htpd::Init (void);

This static method must be the first method called in the Seminole API. It initializes the portability layer,
the socket layer and other global interna state not specific to any particular instance of Ht t pd.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
This method is not idempotent and should only be called once before any other Seminole
objects are constructed or methods invoked.

Ser ver Name

Start

St op

const char *Httpd:: ServerNanme (void);

Returns the “brand name” of the web server. The lifetime of this string must be equal to or greater than
the lifetime of this object.

If INC_DYNAMIC_SERVER_NAME is enabled then thisis an overrideable method; it can be used for
internationalization and product customization purposes. If the featureisdisabled then thismethod isstatic.

It is recommended that the returned string is always in the form of:

Semi nol e/ X. XX (..)

Where X. XX isthe current version number of Seminole. Application-specific branding should be placed
within the parenthesis.

bool Httpd::Start (const char *const *pp_options);

Perform the appropriate network layer initialization and begin accepting HT TP requests. Returnstruewhen
startup is successful, false otherwise.

The NULL terminated list of strings pointed to by pp_options are passed to the
Ht t pdSocket : : Li st en method. If the INC_MULTIPLE_TRANSPORTS option is enabled then an
required attribute of sock: determines the transport used for thisinstance of Ht t pd.

The pp_opt i ons must not be NULL its self. If no socket options are desired then the default value of
the parameter, Ht t pdSocket : : nEnpt ySocket Opt i ons, may be passed as this parameter.

void Hitpd::Stop (H tpdShutdownType type = GRACEFUL);

29

Core API Reference

Perform a shutdown of the webserver. If thet ype parameter is GRACEFUL (the default) then a graceful
shutdown is performed. A graceful shutdown stops processing any additional clients and ceases accepting
new clients. The caller of St op will be blocked until any in-process HT TP requests are completed. This
ensures that after the call to St op returns any objects involved in request processing may be safely
destroyed.

A HARD stop will abruptly terminate any in-process requests. Although, as with a GRACEFUL shutdown

the St op method does not return until it is safe to destroy all resources, thisis usually much quicker with
a HARD stop than with a GRACEFUL stop.

@ Note
This method is not defined unless the INC_SHUTDOWN option is enabled.

The ability to perform a hard stop is dependant on the socket layer implementation and may
not be implemented on a particular target platform.

| nst al |

void Httpd::lInstall (HttpdHandl er *p_handl er);

Install the specified handler. Requests will then be dispatched through the handler if the prefix matches.
The server must be in a stopped state before calling this method.

Ser ver Host

const char * Httpd:: ServerHost (void);

Returns the machine hostname associated with this instance of Ht t pd. This value is simply the second
argument of the class constructor.

Renove

Por t

Ht t pdHandl er *Htt pd: : Renove (Ht pdHandl er *p_handl er);

Ht t pdHandl er *Htt pd: : Renbve (const char *p_prefix);

Remove the specified handler/prefix mapping; a prefix can be supplied, in which case the corresponding
handler will be removed, or a direct pointer to the unwanted handler can be supplied, in which case that

handler is removed.

Returns a pointer to the handler which was removed, or NULL if no matching handler was found.

@ Note
These methods are not defined unlessthe INC_SHUTDOWN option is enabled.

Ht t pdl pPort Httpd::Port (void);

Returns the network port to which this instance of Ht t pd is bound (specified as the first argument of
the class constructor).

30

Core API Reference

Li st enSock
Ht t pdSocket &Httpd:: Li stenSock (void);

Returns areference to the listening socket object.

Server W deRequest
void Httpd:: Server WdeRequest (HttpdRequest *p_request);

HTTP includes the notion of a “server wide request.” These are request methods that are not directed to
any particular URL on the server (identified by aa* in the request).

These requests are sent to this method. Subclasses may override this method to provide additional
functionality. Subclasses should call the Ht t pd implementation of this method if they do not respond
to the request.

Protected Methods

These methods are virtual and may be extended by subclasses of Htt pd. Because instances of
Ht t pdRequest arecreated internally there is no way for client code to extend the behavior of methods
in that class. The typical pattern is that methods that need to be overridden areinthe Ht t pd classand a
wrapper method from the Ht t pdRequest object calls these methods below.

Al | owed
virtual bool Httpd:: Al owed (Httpdl pAddress addr);

This method determinesiif the client with the specified address is allowed to connect. If the connection is
to be allowed then this method should return true, otherwise false should be returned.

ResponseHeader

virtual void Httpd:: ResponseHeader (HttpdRequest *p_request, const
Ht t pdResponse &resp);

Send a basic set of HTTP response headers to the client, possibly in preparation for further data from a
handler.

The currently supported response codes are detailed in Supported HTTP Response Codes. For a more
detailed discussion of the circumstances under which a given code might be used, the reader is referred
to the appropriate standards document, RFC 2616 (Hypertext Transfer Protocol 1.1) [ftp:/ftp.isi.edu/in-
notes/rfc2616.txt] or previous versions as appropriate to the desired application.

Supported HTTP Response Codes

« HTTPD_RESP_CONTI NUE (100) - Continue with request
 HTTPD RESP_PROTOCCOL (101) - Protocol switch OK

e HTTPD_RESP_OK (200) - Reguest succeeded - content follows

» HTTPD_RESP_CREATED (201) - Request for resource creation succeeded (typically in response to
PUT requests)

« HTTPD_RESP_ACCEPTED (202) - Request accepted

31

ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt

Core API Reference

HTTPD_RESP_NONAUTH_| NFO(203) - Metainformation not authoritative
HTTPD_RESP_NO_ CONTENT (204) - Request succeeded, no entity-body
HTTPD_RESP_SOVE_CONTENT (205) - Request succeeded, client to reset view

HTTPD_RESP_PARTI AL_CONTENT (206) - Request succeeded, partial entity body follows (used
for with the Range: header)

HTTPD_RESP_MULTI _STATUS (207) - Multiple objects were affected. The entity body describes
the outcomes of the operation. Thisis typically used with WebDAV methods

HTTPD_RESP_MJULTI _CHO CE (300) - Requested resource has multiple representations
HTTPD_RESP_MOVED PERM(301) - Reguested resource has new, permanent URI
HTTPD_RESP_MOVED TEMP (302) - Reguested resource has new, temporary URI
HTTPD_RESP_SEE OTHER (303) - Requested resource has moved, use GET to new URI
HTTPD_RESP_NOT_MODI FI ED (304) - Conditional GET, but document not modified
HTTPD_RESP_USE PROXY (305) - Requested resource must be accessed via a proxy
HTTPD_RESP_NEO TEMP_MOVED (307) - Requested resource has new, temporary URI
HTTPD_RESP_BAD_ REQ(400) - Maformed request syntax

HTTPD_RESP_UNAUTHORI ZED (401) - Reguest requires authentication, but none was provided or
incorrect credentials were supplied

HTTPD_RESP_PAYMENT_REQ(402) - Reserved for future use

HTTPD_RESP_FORBI DDEN (403) - Reguest administratively forbidden
HTTPD_RESP_NOT_FOUND (404) - Requested URI was not found

HTTPD_RESP_METHOD NOT_ALLOWED (405) - Request method specified not legal for this URI

HTTPD_RESP_NOT_ACCEPTABLE (406) - Resource requested cannot generate response entities
acceptable to the client

HTTPD_RESP_PROXY_AUTH (407) - Authentication required to use a proxy, but none was provided
or incorrect credentials were supplied

HTTPD_RESP_REQUEST_TI MEQUT (408) - Client request timeout
HTTPD_RESP_CONFLI CT (409) - Current resource state in conflict with request
HTTPD_RESP_GONE (410) - Requested resource not available, and no new URI is known
HTTPD _RESP_LENGTH REQ(411) - Missing Cont ent - Lengt h: header entry
HTTPD_RESP_PRECOND FAI LED (412) - Request pre-condition failed on server side
HTTPD _RESP_TOO LARGE (413) - Request entity too large

HTTPD_RESP_URI _TOO LARGE (414) - Request URI too long

HTTPD_RESP_UNSUPPORTED MEDI A (415) - Unsupported mediatype for requested resource and/
or method

32

Core API Reference

e HTTPD_ RESP_RANGE (416) - Resource extent does not match requested range

e HTTPD_RESP_EXPECTATI ON_FAI LED(417) - Client expectation cannot be met by server

e HTTPD RESP_LOCKED (423) - The resourceis locked

 HTTPD _RESP_SRV_ERROR (500) - Unexpected server error

e HTTPD_RESP_METHOD_NOT_I MPL (501) - Unrecognized or unimplemented request method

o HTTPD_RESP_BAD_ GATEWAY (502) - Invalid response from upstream provider or application

« HTTPD_RESP_UNAVAI LABLE (503) - Temporary inability to service request

* HTTPD_RESP_GATEWAY_TI MEQUT (504) - Timeout on upstream provider or application response
 HTTPD_RESP_HTTP_VERSI ON (505) - Requested HTTP version is not supported

« HTTPD_RESP_I NSUFFI Cl ENT_SPACE (507) - There is insufficient storage space to perform the
requested operation

ResponseBody

virtual void Htpd::ResponseBody (HttpdRequest *p request, const
Ht t pdResponseMsg & esponse, const char *p_url);

This method is used to send a simple HTML-formatted document in accompaniment to HTTP error
responses.p_ti t | e pointsto astring describing an alternative URL . For example, in the case of aredirect
this should point to a string containing the new URL. This parameter may also be NULL.

Respond
void Httpd:: Respond (HttpdRequest *p request, int status);

This method generally encapsulates the ResponseHeader and the ResponseBody methods, and is
used as ageneral error handling mechanism when HTTP errors and associated human-readable messages
are to be sent to aclient. An HTTP status code is provided in st at us. See Supported HTTP Response
Codes for possible values.

Ht t pdRequest Reference

Introduction

Ht t pdRequest represents a single HTTP request in time being handled by Seminole. An
Ht t pdRequest object is instantiated by the Ser ver () method within Ht t pd for each incoming
request, and then discarded once a handler either processes the request or no handler isfound to do so.

The constructor of this class performs some basic request processing before a handler islocated:
* Therequest is parsed and checked for syntactic validity

» Public variables are populated with various things of interest in the headers

* MIME headers are tokenized, and the entire header list sorted

Understanding the contents and interfaces of Ht t pdRequest is quite important when writing a new
handler class, sinceit isthe primary unit of data passed from Seminol€'s core to the handlers.

33

Core API Reference

The request object also contains an unused data member called npDat a that can be used by subclasses
for tracking additional state. This void pointer can be used to reduce the amount of context that needs to
be passed between the methods of a complex handler implementation. This pointer isinitialized to NULL
when the request object is created.

Once arequest is received by a handler and the necessary processing performed, the next step is naturally

tosend aresponse. Ht t pdRequest provides methodsto do thisalso; for most handlersthe starting point
will often be ResponseHeader () .

Public Methods

Server

Ht t pd *Htt pdRequest:: Server (void);

Returns a pointer to the Ht t pd object which instantiated this Ht t pdRequest .
Met hod

const char *HttpdRequest:: Method (void);

Returns a character pointer to a string describing the HT TP method associated with thisHt t pdRequest
(GET, PUT, and so on).

| sHeadRequest
bool HttpdRequest: :|sHeadRequest (void);

Determine if the request method is HEAD.

| sCGet Request

bool HttpdRequest: :|sGet Request (void);

Determineif the request method is GET.
| sPost Request
bool HttpdRequest::|sPost Request (void);
Determineif the request method is POST.
| sOpt i onsRequest
bool HttpdRequest::1sOpti onsRequest (void);
Determine if the request method is OPTI ONS.
PostlsMul ti partM ne

bool Ht tpdRequest:: PostlsMiltipartMme (void);

If the request method is POST and this method returns true then the request body is encoded using mutli-
part MIME and should be processed using the Ht t pdMul ti part Cgi Par ser class.

34

Core API Reference

If this method returns false then the body of the POST should be processed with
Ht t pdCgi Par anet er : : Par sePost Dat a.

Cont ent Avai | abl e

bool HttpdRequest:: Content Avai |l abl e (const char *p_type);

This determinesif an entity body is available in the request with aMIME type of p_t ype.

Pr ot ocol
Ht t pdPr ot ocol Ver si on Htt pdRequest: : Protocol (void);

Returns an HttpdProtocolVersion value specifying the HTTP version associated with this
Ht t pdRequest .

Pat h
char *HttpdRequest:: Path (void);

Returns a character pointer to the path component of the URI contained within this Ht t pdRequest ,
exactly asit was sent by the client.

Query
const char *HttpdRequest:: Query (void);

Returns a character pointer to the query component of the URI contained within this Ht t pdRequest .
If no query was provided in the request, NULL is returned.

c i ent Addr
Ht t pdl pAddr ess Htt pdRequest:: Cient Addr (void);
Returnsthe client |P address for this request.
Socket
Ht t pdSocket &Htt pdRequest: : Socket (void);
Returnsthe Ht t pdSocket object which provides communication with this request's client.
Note

Sending datato the HTTP client should not be done through the socket. Instead, the Cut put
method returns the correct object.

Qut put
Htt pdWitabl e &Htt pdRequest: : Qut put (void);

Returns the object that should be the destination for data sent to the HTTP client.

Header

const char *HttpdRequest:: Header (const char *p_mne);

35

Core API Reference

Returns the value associated with HTTP request header p_mi e, or NULL if the header is not found.

Header s
Ht t pdM neParser & HttpdRequest:: Headers (void);

Returns areference to the MIME parser object used to parse the header section of this request.

Conpl et eUr i
const char * Htt pdRequest:: ConpleteUri (void);

If afull request URI was presented as the argument to the request then this method will return that URI.
If the request did not include afull URI, then this method returns NULL.

Last Req
bool HttpdRequest::LastReq (void);

This method determines if this is the last request that will be processed by the current connection. This
can be the case if any of the previous request processing resulted in a case that requests the end of the
connection.

Thisis most typically done because a content handler was not able to determine the content-length of the
datait was going to send. There are also administrative reasons for why this request may be the last, such
as atimeout waiting for arequest or limit or quota reached.

Note
This method is not available if INC_PERSISTENT_CONN is not enabled.

ResponseHeader sSent

bool HttpdRequest: : ResponseHeadersSent (void);

This method determines if the response headers have been sent already, typicaly via the Respond
or ResponseHeader methods. The response headers generated by the ResponseHeader method
include the Connect i on line.

Itisbest if the Set Last Req method is called before the response headers. Otherwise if no buffering is
being performed and the content being generated has an unknown size then the server must abruptly close
the connection after the content is sent. This can result in additional round trips by clients.

Note
TheHt t pdDynani cQut put class handles these complexities automatically.

This method is not available if INC_PERSISTENT_CONN is not enabled.
Set Last Req

voi d HttpdRequest:: Set Last Req (void);

This forces this request to be the last on the connection. After calling this method, Last Req will return
true. There is no way to undo the effects of this method once called.

36

Core API Reference

This method should be called before any of Respond, ResponseHeader, Redirect, or
Redi rect Wt hQuery are caled. This restriction is because part of the HTTP protocol specification
requiresthat aConnecti on: cl ose header be sent out on the |ast result.

If this method is called after the response is issued then no further requests will be alowed from the
connection after processing. However this mode of operation should only be done in error scenarios.

@ Note
This method is not availableif INC_PERSISTENT_CONN is not enabled.

Request edHost Nane

const char * Ht pdRequest:: Request edHost Name (void);

This method returns the name of the host that was requested. There are several different ways this is
obtained depending on the structure of the request. On failure, NULL is returned.

ResponseHeader

voi d Htt pdRequest : : ResponseHeader (const HttpdResponse &resp);

Thismethod callstheHt t pd: : ResponseHeader to deliver the response headersto the client. Request
processing code should call this method rather than calling the method in Ht t pd directly.

NeedHeader s

bool HttpdRequest: : NeedHeaders (void);
Indicates whether the current request requires HT TP headers to be printed within the response.

Returnstrue if headers are needed, false if not.
ResponseBody

void HtpdRequest:: ResponseBody (const HttpdResponseMsg &response,
const char *p_url);

This method callsthe Ht t pd: : ResponseBody to deliver the response headers to the client. Request
processing code should call this method rather than calling the method in Ht t pd directly.

Respond
voi d Htt pdRequest:: Respond (int status);
This method generaly encapsulates the HttpdRequest:: ResponseHeader and
HttpdRequest::ResponseBody methods, and is used as a general error handling mechanism when HTTP

errors and associated human-readabl e messages are to be sent to aclient. An HT TP status codeis provided
inst at us. See Supported HTTP Response Codes for possible values.

Cust onResponse

voi d Htt pdRequest: : Cust onResponse (int status);

37

Core API Reference

This method is similar to HttpdRequest::Respond except it allows custom response bodies for negative
response codes.

Redi r ect
voi d HttpdRequest::Redirect (int status, const char *p_location);

Causes an HTTP redirect to be sent to the client. p_| ocat i on should point to a string containing the
path or URI the client should be redirected to. The redirect is sent with the HTTP status code st at us;
see Supported HT TP Response Codes for possible values.

I mportant
p_| ocat i on should always be normalized (using HttpdUtilities::Normalize).

The Ht t pdRedi r ect or class provides a general handler for redirecting portions of Seminole's URL
space, and would normally encapsulate Redi r ect () . Itissuggested that Ht t pdRedi r ect or beused
when possible or sensible.

Redi rect Wt hQuery

voi d Ht t pdRequest : : Redi rect Wt hQuery (int st at us, const char
*p_l ocation);

In some cases, a redirect should include the incoming query string. In particular, some cases in
Ht t pdFi | eHandl er require aredirect to add / separator characters. In those cases, the query string
(if any) needsto be preserved.

Thismethod behavesjust like Ht t pdRequest : : Redi r ect with the exception of appending the query
string if one exists to the outgoing URL

NoCacheHeader s
i nt HttpdRequest:: NoCacheHeaders (HttpdWitable *p_out);
This method writes the appropriate HT TP headers to prevent caching to the stream p_out .

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

QueueHeader

void HttpdRequest:: QueueHeader (const char *p_header, const char
*p_val ue);

This method queues the specified header and associated value for transmission during the response phase.

Note
This method is only available if the | NC_QUEUED HEADERS option is enabled.

Public Data

Ht t pdRequest containsno publically accessibledatamembers. Methodsare provided to accessrel evant
information when necessary.

38

Core API Reference

Ht t pdHandl er Reference

Introduction

Subclasses of Ht t pdHandl er are installed in a webserver instance to handle requests directed at a
particular URL path prefix. Ht t pdHandl er isan abstract class and must be subclassed.

Typically subclasses of Ht t pdHandl er will contain most of the application specific behaviors.
Ht t pdHandl er isvery low level. The Ht t pdFi | eHandl er can be used for more traditiona (file
oriented) behavior.

Protected Data

npPrefi x

const char *mpPrefix
This member points to the URL prefix that this handler will attempt to handle.

This member should be initialized by subclasses before this object is installed in an Ht t pd instance.
Preferrably it should be set in the constructor of the superclass.

Protected Methods

I sMe
char *HttpdHandl er::1sMe (H tpdRequest *p_req);
This method determines if p_r eq contains the prefix specified by npPr ef i x. If so the portion of the
URL after the prefix isreturned. If not NULL is returned.
Handlers should call this method (or the | sMyPat h method) in their implementation of Handl e to
determine if the handler may be responsible for the request.
Note
The return value is not unescaped or processed in any form. Typically the returned string
should bepassedto Ht t pdUti lities:: Uri Decode to obtain ausable path name.
| sMyPat h

char *HttpdHandl er::1sMPath (HttpdRequest *p_req);

Thismethod determinesif p_r eq containsthe path specified by npPr ef i x. If so the portion of the URL
after the path prefix isreturned. If not NULL is returned.

Handlers should call this method (or the | sMe method) in their implementation of Handl e to determine
if the handler may be responsible for the request.

Note
The return value is not unescaped or processed in any form. Typically the returned string
should bepassedto Ht t pdUti lities:: Uri Decode to obtain ausable path name.

39

Core API Reference

Public Methods

Prefix

const char *HttpdHandl er::Prefix (void);

This method returns the value of the protected data member mpPr ef i x.

Handl e

bool HttpdHandl er:: Handl e (HtpdRequest *p_req);

This pure virtual method is called by Ht t pd objects to determine if the request should be handled by
this handler. If the request is handled then t r ue should be returned. If the request is not handled then
f al se should be returned.

Implementations of this method should call either | sMe or | sMyPat h to determine if the handler is
even appropriate. Although implementations are free to base the decision to handle the request upon other
factors aswell.

Note

It is important to remember that with multi-threading this method may be called from
multiple threads simultaneously. Therefore any data memebers of the handler should be
considered to be global data and must be properly prepared for concurrent access.

Ht t pdResponselMsg Reference

Introduction

Since the HTTP standard has evolved over a long period of time, the possible responses and actions
in a given transaction can depend on the protocol version and client capabilities. However, none
of this needs to matter for the purpose of writing new handlers or version-independent extensions.
Ht t pdResponseMsg, along with Ht t pdRequest , serves to encapsulate and hide the details of
tranglating general protocol actions (such as generating a redirect) into specific network transmissions.

Thetypical usage scenario for thisclassisto usethe Ht t pdResponseMsg: : Fi nd static method with
a response code and protocol version to get the correct response message to return. Normally this is
not necessary because the Ht t pdRequest : : Respond does these actions. However, if a custom error
response with custom headers is desired then this class should be used to get the appropriate response
message. Although a better approach is to use the Ht t pdRequest : : QueueHeader method if the
INC_QUEUED_HEADERS feature is enabled.

Thread Safety

This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

Fi nd (by response code)

const HttpdResponseMsg &Htt pdResponseMsg: : Find (int resp);

40

Core API Reference

Given HTTP status coder esp, return areference to an appropriate Ht t pdResponseMsg object. If the
given status code is unknown or invalid (i.e. it is not listed in Supported HT TP Response Codes), then a
generic “server error” response object will be returned instead.

Fi nd (by response code and protocol version)

const Ht t pdResponseMsg &Ht t pdResponseMsq: : Fi nd (int resp,
Ht t pdPr ot ocol Ver si on vers);

Given HTTP status code r esp and client protocol version ver s, return a reference to an appropriate
Ht t pdResponseMsg object. If the precise status code given is not supported at protocol versionver s,
amore general response in the same status category may be selected instead. If the given status code is

unknown or invalid (i.e. itisnot listed in Supported HT TP Response Codes), then a generic “server error”
response object will be returned instead.

Public Data

nst at us

const int nStatus

The HTTP status code associated with this response (see Supported HT TP Response Codes for possible
values).

npNane

const char *npName

A human-readable translation of the associated response's ntSt at us vaue; for example, 200
(HTTPD_RESP_(K) means “OK”.

npDescri ption

const char *npDescription

A more descriptive human-readable explanation of this response; for example, a redirection might result
in “The document has moved.\n”.

nVer si on
Ht t pdPr ot ocol Ver si on mer si on

The minimum HTTP protocol version required to understand this response.

Ht t pdRedi r ect or Reference

Introduction

Ht t pdRedi r ect or provides a simple handler interface for the purpose of sending HTTP redirect
responsesto clients. It translates any given request within its designated URL spaceto anew URI, possibly
on adifferent host.

41

Core API Reference

A common use for this class is to provide severa easy to remember top-level URL paths for users but
redirect those into the appropriate areas of aweb interface.

Thread Safety

This class provides athread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods
Ht t pdRedi r ect or

Ht t pdRedi rector (const <char *p_prefix, const char *p_newri, int
st at us);

Ht t pdRedi r ect or 'sconstructor isdocumented here, because of itsrole asthe soleinterfaceto theclass
functionality. After object creation, redirectors are installed into the Seminole handler chain at runtime
just as any other handler.

The URL prefix for which this redirector will handle requestsis provided in p_pr ef i x. The new URI
to which clients areredirected isprovided inp_newur i . If alocal pathnameis provided (i.e. the redirect
islocal to this port and host), then it must be normalized, meaning that it should not contain relative path
references (such as“.” or “.."), and it must end with a forward slash (“/"). An appropriate HTTP status
codeisgiven by st at us (see Supported HTTP Response Codes for possible values).

Public Data

npNewlUr |
char *nmpNewlri ;
A pointer to a string representing the URI to which requests for this Ht t pdRedi r ect or object are to

be redirected. If the new destination is a pathname rather than a complete URI, the implied server is the
current one.

St at usCode

i nt nBt at usCode;

Containsthe desired HT TP status code to be used when issuing aredirect to aclient (see Supported HTTP
Response Codes for possible values).

Ht t pdFi | eHandl er Reference

Introduction

Ht t pdFi | eHandl er provides al of the machinery necessary to serve a portion of a
Ht t pdFi | eSyst emto HTTP clients.

In addition to being a self-contained handler, Ht t pdFi | eHandl er can aso serve as the base for
a variety of extensions by subclassing. Only the methods that should be overridden in subclasses are
documented here. The rest of the methods are considered internal and should not be overridden.

42

Core API Reference

The architecture of Ht t pdFi | eHandl er is similar to the way Seminole handles al requests:
a state object is allocated for the request and released at the end of processing. In the case of
Ht t pdFi | eHandl er the state information is stored in a structure defined within the class called
RequestState. A pointer to the RequestState object isalso placed inthe npDat a field of the request object.

The RequestState structure al so contains an unused member called mpDat a that can be used by subclasses
for tracking additional state. The CI eanup phase can be overridden to release resources associated with
this member.

In addition to the npDat a member, the RequestState structure contains a pointer to the handler object
(mpHandl er). Thiscan beuseful if Ht t pdFi | eHandl er issubclassed. Thispointer can be casted and
then used to accesses additional data.

If the INC_BYTERANGE_SUPPORT option is defined then the RequestState structure also contains
two members dictating the byte range of the response: nByt eCf f set St art and nByt e f set End.
These are byte positions relative to the start of thefile.

Each request has a certain life cycle that is divided into phases. Depending on the outcome of the previous
phase request processing may terminate early. The default handling of each phase can be overridden in
subclasses to either perform extrawork or abort the request with no further processing.

Most of the methods within this class are passed a reference to the current RequestState structure. It is
important to keep in mind that not all members are initialized when some methods may be called. Rather,
some members are garbage until a certain phase of request processing completes.

Table 2.4. HttpdFileHandler Request Processing Phases

Method M eaning

CheckMet hod This phase initializes the mvet hod member of
RequestState.

Val i dMet hod This phase determines if the HTTP method is
supported by the handler.

Transl at eUri This phase processes the URI provided in the

npReqPat h RequestState member and initializes
thenpDecodedUri andnpFi | ePat h members.

ProcessUri Given the results of the Transl at eUri phase
this method is expected to decide on an appropriate
target file and load nti |l el nfo member of
RequestState.

DoFi | el nfo The nFilelnfo member is anayzed and
appropriate action should be taken. This method
(by default) detects directories and applies specia
handling to them.

DoFi l e At this point nFi | el nf o points to a target that
is a file that needs to be delivered. This phase is
wherethe MIME typeisanalyzed and an appropriate
response must be generated. Template processing
and other server-side content translations should be
done here.

Cl eanup This phase releases storage allocated to
npRegPath and npFilePath. It can be
overridden to optionally release resources
associated with npDat a.

43

Core API Reference

Directory Processing

Directory processing accomplishes two major goals. First, URI's without trailing slashes are fixed up
(handled by the DoDi r ect or y method). Second, aresponse for the directory request is sent back.

When arequest is made for adirectory object, the DoFi | el nf o method calls Sendl ndexFi | e which
checksthedirectory for afilecalledi ndex. ht m . If thisfileexistsitissent out asaresult of the directory
request.

If noi ndex. ht M existsand the INC_DIRECTORY _LISTS option is enabled an HTML listing of the
directory is generated at runtime.

Otherwise, if thereisnoi ndex. ht mM and INC_DIRECTORY _LISTSisnot enabled a404 (not found)
response is generated.

The bulk of the directory processing code is actually the optional listing generator, which is handled with
the following methods:

* SizeToString
e ListDirectory
e ListEntry

e ListParentDir

* DirectoryBody

Character sets & Encodings

The HTTP protocol does not designate a standard character set for textual content. In fact many different
possible character sets may be specified via the char set extension to the Cont ent - Type MIME
header.

If thechar set attributeis set for the file info this value is sent along with the Cont ent - Type header
by the Ht t pdFi | eHandl er: : SendCont ent Type method.

Public Methods
Ht t pdFi | eHandl er

Ht t pdFi | eHandl er:: Htt pdFi | eHandl er (HttpdFil eSystem *p fil esys, const
char *p_root = HtpdUilities::nmRoot, const char *p _prefix =
HttpdUtilities::mRoot, HtpdUint8 flags = 0);

This constructor initializes the object. The parameter p_pr ef i x isused to determine which URI strings
areassociated with thishandler. The other two parametersare used to specify the source of files. If p_r oot
is anything other than “/” then it must be avalid path to which all requests are relative to.

If f1 ags includes Ht t pdFi | eHandl er: : SUPPORTS_POST then the Val i dMet hod will allow
POST requests through.

Fi | eSyst em(getter)

Ht t pdFi | eSystem *Htt pdFi | eHandl er: : Fi |l eSystem (void);

44

Core API Reference

Returns the file system provider assigned to the handler during construction.

Protected Methods

Note
These methodstypically constitute amajor phase of request processing and can be overridden
in subclasses for additional processing.

CheckMet hod

voi d HttpdFil eHandl er:: CheckMet hod (Request State &state);

Thismethod performsthe CheckMet hod phase. Thefollowing membersof st at e areinitialized during
this phase:

* mHandl ed (tothevauet r ue)

» npRequest (tothecurrent Ht t pdRequest object)
» npReqgPat h (to the requested URI)

» npDat a (to NULL)

This method is required to initialize the mviet hod member of st at e. It should be set to one of
UNKNOWN_METHOD, HEAD_METHOD, GET_METHOD, or POST_METHOD.

Val i dMet hod

int HttpdFil eHandl er:: ValidMethod (RequestState &state);

This method returns O if mMvet hod is a supported method. If the method is not supported then an
appropriate HTTP error status should be returned, such as HTTPD_RESP_METHOD_NOT _IMPL. The
following members of st at e areinitialized during this phase:

* mHandl ed (tothevauet r ue)

* npRequest (tothecurrent Ht t pdRequest object)
* nmpReqgPat h (to the requested URI)

* mvet hod (to the method of the request)

Transl at eUr |

bool HttpdFil eHandl er:: TranslateUri (RequestState &state);

This method performs the Tr ansl at eUri phase. This phase occurs after the CheckMet hod phase.
All of the members of st at e initialized before and during CheckMet hod are valid for this phase.

This method is required toinitializethenpDecodedUr i and npFi | ePat h membersof st at e. These
values should beinitialized to point to storage allocated from HttpdOpSys::Malloc because Cl eanup will
release them using HttpdOpSys::Free.

If this method returns false processing is aborted. The Cl eanup phase is still executed, however. It is
therefore always necessary toinitializenpDecodedUr i and npFi | ePat h. If they do not point to valid
storage then they should be set to NULL.

45

Core API Reference

If processing should be passed on to other handlers (and no error response was sent out during this phase)
then nHandl ed canbesettof al se.

If this method returns true then processing continues with the Pr ocessUr i phase.

ProcessUri

void HttpdFil eHandl er:: ProcessUri (RequestState &state);

This method performsthe Pr ocessUr i phase. This phase occurs after the Tr ansl at eUr i phase. All
of the members of st at e initialized before and during Tr ansl at eUr i arevalid for this phase.

This method is required to initialize the nFi | el nf o member of st at e. Thisis typically done using
the path name in npFi | ePat h in st at e that was generated during the Tr ansl at eUri phase. If
nFi | el nf o isnot able to be initialized then an appropriate error response should be generated.

The default implementation does not do any additional translations on npFi | ePat h as these should

normally be done in the Tr ansl at eUr i phase. This method may be used in subclasses to locate files
on adifferent filesystem for some criteria.

DoOpt i ons

int HtpdFileHandl er::DoOptions (RequestState &state, HttpdStringSink
&al | owed_net hods, HttpdStringSi nk &headers);

This method is called when the request is an OPTI ONS method. Additional headers in the response
should be written to header s while additiona methods (separated by a comma) are written to
al | oned_ret hods.

Subclasses of Htt pdFi | eHandl er may override this method to add additional information to the
response. Subclasses should call theimplementationin Ht t pdFi | eHandl er before writing additional
data.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

@ Note
Thismethod is only available if the INC_OPTIONS METHOD featureis enabled.

DoFi | el nfo

void HttpdFil eHandl er:: DoFil el nfo (RequestState &state);

This method performs the DoFi | el nf o phase. This phase does the first analysis of the nFi | el nf o
member of st at e to determine the appropriate way to continue processing the request.

Thecritical test performed hereisthat of directory objects. If nFi | el nf o isdetermined to be adirectory
object and not afile object the request is passed off to directory processing.

DoFi |l e

void HttpdFil eHandl er:: DoFil e (Request State &state);

46

Core API Reference

This method performs the DoFi | e phase. At this point we know we have a valid target file that was
selected by the previous phases. This phase allows the remainder of request processing to proceed with
that assumption.

This phase analyzes the remaining attributes of the ni | el nf 0 member of st at e to determine an
appropriate response.

The most common tests to be performed are on the MIME type of the file. The default implementation
checks for a MIME type of x- server-internal / privat e and generates an error for files of this
type. Otherwise the request is passed on to the SendFi | e method.

d eanup
voi d HttpdFil eHandl er:: d eanup (RequestState &state);

This method performs the Cl eanup phase. Request processing is about to terminate and any resources
allocated during the processing of this request should be freed.

SendFi | e
void HttpdFil eHandl er:: SendFil e (RequestState &state);

This method takes a RequestState object that has completed the DoFi | e phase and sends out the
appropriate response to the client. Depending on the request, headers are optionally generated. Thefileis
opened and pushed to the socket of the Ht t pdRequest object.

NeedToSendQut
bool HttpdFil eHandl er:: NeedToSendOQut (Request State &state);

This method analyzes the | f - Modi f i ed- Si nce header to determine if content needs to be sent out
at al. If the content must be sent true is returned. Otherwise, false is returned and a HT TP 304 response
can be sent instead.

@ Note
This method only existsif the INC_MODIFIED_SINCE option is enabled.

Resul t Header
bool HttpdFil eHandl er:: Resul t Header (RequestState &state, int resp);

Thismethod generates an appropriate header and response message. Ther esp isthe status code for which
the response is being generated.

The value falseis returned on error. Otherwise true is returned.

Sendl ndexFi | e
bool HttpdFil eHandl er:: Sendl ndexFi | e (Request State &state);

This method is called from the default implementation of DoFi | el nf o for a directory. It attempts to
locate afilecaled i ndex. ht m inside the specified directory. If thisfile exists its contents are sent as
response.

47

Core API Reference

If no response was sent this method returns false and request processing should continue. Otherwise true
isreturned if the request was handled.

DoDi rectory
void HttpdFil eHandl er:: DoDi rectory (RequestState &state);

This method is used to fix up URI's that point to a directory name without atrailing slash character (“/”).
In addition, thisis where the response to adirectory request is generated for directories that do not contain
ani ndex. htnl .

SendCont ent Type
int HttpdFil eHandl er:: SendCont ent Type (RequestState &state);

Thismethod sendsa Cont ent - Ty pe header to the request object inthe st at e object. The value of the
header is derived from them nf o member of st at e.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ful | Range

voi d HttpdFil eHandl er:: Ful | Range (Request State &state);

Thismethod isonly presentif INC_BY TERANGE_SUPPORT isenabled. Thismethod adjuststhe current
byterangeto beinclusiveof theentirefile. It can be called any time after theCheck Byt eRanges method
is caled to respond with complete content and a status code of HTTPD_RESP_OK.

CheckByt eRanges
voi d HttpdFil eHandl er:: CheckByt eRanges (RequestState &state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. This method analyzes the
HTTP request headers to see if a partial range request is desired. If so the range in the st at e object is
updated with the new range. The range is not validated at this point therefore upon return of this method
the byte range within the RequestState may be invalid.

| sRangeASubset

bool HttpdFil eHandl er:: | sRangeASubset (const RequestState &state);

Thismethodisonly presentif INC_BY TERANGE_SUPPORT isenabled. If therangein the RequestState
object does not cover the entire entity body then true is returned. Otherwise the request is for afull entity
body and falseis returned.

Val i dRange
bool HttpdFil eHandl er:: Val i dRange (const RequestState &state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. A byte range is considered
valid if it isin a forward direction (the ending position is greater or equal to the starting position) and
the range is within the entity body length. If the range is valid then true is returned. For invalid ranges
falseisreturned.

48

Core API Reference

I nval i dval i dRangeResponse

void HttpdFileHandl er::InvalidVali dRangeResponse (const RequestState
&state);

This method is only present if INC_BY TERANGE_SUPPORT is enabled. This method returns a
HTTPD_RESP_RANGE with the appropriate Cont ent - Range: header value. No further response

should be issued for the request, either by calling the Respond method of the request or by calling the
Resul t Header method of the file handler.

CheckFor RangeCondi ti on

void HttpdFileHandl er:: CheckFor RangeCondition (const Request St at e
&state);

This method is only present if INC_BYTERANGE_SUPPORT is enabled. This method is called by

the CheckByt eRanges. It processes conditional range requests (indicated by the presence of al f -
Range: header linein the request) and invalidates the subrange if necessary.

Ht t pdRequest For war der Reference

Introduction

Sometimes it is necessary to declare two different Ht t pd objects that both should share the same set of
handlers. For example, if the same set of handlers should be accessible via either SSL or TCP. A handler
canonly beinstalled in one Ht t pd object at atime.

The Ht t pdRequest For war der classis a handler that forwards requests to the handlers installed in

another Ht t pd object. It cleanly solves the problem of having more than one Ht t pd object where the
same handling must be performed across objects.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Public Methods

Ht t pdRequest For war der

Ht t pdRequest For war der : : Ht t pdRequest Forwar der (Httpd *p_server);

Initialize the handler to send all requeststo p_ser ver.

Htt pdUr| Reference

Introduction

In many cases Seminole parses a URL using open-coded logic — for efficiency. Although when necessary
Ht t pdUr | can be used to decompose a URL easily.

49

Core API Reference

TheHt t pdUr | canbeused repeatedly without recreating the object. However it isimportant to remember
that each component string will be invalidated when anew URL is parsed with the object.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Par se

int HtpdUl::Parse (const char *p_url);

This method parses the URL. If successful O is returned; otherwise a system dependent error value is
returned (see Table 4.1, “OS Abstraction Layer Error Codes’).

d eanup

void HttpdUrl::C eanup (void);

This function releases any stored memory from a previously parsed URL. It is safe to call thisfunction at
any time; even if there is no previously parsed URL. Y ou should call this method if you are sure that the
parsed URL components are no longer needed. This releases the allocated memory for use elsewhere. It
is not necessary to call this method; it is strictly a space optimization.

Pat h
const char *HttpdUrl::Path (void);
Returns a pointer to the path component of the URL. This method will never return NULL if aURL has
been parsed.

Host
const char *HttpdUrl::Host (void);
Returns a pointer to the host name component of the URL. This method will never return NULL if aURL
has been parsed.

Schene
const char *HttpdUrl:: Scheme (void);
Returns a pointer to the scheme component of the URL. This method will never return NULL if a URL
has been parsed.

Transport

const char *HttpdUrl:: Transport (void);

Returnsapointer to thetransport nameused for thisURL. If theINC_MULTIPLE_TRANSPORT Sfeature
is not enabled then this method will always return NULL.

50

Core API Reference

Query
const char *HttpdUrl:: Query (void);

Returns a pointer to the query string of this URL If no query string is present then NULL is returned.

Por t
Ht t pdl pPort HttpdUrl::Port (void);

This method returns the port the URL references. If no port is specified then the appropriate port for the
scheme is returned.

St andar dPor t
bool HttpdUrl:: StandardPort (void);

This method returnstrueif the port is the default for the scheme of the URL and need not be specified. If
falseisreturned then the port is special and needs to be specified for this scheme.

Ur |
const char *HttpdUrl:: Ul (void);
Returns a pointer to the URL that was parsed. This method will never return NULL if a URL has been
parsed.
Aut hority
const char *H tpdUrl::Authority (void);
Returns a pointer to the authority information of the URL. If the URL does not contain any authority
information then NULL is returned.
| sRel ati ve
bool HttpdUrl::IsRelative (const char *p relative);
This method determines if p_r el ati ve is a component relative to this URL. If true is returned then
p_rel ati ve can be converted to an absolute URL using the Rel at i ve method, described below.
Rel ati ve
char *HttpdUrl:: Relative (const char *p_relative);
This method returns an absolute URL that is the current URL adjusted by p_rel ati ve. NULL is
returned upon failure. If successful it is the caller's responsibility to free the returned string (using
HttpdOpSys::Free).
| sSecure

bool HttpdUrl::IsSecure (void);

This method determines if the URL is “secure’. For example a URL is considered secure if the transport
for the scheme is SSL.

51

Core API Reference

Host NaneMat chesHeader

bool HttpdUrl:: Host NaneMat chesHeader (const char *p_host header);

This method determinesif the hostname portion of the Host : header matches the host used in the URL

Separ at ePat h

char **HttpdUrl:: SeparatePath (const char *p_path);

This static method separates p_pat h into an array of components. If successful it returns a pointer to an
array of strings. Each string is the decoded path component (decoded). The returned array is terminated
by aNULL entry. If unsuccessful then NULL is returned.

It is the responsability of the caller to release the memory allocated by the array by calling the
Fr eePat hLi st method.

Fr eePat hLi st

void HttpdUrl:: FreePat hLi st (char **pp_path);

This static method frees the memory alocated by the Separ at ePat h method.

TrinmLastEntry

void HtpdUl::TrimastEntry (char **pp_path);

This static method removes the very last entry (if one exists) of the provided path array. Typically this
final component is determined to be afile name while all of the other components are directories.

Pat hl sSubset

bool HttpdUrl:: PathlsSubset (const char *const *pp_base, const char
*const *pp_path);

This static method determinesif pp_base contains pp_pat h.

Ht t pdCgi Par anet er Reference

Introduction

Serving anything more complex than static documents via HTTP typically requires use of the Common
Gateway Interface, or CGIl. CGI parameters are passed by encoding them in URI strings, or through use of
the POST method. Seminole provides common mechanisms to decode and parse CGI parameters within
the Ht t pdCgi Par anet er class.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

52

Core API Reference

Public Methods

ParseUri String

Ht t pdCgi Par anet er *Ht t pdCgi Par anmet er: : ParseUri String (const char
“p_query);

Given aset of URL-encoded CGI parametersinp_quer y, returnsapointer toaHt t pdCgi Par anet er
object containing the decoded parameters. Each subsequent parameter can be obtained by following each
Ht t pdCgi Par anet er 's npNext pointer. NULL is returned if there are no encoded parameters in

p_query.

The caller is expected to free the returned pointer using HttpdCgiParameter::Freeligt, if the cal is
successful.

Par sePost Dat a

Ht t pdCgi Parameter *Htt pdCgi Par anet er: : Par sePost Dat a (Ht t pdRequest
*p_request);

Parse data sent via the HTTP POST method, in the request p_request. A pointer to a
Ht t pdCgi Par anet er object containing the decoded parameters is returned. Each subsequent
parameter can be obtained by following each Ht t pdCgi Par anet er 'smpNext pointer. NULL if none
arefound or there is an error in processing.

The caller is expected to free the returned pointer using HttpdCgiParameter::Freelist, if the cal is
successful.

Par seFor nDat a

Ht t pdCgi Parameter *Htt pdCgi Par anet er: : Par seFor nDat a (Ht t pdRequest
*p_request);

This method parses all form data from the request. Pairs from the query string appear first in the resultant
list followed by any posted form data (if the method is POST).

The caller is expected to free the returned pointer using HttpdCgiParameter::Freelist, if the cal is
successful.

ParseStri ng
Ht t pdCgi Paraneter *HttpdCgi Paraneter:: ParseString (char *p_attr);

Given aset of URL-encoded CGI parametersinp_at t r, returnsapointer toaHt t pdCgi Par anet er
object containing the decoded parameters. Each subsequent parameter can be obtained by following each
Ht t pdCgi Par anet er 'snpNext pointer. NULL isreturned if there are no encoded parameters.

The caller is expected to free the returned pointer using HttpdCgiParameter::Freeligt, if the cal is
successful.

@ I mportant
The attribute string may only be parsed once. For efficiency reasons the parsing modifies
the string in place. It is important that the string not be parsed again. If the parsing

53

Core API Reference

must be performed more than once then a copy of the string should be made (using
HttpdUtilities::SaveString).

Fr eeLi st

Fi nd

void HttpdCgi Paraneter:: FreeList (HtpdCgi Paraneter *p_list);

DestroysaHt t pdCgi Par amet er object, and freesits resources. CGI handlers should call this method
when finished with their processing.

const char *HtpdCgi Paraneter::Find (const char *p_nane);

Find the named parameter from the current node forward. Typicaly this method is called from the first
nodein thelist but it can be used to walk alist with multiple parameters of the same name.

On success this method returns the value of the found node. NULL is returned on error.

Fi ndNode

Ht t pdCgi Par anet er *Ht t pdCgi Par anet er: : Fi ndNode (const char *p_nane);

Find the named parameter from the current node forward. Typically this method is called from the first
node in thelist but it can be used to walk alist with multiple parameters of the same name.

On success this method returns the address of the found node. NULL is returned on error.

Lookup

Ht t pdCgi Par anet er *Ht t pdCgi Par anet er: : Lookup (Ht t pdCqgi Par anet er
*p_list, const char *p_nane);

Find the named parameter in the list.

On success this method returns the address of the found node. NULL isreturned on error. If p_| i st is
NULL then thelist is considered empty and NULL is aways returned.

Conpar eLi sts

bool Ht t pdCgi Par anet er: : Conpar eLi st s (const Ht t pdCgi Par arnet er
*p_list_a, const HttpdCgi Parameter *p_list_b);

This static method determines if the contents pointed to by p_| i st _a are identical (in both value and
order) to the nodes pointedto by p_I i st _b.

If thetwo lists are identical trueis returned. If they are not identical then falseis returned.

CopylLi st

bool HttpdCgi Paraneter:: CopyList (HttpdCgi Paraneter *&p_dest, const
Ht t pdCgi Par aneter *p_src);

This static method copies all of the nodes pointed to by p_sr ¢ into anew list with the first node pointed
toby p_dest . If successful trueisreturned. If thereisinsufficient memory then falseis returned.

54

Core API Reference

Public Data
nPai r
Ht t pdPai r nPair;

The parameter name and value of thisHt t pdCgi Par anet er .

npNext
Ht t pdCgi Par anet er *npNext ;

A pointer tothe next Ht t pdCgi Par anet er object onthelist, or NULL if thisobject isthe last member
of the list.

Ht t pdCgi Hash Reference

Introduction

TheHttpdCgiParameter classisdesigned to begeneric. The parametersarestoredinalinked list to preserve
order and allow for duplicate parameters. The intention was to alow anything from a remote procedure
call interface to areal-time data stream to be transported using CGI parameter encoding. The cost for that
flexibility is speed. Searching for a particular parameter by name linearly scans the entire parameter list.

Ht t pdCgi Hash re-ordersthe nodesof aHt t pdCgi Par anet er list to make searching for parameters
by name significantly faster. This class takes advantage of the fact that after parsing CGI parameters are
stored in asingly linked list. It is avery easy transform to convert the linear list to an open-chained hash
table. The nodes are not copied, they are re-linked in place into the appropriate bucket.

TheHt t pdCgi Hash aso behaves as an array of pointer to Ht t pdCgi Par anmet er objects. The array
is always HTTPD_CGI_HASH_SIZE (defined by the CA _HASH_SI ZE build parameter) elements in
size. This behavior alows easy iteration of a collection of CGI parameters as long as the order is not
important. For example:

for(size_t i = 0; i < HITPD_CA _HASH SI ZE; i ++)
for(Htt pdCgi Paraneter *p_param = hash[i];
p_param ! = NULL;
p_param = p_par am >npNext)

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdCgi Hash

Ht t pdCgi Hash: : Ht t pdCgi Hash (voi d);

55

Core API Reference

The constructor of Ht t pdCgi Hash initializes the object. After initialization the hash is empty. Nodes
can be added with the Append method.

~Ht t pdCgi Hash
Ht t pdCgi Hash: : ~Ht t pdCgi Hash (voi d);

It isimportant to understand that any parameter nodes contained in the hash are owned by the hash. When
the Ht t pdCgi Hash instance is destroyed, so are all the nodes contained in the hash.

Append
voi d HttpdCgi Hash: : Append (H t pdCgi Paraneter *p_list);

The CGI parameters contained in p_|ist are appended to the hash. After being appended,
the nodes in p_list ae owned by the hash table. They should not be released (via
Ht t pdCgi Par anet er: : FreeLi st) or manipulated in any way.

It is possible to append several sets of parameters to the hash table. In this case the hash table contains
the union of al of the appended sets of parameters. In the cases of duplicate parameter names al of the
nodes are stored but in an unpredictable order.

Fi nd
Ht t pdCgi Par aneter Htt pdCgi Hash:: Find (const char *p_nane);
Find the named parameter in the hash. If aparameter by the name of p_nane existsthen the address of the
first parameter by that nameinthe chainisreturned. If no parameter by that name exists, NULL isreturned.
If more than one parameter with the name p_nane exists in the hash, the Fi nd method can be applied
to the returned pointer to find additional nodes with the same name.

Renove

void HttpdCgi Hash:: Remove (HttpdCgi Paraneter *p_obj);

Remove p_obj from the table. The object must be a member of the hash or the behavior is undefined.
After removal, the object must befreed using Ht t pdCgi Par anet er : : Fr eeLi st whenitisnolonger
needed.

Ht t pdMul ti part Cgi Par ser Reference

Introduction

To support HTML forms with file upload a special MIME encoding of nul ti part/formdata is
used with the POST method. This class parses POST request data in this format. This class may also be
subclassed to handle incoming data without storing it in memory or to handle binary data that does not
storewell asastring.

For low-memory devices this feature is very important. Incoming data can be processed as it is received
by substituting a customized subclass of HttpdWritable for a particular parameter.

Alternatively data can be processed by “pulling” data directly from an instance of
Ht t pdBoundar yReader .

56

Core API Reference

Subclassing Using a Push Model

When using a push model the OpenDest i nati on and Cl oseDest i nat i on methods are typically
modified to special case certain parameters. Let us assume we are loading a binary file into a
Ht t pdSt ri ngSi nk for later firmware updates.

class Update_MuiltipartParser : public HttpdMiltipartCgi Parser

{
Ht t pdStri ngSi nk i r mvar e;
bool nFi r mvar eQOpen;
pr ot ect ed:
virtual int OpenDestination(State &state, HtpdWitable *&p_dest);
virtual int C oseDestination(State &state,
Ht t pdWitabl e *p_dest,
int rc);
i

To open the destination it is hecessary to examine st at e and determine if this is part requires special
processing:

int Update_MuiltipartParser::OpenDestination

(
Ht t pdMul ti part Cgi Parser:: State &st at e,
H t pdWitable *&p_dest
)
{

if (strcnp(state. mattributes. npNane, "new fw file") == 0)

{
/1 1f the firmvare destination is open then the client is confused...
/1 The constructor of this class sets this to false. So just ignore
/1 this data fromthe confused client -- our firmvare files are
/1 checksumed anyhow.
i f (i rmvar eQpen)
{

p_dest = HttpdNull Sink::Null();
return (0);

}
/1 Clear out any previous content that may be in there.
Ht t pdOpSys: : Free(nFi rmvar e. TakeBuffer());
/1 Here we are!
p_dest = &nFi r mnar e;
nFi r mvar eCpen = true;
return (0);

}

/1 For other fields -- handle normally.

return (HtpdMWul tipart Cgi Parser:: OpenDestinati on(state, p_dest));

}

57

Core API Reference

The close caseis similar but there are afew additional things to check for:

int Update_ Ml tipartParser::d oseDestination

(
Ht t pdMul ti part Cgi Parser:: State &st at e,
H t pdWitable *&p_dest,
i nt rc

)

{
/1 1f this is our special-cased part:
if (p_dest == &nFirnmare)

{
/1 1f successful.
if (rc == 0)
{
/1 Do whatever application specific processing is needed.
}
else // Cear out any partial data on error.
Ht t pdOpSys: : Free(nFi rmnar e. TakeBuffer());
/1 Pass the status up to the higher |ayers.
return (rc);
}

/1 Call the superclass nmethod for default processing.
return (HtpdMul tipart Cgi Parser:: Cl oseDestination(state, p_dest, rc));
}

Of course it is possible to use any object that implements the HttpdWritable interface; even files and
sockets are | egitimate targets.

Subclassing Using a Pull Model

Itisn't dways easy or convenient to process data by getting calls to a method in a class. For these cases a
different approach can be taken. Consider the idea of loading an FPGA from afile upload:

class FPGA MultipartParser : public HtpdMWiltipart Cgi Parser
{

pr ot ect ed:
virtual int Handl ePart(State &state, HttpdBoundaryReader &reader);
b

For a“pull” model only one method must be subclassed. Neither mode is mutually exclusive. The default
implementation of Handl ePart is what calls OpenDesti nati on and C oseDesti nati on.
Thereforeit is possible to override al three methods and handle each named part differently.

However, with the pull-only approach above Hand| ePar t isimplemented as follows:

58

Core API Reference

int FPGA Ml ti part Parser:: Handl ePart

(
Htt pdMul tipart Cgi Parser:: State &state,
Ht t pdBoundar yReader &r eader
)
{

/1 1s this our special part?
if (strcenp(state. mAttributes. npNane, "fpga_image") == 0)

int rc;

for(;;)

{
const void *p_buffer;
size_t | en;

/1 Read a block of data. Use the normal tinmeout used for other
/1 CA processing. We can of course us a different tinmeout if
/'l necessary here.
rc = reader. Read(p_buffer, len, HITPD CG _TI MEQUT);
if (rc == HttpdBoundar yReader:: HTTPD M ME_BOUNDARY)

return (0); // Nothing left to read.
else if (rc 1= 0)

break; // Error.

/1 Process the buffer of |en bytes here.

}

return (rc);

}

/1 QG herwi se performthe normal processing.
return (HtpdMul tipart Cgi Parser:: Handl ePart(state, reader));

}

Here the data can be processed in place without buffering it up or wrapping up processing into a self-
contained object.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdMul ti part Cgi Par ser

Ht t pdMul ti part Cgi Parser:: Htt pdMul ti part Cgi Parser (Ht t pdRequest
*p_request);

59

Core API Reference

This constructor initializes the parser and associates it with the request p_r equest. To parse the
incoming datausethe Ht t pdMul t i part Cgi Par ser : : Par se method.

Li st
Ht t pdCgi Par amet er *Ht t pdMul ti part Cgi Parser::List (void);

This method gets the current parameter list. A pointer to the first node in the parameter list is
returned. Unless the list is removed with TakelLi st , the list will be automatically destroyed when the
Ht t pdMul ti part Cgi Par ser object isdestroyed.

TakelLi st
Ht t pdCgi Par aneter *Htt pdMul ti part Cgi Parser:: TakelLi st (void);

This method is similar to Ht t pdMul ti part Cgi Parser:: Li st except that it removes the current
list of parameters from the parser object.

If the parser isre-invoked (via Par se) after the list istaken, it is asif the parser was newly constructed
and had no parameters.

Note
It isthe responsibility of the caller to free the list using HitpdCgiParameter::FreelList.

OpenDesti nati on

i nt Ht t pdMul ti part Cgi Parser:: OpenDestinati on
(HttpdMul tipartCgi Parser:: State &state, HtpdWitable *&p dest);

This method gets a target HttpdWritable object for a parameter encoded as one part of a MIME
multipart message. The default behavior implemented by this method is to store the parameter data into
a HttpdCgiParameter node.

However, for large fields (such as files uploaded or large text areas) this method can be overridden by
subclasses to provide a different object for handling the data. The returned writable object in p_dest
could do anything, even process the dataas it is received.

To identify the particular parameter the st at e object is passed to this method. This object contains all
of the specifics for this particular multipart entity:

Members of HttpdM ultipartCgiPar ser :: State

Type: Ht t pdM nePar ser

Name: nM nePar ser

Description: Each entity in multipart MIME data has its own set of headers. This object is the parser used
to parse those headers. Additional headers (such as Cont ent - Type) can be extracted from this parser.
Type: Attri butes

Name: mAt tri but es

Description: This structure contains various attributes about the current entry.

TheAt t ri but es structure contains the details for processing the current entry. It is defined as follows:

Members of HttpdM ultipartCgiPar ser:: Attributes

Type: char *
Name: npNane

60

Core API Reference

Description: Thisis the name (as defined by the HTML NAME attribute of the | NPUT element) of the
parameter.

Type: char *

Name: npFi | eNane

Description: For input elements of type FI LE, thisis the client-specific name of thefile.

Type: const char *

Name: npCont ent Di sposition

Description: Thisisthevalueof theCont ent - Di sposi t i on MIME header of thisparticular multipart
entity.

An error code from Table 4.1, “OS Abstraction Layer Error Codes’ is returned. If no error is returned, it
is expected that p_dest ispointed to avalid object.

Cl oseDesti nati on

i nt Ht t pdMul ti part Cgi Parser:: OpenDestinati on
(HttpdMul ti part Cgi Parser:: State &state, HtpdWitable *p dest, int rc);

This method is called after all the data for a particular field is written to p_dest object obtained via
OpenDestination.

Because this function performs double duty, cleaning up the resources used by p_dest and storing or
processing data, the r ¢ argument is used to indicate the success of reading the data. A non-zero value of
r ¢ indicates that the read was unsuccessful and whatever datawas writtento p_dest should be ignored
(or undone if data was being processed as it was read). Cleanup of the resources should be performed in
either case.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” isreturned. If r ¢ was non-zero, that
value should be returned in place of success.

Hand| ePar t

Par se

i nt Ht t pdMul ti part Cgi Par ser: : Handl ePart
(HttpdMul ti part Cgi Parser:: State &state, H tpdBoundaryReader &reader);

The default implementation of this method calls OpenDest i nat i on, pumps the contents of the part
into the opened destination, and then cleans up the destination.

For clients wishing to use the HttpdBoundaryReader interface directly (for exampleto usea* pull” model
of processing the data) this method can be overridden.

Note
If successisreturned thenr eader should have absorbed the boundary string. Do not return
0if thisis not the case.

int HtpdMultipartCgi Parser:: Parse (void);

This method invokes the parser. The multipart body is separated into entities and each one is written to
an object provided by the overridable OpenDest i nat i on method. The default behavior of which isto
append each parameter in alist of HttpdCgiParameter objects.

Anerror codefrom Table4.1, “ OS Abstraction Layer Error Codes’ isreturned. Zero indicates success and
that avalid parameter list can be obtained viaHt t pdMul ti part Cgi Par ser: : Li st .

61

Core API Reference

Important
The caller of this method must validate that the MIME type of the incoming POST request
isinfactmul ti part/formdata.

Ht t pdCgi Wit er Reference

Introduction

Ht t pdCgi Wi t er objectsareused to generate query stringsto objectsthat implement the HttpdWritable
interface.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Htt pdCgi Witer

Ht t pdCgi Witer:: HtpdCgi Witer (HttpdWitable *p_target, bool
conpact _space = fal se);

Constructs a Ht t pdCgi Wi t er object that writes the query string to p_t ar get . The ? separator
between the file path and the query string is not written by this class and, if desired, must be written
manually before this object is constructed.

If conpact _space ist r ue then space characters (ASCII 0x20) arereplaced with plus characters (" +").
Wite

int HtpdCgi Witer::Wite (const char *p_name, const char *p_val ue);

Append the name and value parameter to the query string being assembled in the target sink.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Wit eNode
int HtpdCgi Witer::WiteNode (const HtpdCgi Paraneter *p_node);
Append the contents of p_node to the query string being assembled in the target sink.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WitelLi st
int HtpdCgi Witer::WiteList (const HtpdCgi Paraneter *p_list);

Append the contents of every nodeinp_| i st to the query string being assembled in the target sink.

62

Core API Reference

Reset

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

void HttpdCgi Witer::Reset (void);

Reset the writer for a new string of parameters.

Htt pdAttri but ePar ser Reference

Introduction

Severa extensions to the values of the MIME headers of an HTTP request are done using token/value
pairs. These pairs typically (but not always) follow data terminated by a semicolon (;).

TheHt t pdAt tri but ePar ser class parses these kinds of attributes. Because most of these attributes
are clauses that can be processed without much state information, the interface of this classis designed to
allow easy, procedural looping of the name/value pairs.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Htt pdAttri but ePar ser

Ht t pdAttri buteParser:: HttpdAttributeParser (const char *p_front, const
char *p_valueterm= .);

Initialize the attribute parser to begin parsing the string pointedtoby p_f r ont .

If p_val uet er mis specified then this is the set of characters that terminate an unquoted value. See
HttpdUtilities::DequoteToken for moreinformation.

Next Attri bute

bool HttpdAttributeParser:: NextAttribute (void);

This method should be called to obtain each successive name/value pair. After each call, the appropriate
values are in the npKey and npVal ue data members.

This method returnstrue if there are more name/value pairs to be obtained or false if there are no more.

Public Data

npKey

This data member contains the key (name) portion of the attribute pair. It points to internally allocated
storage that is managed by the object. If the caller wishes to keep the string then this data member can be

63

Core API Reference

set to NULL before calling Next At t ri but e again and the buffer will not be freed. It is then the up to
the new owner of this string to free it using Ht t pdOpSys: : Fr ee.

If Next At t ri but e returns true then this member will never be NULL.

npVal ue
This data member contains the value portion of the attribute pair. For a standalone token this data member
will be set to NULL. If not NULL it pointsto internally allocated storage that is managed by the object.

If the caller wishes to keep the string then this data member should be set to NULL before calling
Next At t ri but e again aswith the npKey member.

npFr ont

Thisisapointer within the input string. This pointer is advanced as the parse progresses. It can be used to
do early termination by looking for characters or strings before calling Next At t ri but e.

Ht t pdCooki es Reference

Introduction

This class provides a mechanism for sending Set - Cooki e headers to clients and parsing Cooki e
headersfrom clients. Instancesof Ht t pdCooki es areassociated with aparticular Ht t pdM nePar ser
(which is part of aHt t pdRequest object). Once associated, cookies associated with a request may be
enumerated using aloop.

A static method, Ht t pdCooki es: : SendCooki e isaso provided to generate Set - Cooki e headers
toaclient viathe Ht t pdDynani cQut put class.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdCooki es

Ht t pdCooki es: : Ht t pdCooki es (Htt pdM nmeParser &mi ne_parser);
Initialize the cookie iterator to begin parsing the cookies associated with the MIME headers received in

m nme_par ser. The Ht t pdM nePar ser passed into this construct must have already completed its
parsing phase (i.e. Ht t pdM nePar ser : : Fi ni sh must have already been called on the object).

Next Cooki e
bool Ht tpdCooki es:: Next Cookie (void);

Thismethod should be called to obtain each successive name/val ue cookie pair. After each call, the cookie
name isavailable using the Key method and the value of the cookie isavailable using the Val ue method.

64

Core API Reference

Key

Val ue

This method returns true if there are more name/value pairs to be obtained or false if there are no more.
Itisimportant to realize that clients can send no cookiesin arequest. Therefore this method should always

be called first (typically as the conditional of awhile loop) to determine if the Key and Val ue methods
should even be called.

const char * Htt pdCooki es:: Key (void);

This method should be called to obtain the name of the current cookie. The returned pointer isonly valid
for this iteration and its contents will change after the next call to Next Cooki e. This method never
returns NULL.

@ Note
This method should not be called until Next Cooki e has been called and returned true.

const char * Htt pdCookies:: Value (void);

This method should be called to obtain the value of the current cookie. The returned pointer is only valid
for thisiteration and its contents will change after the next call to Next Cooki e. This method may return
NULL for value-less cookies.

Note
This method should not be called until Next Cooki e has been called and returned true.

SendCooki e (Stream version)

i nt HttpdCookies:: SendCookie (HttpdWitable *p out, const char *p_key,
const char *p_value, .);

Thismethod generatesa Set - Cooki e header with one or more name/value pairs. The pairsare provided
asavariablelist of arguments. Either two valid pointers must be provided or aterminator (zero cast to a
constant character pointer) can be passed.

Thismethod isastatic method and is not associated with any instances of Ht t pdCooki es. Theresulting
header issenttothep_out stream. Whenusing Ht t pdDynani cQut put thep_out parameter should
be obtained from the Ht t pdDynami cQut put : : Header s.

It isimportant to remember that the terminator must always be included (even for sending a single pair):

Ht t pdCooki es: : SendCooki e(p_out,
"SESSI ON_I D',
"123456",
(const char *)0);

When sending more than one header it isalso important to remember that the key portion and value portion
aredistinct. The pairs are always presented in key then value order:

65

Core API Reference

Ht t pdCooki e: : SendCooki e(p_out,
"SESSION_I D",
"123456",
"USERI D",
(const char *)user_id,
" SYSTEM',
"control ",
(const char *)0);

It is also important that any pointers should be explicitly cast to constant character pointers to avoid any
variable argument pitfalls.

SendCooki e (Dynamic version)

int HttpdCookies:: SendCookie (HtpdDynam cQutput *p_out, const char
*p_key, const char *p_val ue, .);

This method generates a Set - Cooki e header with one or more name/value pairs. It is caled in a
similar way to the overloaded version that takes a Ht t pdW i t eabl e pointer. This version uses a
Ht t pdDynarmi cQut put object asthe target.

Ht t pdAut hent i cat or Reference

Introduction

HTTP provides an authentication framework that can handle multiple authentication
schemes. Htt pdAut henti cat or provides a framework for authenticating requests with a
minimum of programming effort. For example authentication can be performed during the
Ht t pdFi | eHandl er: : ProcessUri phase of request processing.

The authentication framework isdefined in aheader filecalled sem aut h. h.In order to use any of these
classes or methods, this header file must be included.

@ Note
Ht t pdAut hent i cat or isan abstract base class. It must be subclassed and provided with
methods for getting credentials.

Public Methods

Aut hent i cat e (Default version)
bool HttpdAut henticator:: Authenticate (HttpdRequest *p_request);

This method should be called during request processing for any request which must be authenticated. If
this method returns false, no further processing of the request should be performed; the correct response
will be sent. If this method returns true then the request should be processed as normally.

Thisversion of the Aut hent i cat e utilizesall of the enabled authentication schemes. The version below
allows fine-grained control of what schemes are used and in what order they are presented.

66

Core API Reference

Aut hent i cat e (Specific version)

bool HttpdAuthenticator::Authenticate (HttpdRequest *p_request, const
Ht t pdAut hSchenes *p_schenes);

This method isidentical to the default version of Aut hent i cat e (described above) except that precise
control over what authentication schemes (and in what order) are used.

The array pointed to by p_schenes must be terminated by avalue of End.

Create
int HttpdAuthenticator::Create (void);

This method initializesan Ht t pdAut hent i cat or classfor use. It must be called successfully before
any other methods can be accessed.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned, or zero on success.

SecureStr Equ

bool HttpdAuthenticator:: SecureStrEqu (const char *p_strl, const char
* .
p_str2);

This static method compares p_str 1 with p_str 2. If the strings are equal then true is returned;
otherwise falseis returned.

This method is more secure than st r cnp because it defends against timing attacks. No matter how the
contents of the strings differ the amount of CPU time this method takesto executeis constant. Thisimplies
that thetime it takesto reject avalid password can not be used to guess successive characters of the correct
password.

The default implementation of Val i dat ePasswor d calls this method to compare the provided
password with the correct one. Other circumstances where timing attacks are possible should also use this
method.

@ Note
The timing of this method is only consistent if the INC_PASSWD_BLINDING option is
enabled.

The implementation of this method is tuned to use as few conditional branches as possible.
Furthermore local variables are declared volatile to provide consistent behavior across

compilers. However if security is a high concern then manual inspection of the generated
assembly code for this method is recommended.

Protected Methods

Real m

voi d Ht t pdAut henticator::Realm (HttpdRequest *p_request, char
*p_real m;

67

Core API Reference

@ Note
This method is pure virtual. It must be overridden in subclasses with the appropriate
functionality.

Thismethod iscalled to obtain the name of therealm for agiven request. The provided buffer, p_r eal mis
HTTPD_MAX_REALM_LENGTH bytesinlength. Thevalueof theHTTPD_MAX_REALM_LENGTH
constant is controlled by the MAX_REALM LENGTH build-time parameter.

Get Passwor d

bool HttpdAuthenticator:: Get Password (const char *p_user, HttpdRequest
*p_request, char *p_buf);

@ Note
This method is pure virtual. It must be overridden in subclasses with the appropriate
functionality.

This method is called to obtain the password of the user p_user for a given request. The
provided buffer, p_buf is HTTPD_MAX_PASSWD_LENGTH bytes in length. The value of the
HTTPD_MAX_PASSWD_LENGTH constant is controlled by the MAX PASSWD LENGTH build-time
parameter.

If the user specified in p_user doesnot exist or thereisan internal error getting the password then false
should be returned. If p_buf isset to the correct password then true should be returned.

Val i dat ePasswor d

bool Ht t pdAut henti cat or:: Val i dat ePassword (const char *p_user,
Ht t pdRequest *p_request, const char *p_provi ded _password);

Thismethod iscalled to validatethat p_pr ovi ded_passwor d isinfact avalid password for p_user .
The default implementation calls Get Passwor d and compares the passwords.

Subclasses may override this method if they wish to customize the password matching behavior. For
example supporting case-insensitive passwords. Another reason to override this method may be that the
password can't be easily obtained and it can only be validated. For example if the password is stored as
aone-way hash or backed by a RADIUS server.

If the password and username combination is not valid for any reason then this method should return fal se.

@ Note
This method may not be called for all authorization schemes. In particular the digest
authentication scheme does not provide the password to the server. Authentication schemes
where the provided password is not available call Get Passwor d directly.

Override this method only if you understand all of the consequences fully.

Di gest Aut hHeader

void HtpdAuthenticator:: D gestAut hHeader (HtpdRequest *p_request,
bool stale);

68

Core API Reference

This method is called for an unauthorized client (for whatever reason) when digest authentication is
enabled. The default behavior is to propose digest authentication by adding a WV Aut hent i cat e
header for the digest method.

If this method is being called because credentials were supplied against a stale nonce then st al e will
bet rue.

Aut hori zeDi gest

bool Ht t pdAut henti cator:: Aut hori zeDi gest (HttpdRequest *p_request,
const char *p_resp, const HtpdAut hSchenes *p_schenes);

This method is called when a request includes a WAV Aut hent i cat e header for the digest
authentication method. It should return trueif the request is authorized or falseif the request was declined.
The digest parameters (following the method name in the WWV Aut hent i cat e header) are given to
thismethod asp_r esp.

Basi cAut hHeader

voi d HttpdAut henti cator:: Basi cAut hHeader (HttpdRequest *p_request);

Thismethod iscalled for an unauthorized client (for whatever reason) when basic authentication is enabl ed.
The default behavior isto propose basic digest authentication by adding a WAV Aut hent i cat e header
for the current realm.

Aut hori zeBasi c

bool HttpdAut henticator:: AuthorizeBasic (HttpdRequest *p_request, const
char *p_resp, const HttpdAut hSchenes *p_schenes);

Thismethod iscalled when arequest includesa WAV Aut hent i cat e header for the basic authentication
method. It should return trueif the request isauthorized or falseif the request was declined. The parameters
(following the method name in the WAV Aut hent i cat e header) are given to thismethod asp_r esp.

Not Aut hori zed

voi d HttpdAut henti cator:: Not Aut horized (Ht pdRequest *p_request, const
Ht t pdAut hSchenes *p_schenes);

Thismethod iswhenever (and for whatever reason) a client has requested aresource that it did not present
proper credentialsfor. The default behavior isto sendaHTTPD_RESP_UNAUTHORI ZED (401) response
with the authentication challengeslisted in p_schenes.

Ht t pdSessi onManager Reference

Introduction

HTTP transactions are stateless. The Ht t pdSessi onManager class maintains a collection of
Ht t pdSessi onCbj ect objects. The session manager addresses the objects it manages by key string.
The key string can be stored in the client as a cookie or hidden form field. Ht t pdSessi onManager
does not force a policy of how the key is stored on the client side.

The number of Ht t pdSessi onCbj ect that can be stored in the session manager is fixed at creation
time. When anew session needs to be created and there is no room the oldest (inactive) session is purged

69

Core API Reference

to make room for the new one. To avoid sessions that are being used to process an active request from
being deleted, session objects are reference counted.

Thread Safety

This class provides athread-safe API. Multiple threads may call methods on a single instance of this class

without issue.
Public Methods
Create

int HttpdSessi onManager:: Create (size_t count);

Initialize the session manager to contain count session objects. This method must be called before any
other methods of the object with the exception of the methods that configure background scrubbing:
Max Sessi onAge, Cycl eTi nme, and Scr ubbi ngBat chSi ze.

An error code from Table 4.1, “OS Abstraction Layer Error Codes’ is returned.

Cycl eTi ne (setter)
voi d Htt pdSessi onManager:: Cycl eTi me (unsigned | ong cycle_tine);

Thismethod isonly availableif INC_BACKGROUND_SESSION_PURGE is enabled. This method sets
the time between scrubbing intervals (in milliseconds). During each scrubbing interval abatch (controlled
by Scr ubbi ngBat chSi ze) of sessions are examined. These two parameters control the amount of
processor time devoted to scrubbing inactive sessions.

Setting this parameter to O disables background scrubbing for thisinstance of session manager. However if
background scrubbing isto be disabled it must be done by calling this method with a parameter of 0 before
Cr eat e iscalled. Alternatively, the default value is zero and the call to this method can be avoided.

Enabling background scrubbing is a security enhancement. The session manager is alwaysfreeto gject an
old session if no space can be found. However, old sessions are never timed out if background scrubbing
is not enabled. This leaves open the possability of the session key being obtained and then utilized by
an attacker.

MaxSessi onAge (setter)
voi d Htt pdSessi onManager : : MaxSessi onAge (| ong nmax_age);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It sets the
maximum amount of time (in seconds) that a session can live without being accessed. Once that time is
exceeded the session is deleted.

Note

When INC_BACKGROUND_SESSION_PURGE is enabled and the cycle timeis set to a
non-zero value then this method must also be called to set the initial value before Cr eat e
can be called.

Scrubbi ngBat chSi ze (setter)

voi d Htt pdSessi onManager : : Scr ubbi ngBat chSi ze (size_t batch_size);

70

Core API Reference

Thismethod isonly availableif INC_BACKGROUND_SESSION_PURGE is enabled. It sets the size of
a scrubbing batch. Thisisthe number of sessions that are examined during a scrubbing cycle.

Note

When INC_BACKGROUND_SESSION_PURGE is enabled and the cycle timeis set to a
non-zero value then this method must also be called to set the initial value before Cr eat e
can be called.

Cycl eTi ne (getter)
unsi gned | ong Htt pdSessi onManager: : Cycl eTi me (void);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It returns the
current interval between session scrubbing cycles (in milliseconds).

MaxSessi onAge (getter)
| ong Ht t pdSessi onManager : : MaxSessi onAge (voi d);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It returns the
current maximum allowable session age (in seconds).

Scrubbi ngBat chSi ze (getter)
size_t Ht pdSessi onManager: : Scr ubbi ngBat chSi ze (void);

This method is only available if INC_BACKGROUND_SESSION_PURGE is enabled. It returns the
current session scrubbing batch size.

| nsert
int HttpdSessi onManager::Insert (HttpdSessi onChject *p_obj);

Thismethod insertsp_obj into the session manager. If the object isinserted successfully (0 is returned)
then the session was inserted. Upon successful return, the session will be given a reference count of 1
and should be unlocked (via Unl ock) when the pointer is no longer needed (typically at the end of a
HTTP transaction).

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Unl ockedl nsert

i nt HttpdSessi onManager::Insert (HttpdSessi onthject *p_obj);

Thismethod isidentical to| nsert except the session manager mutex is not locked. Callers must obtain
the lock prior to calling this method.

Fi nd

i nt Ht t pdSessi onManager: : Fi nd (const char *p_session_id,
Ht t pdSessi onCbj ect *&p_obj) ;

This method uses the session identifier (obtained via the Ht t pdSessi onQbj ect : : Sessi onld
method) inp_sessi on_i d tolocate the session object. Thisstring istypically stored on the client either

71

Core API Reference

in a cookie or passed as a hidden form variable. If the session is still stored in the container its reference
count isincreased and its addressis placed intop_obj .

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Unl ockedRef er ence

voi d Ht t pdSessi onManager : : Unl ockedRef er ence (Ht t pdSessi onObj ect
*p_obj);

This method increments the reference count of p_obj . Callers must lock the session manager mutex
before calling thismethod. Thisistypically donewhen searching for a session object in some other manner
(while holding the lock) and then referencing the object so the session manager lock can be released.

Unl ock

voi d HttpdSessi onManager:: Unl ock (HttpdSessi onChject *p_obj);

Whenever an object is inserted (via Htt pdSessi onManager::|Insert) or retrieved (via
Ht t pdSessi onManager : : Fi nd) its reference count is incremented to prevent it from being
destroyed by another thread.

When the session object is no longer needed for the remaining processing of the request it should be
unlocked using this method.

Del et e

voi d HttpdSessi onManager:: Del ete (HttpdSessi onChject *p_obj);

If asession object isto be destroyed (such as a user logging out, for example€) then a pointer to the session
object can be passed to Del et e instead of Unl ock to destroy the object. The session object should be
locked by at least one thread.

If the session abject is in use by other threads then it is not destroyed until all threads using it unlock it
(viaHt t pdSessi onManager : : Unl ock).

Mut ex
Ht t pdMut ex &Htt pdSessi onManager:: Mutex (void);

TheHt t pdSessi onManager isthread-safe because aHt t pdMut ex is used to synchronize accessto
thelist of session objects.

If session objects are tracked in amanner external tothe Ht t pdSessi onManager it may be desirable
to have asinglelock manage both lists. In these cases this method gives accessto thelock used to maintain
the session object list.

There are also non-sychronized versions of the accessor methods that can be called when the lock is
obtained externally viathis method.

Ht t pdSessi onObj ect Reference

Introduction

This class is a base class for objects managed by the HttpdSessionManager class. This class overrides
oper at or newandoper at or del et e to alocate space using HttpdOpSys.:Malloc.

72

Core API Reference

In addition to some helper methods, the Ht t pdSessi onOhj ect class defines some protected data
members that are for the use of the Ht t pdSessi onManager class.

Public Methods

Sessionld

voi d HttpdSessi onhj ect:: Sessionld (char *p_session_id);

This method obtains the session identifier that can be used to track the session. This should only be called
after a successful insertion of the session object into the manager.

The buffer pointed to by p_sessi on_i d, which must be at least HTTPD_SESSION_KEY_LEN
characters in length, is filled in with the session identifier. This string is generally sent to the client
(either as a cookie or hidden form variable) to identify the session object on subsequent requests (viathe
Ht t pdSessi onManager : : Fi nd method).

Del et ed

bool HttpdSessi onCbject::Deleted (void);

This method returnstrue if the object has been marked for deletion.

Ht t pdDynam cQut put Reference

Introduction

Some HTTP features designed to increase efficiency do not work well when the length of the content
is unknown. In particular, persistent connections do not work without a Cont ent - Lengt h: header.
Generating dynamic content is considerably easier when the length does not have to be known in advance.
Thisis even true of Seminole's template system.

There are several approaches to this problem. The simplest is to close the connection whenever an object
of unknown length is requested. Thisresultsin lower throughput and wasted bandwidth. Another optionis
to buffer dynamically generated content in memory at the server end. Onceit is generated, thelength of the
buffered datais known and can then be sent out. Of course, this leads to increased memory consumption
on the server aswell as adelay in sending the content. The third solution uses chunked transfer encoding.
This solution sends out the data in small chunks. The length of each chunk is sent along with the chunk
s0 the receiver can keep in sync. This solution is amost ideal for dynamically generated content but it is
only supported by HTTP/1.1 or higher.

Seminoleincludes HttpdContentSink and HttpdChunkedSink classesthat handl e the protocol mechanics of
buffering and chunking content, respectively. The Ht t pdDynani cQut put class acts as a switchboard
to select these different mechanisms and provide a uniform interface for generating dynamic content.

One of the major goals of Seminole is that it be small but aso support as much of the HTTP
protocol as possible. To achieve both of these goals, Htt pdDynani cQut put uses conditional
compilation to (optionally) avoid as much support code as possible. The INC_PERSISTENT_CONN,
INC BUFFER _OUTPUT, and INC CHUNK_OUTPUT options control how much support code
Ht t pdDynam cQut put requires.

An important question to ask is should content be written for HEAD requests. The answer is: it depends.
If no content is written then there is no wasted effort in generating it — less CPU load. In this case the

73

Core API Reference

repsonse to the HEAD request will not include a Cont ent - Lengt h header which may be the reason the
HEAD request was submitted.

Thread Safety

Thisclassis completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdDynam cQut put

Ht t pdDynami cQut put : : Ht t pdDynam cQut put (Htt pdRequest *p_request, bool
i s_head);

This constructor initializes the dynamic output engine. If the request should only require headers (a HEAD
request, for example) then the parameter i s_head should besettot r ue.

Note

For optimal memory utilization and efficiency it is best if the Ht t pdDynani cQut put
object can be constructed before the HttpdRequest::Respond or
Ht t pdRequest : : ResponseHeader methods are called. Otherwise, the resulting
headers may be out of sync with the response.

Furthermore, only one Ht t pdDynamni cQut put instance should be associated with a
request. Therefore the Ht t pdDynarmi cQut put should be created in the innermost scope
that coversits use. Typically this is the point at which the handler has determined how to
handle the request and dynamically generated output is necessary.

It is normal to construct an instance of this class on the stack and then pass a pointer to it
down to the various routines that generate the content.

Header

void HtpdDynam cQutput::Header (const char *p_name, const char
*p_val ue);

This method sends a MIME header to the output stream. The p_nan® should contain the name of the
header without the colon or other separator characters. No processing is done on p_val ue, however,
multi-line escapes can be included within p_val ue aslong as it does not end with a CRLF (as thisis
supplied automatically by this method).

Note
This method can be called as many times as necessary and should follow the call to the
Ht t pdRequest : : Respond method of the request.

Header Conpl et e
voi d Htt pdDynamni cQut put : : Header Conpl ete (voi d);

This method should be called after all headers have been written (viathe Header method).

74

Core API Reference

Body
Htt pdWitable * Ht pdDynam cQut put:: Body (void);
This method obtains the object that should receive the dynamically generated content. It isimpossible for
this method to return NULL or result in an error.
@ Note
This method can be called at any point after construction of the Ht t pdDynam cQut put
object. However, it is very important that no data be written to the object until after the
Header Conpl et e method is called.
Header s

Ht pdWitable * H t pdDynam cQut put:: Headers (void);

This method returns a pointer to a stream that can be used to dump header data to in place of using the
Header method. Like the Header method, data should only be written to this stream after the call to
Ht t pdRequest : : Respond and before the call to Header Conpl et e.

This method will never return NULL.

Ht t pdl nboundTr ansf er Reference

Introduction

Ht t pdl nboundTr ansf er is used to process received data from an HTTP client; such as POST
requests.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdl nboundTr ansf er

Ht t pdl nboundTr ansfer:: Ht t pdl nboundTransfer (HtpdRequest *p_request,
int &c);

This function prepares the inbound transfer associated with p_request. The success of
opening the transfer is placed into rc. If the status is non-zero (i.e. an error) then
Ht t pdl nboundTr ansf er: : Recei ver should not be called.

Recei ver
Ht t pdRecei ver * Htt pdl nboundTr ansfer:: Receiver (void);

This function returns an interface for reading data from the transfer.

75

Core API Reference

Ht t pdQut boundTr ansf er Reference

Introduction

Ht t pdQut boundTr ansf er isused to process received datafrom an HTTP server.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdQut boundTr ansf er

Ht t pdQut boundTr ansfer:: Ht pdOut boundTr ansf er (Ht t pdSocket &socket
Ht t pdM neParser *p_parser, int &rc);

This function prepares the outbound transfer associated with the socket and MIME parser. The
success of opening the transfer is placed into rc. If the status is non-zero (i.e. an error) then
Ht t pdQut boundTr ansf er: : Recei ver should not be called.

Recei ver
Ht t pdRecei ver * Htt pdQut boundTransfer:: Receiver (void);

This function returns an interface for reading data from the transfer.

Ht t pdTr acer Reference

Introduction

TheHt t pdTr acer class provides asimple debugging facility for Seminole Thisis especially important
when integrating Seminole into an existing system. In order to remain “lean and mean” Seminole usesthe
C++ preprocessor (along with Ht t pdTr acer) to show whats going on.

Tracing support is enabled by setting the INC_TRACING build option to a non-zero (true) value. If
INC_TRACING is defined to be 0 then tracing has no runtime overhead impact whatsoever.

Seminole includes many built-in trace points at interesting locations that should allow easy bring-up of
even the most complex configurations without resorting to a debugger (well a debugger on Seminole).

Using the Tracing Macros

In order to trace a particular block of code the tracer must be declared. This is done using the
HTTPD_DIARY macro rather than a standard C++ declaration. Once declared the tracer object can
be used to print informational messages using HTTPD_NOTE. Expression values can be logged using
HTTPD_LOG. In addition, if the type of an expression needs to be forced to a particular type there are
variants of HTTPD_L OG which include atype cast: HTTPD_LOGL for long integers, HTTPD_LOGUL
for unsigned long integers, and HTTPD_L OGP for pointers.

76

Core API Reference

The HTTPD_DIARY macro takes an argument that defines the minimum trace level required
to display the messages. The trace level is controlled with the static member variable
Ht t pdTracer: : nifraceLevel . The trace level is divided into discrete ranges that roughly parallel
the various operational phases of Seminole Trace messages for a particular diary will only be displayed if
nilr aceLevel isequa to or above the level associated with the HTTPD_DIARY macro call. The trace
levels are defined with an enumerationinsidethe Ht t pdTr acer class:

Tracing Levels

NONE

STARTUP

REQUEST

AUTH

HEADERS

PREPROCESSI NG

LOG C

RESPONS

POSTPRCCESSI NG

CLI ENT

ALL

&

S

E

No tracing should be performed.

Tracing for the various startup phases such as the spawning of the acceptor and
the installation of handlers.

Tracing for incoming requests and the basic processing mechanism.

The authentication phase is typically done after the incoming request. This
trace leve is after REQUESTS but takes place before HEADERS. Additional
authentication may be performed later on, thistrace level is merely a convention.

This tracing phase is typically associated with the processing the headers of an
associated request.

This phase is used to denote any additional processing before the real “meat” of
reguest processing.

This phase denotesthe core processing logicintheHandl e method of the handler.

This phase is used to denote the delivery of the HTTP response to the client and
any logic (such astemplate evaluation) involved in this phase.

Thisphaseis used to denote any additional processing after the RESPONSE phase.
A good example is logging or auditing of requests which is generally performed
after the response is delivered for performance reasons.

Thislevel coverstheoperationof Ht t pdCl i ent anditsassociated classesduring
HTTP client operations.

Thistracing level coversall phases.

I mportant

Only one tracer can be declared in a single scope, so each scope should contain only one
call to the HTTPD_DIARY macro. Typicaly a single call at the beginning of aroutine is

sufficient.

As asimple example, this function is adorned with tracing:

void MyFrobalizer(int a, char *p_address)

{

bool

free_server;

HTTPD_DI ARY(STARTUP) ;

HTTPD LOH a) ;

77

Core API Reference

if (p_address == NULL)

{
HTTPD_NOTE(" No address provided, getting it fromthe server");
p_address = Cet FronBerver();
free_server = true;

}

i nt connector = Connect To(p_address);
i nt of fset Def aul t Connect or Of f set () ;
HTTPD_LO& connector + of fset);

DoSorret hi ng(connector, offset);
if (free_server)
Ht t pdOpSys: : Free(p_address);

Asyou can seethe HTTPD_L OG macro conveniently takes an expression and logsit. Using the stringizing
operator of the preprocessor your trace includes the expressions along with time stamps and file names
and line numbers.

78

Chapter 3. Support Classes

There are many classes that are part of the public API in Seminole although they are also used “under the
covers’ to support other classes. Just as with the much of the core API these classes also may be used
without a webserver instance if useful.

Ht t pdFi | eSyst emReference

Introduction

AnHt t pdFi | eSyst emisan abstraction of a particular “namespace’ of files. This classis derived and
implemented by various file system providers.

Filesystem/backing store concepts can range from a fully hierarchical tree with long filenames to a flat
namespace with very constrained naming conventions, or possibly a single binary image containing
discrete chunks of data. Seminole abstracts filesystem services using an abstract interface built around the
Ht t pdOpSys, Ht t pdFi |l el nfo, Ht t pdFi | e, and Ht t pdDi r ect or y objects. The abstraction is

designed to be as generic as possible. For example, some filesystems have two distinct concepts when
opening up afile:

* Locating the file and computing an “internal identifier” from the name.
 Actualy transporting the file data from the storage medium to the requesting code.

Seminole separates the concept of the file metadata from the data. This makes opening a file a two-step
process:

1. BuildaHt t pdFi | el nf o object that is attached to the file.
2. Openthefile based onthe Ht t pdFi | el nf o object and the requested access.

In the case of filesystems where these two concepts are asingle atomic operation, the abstraction layer can
simply keep afile name as part of the Ht t pdFi | el nf o object.

There can be any number of file systems present at the sametime, all abstracted by Ht t pdFi | eSyst em
instances. Instances of this interface serve as factories for file info, file, and directory objects from afile
system.

Thread Safety

This class provides athread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods
Fi | el nf o (From path)

int HtpdFil eSystem:Filelnfo (const char *p_path, HtpdFil el nfo & nfo);

This method obtains information about afile named p_pat h and placesitintoi nf 0. Thei nf o object
can then be used to open thefile (or directory) for access.

79

Support Classes

In addition, the datawithin thei nf o object can be queried without the overhead of opening thefile.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

Ht t pdFi | eSyst emimplementations should take notethat (for efficiency) callersmay use
the same Ht t pdFi | el nf o object repeatedly to query information about multiple paths.
As such implementations of this method should always be sure to set all the fields.

Fi | el nfo (From parent & path tuple)

int HtpdFil eSystem:Filelnfo (const HtpdFilelnfo *p_parent, const char
*p_nane, HitpdFilelnfo & nfo);

This method obtains information about a file named p_nane that is contained in the directory identified
by p_parent . If p_parent isNULL then the root of the hierarchy of this filesystem is assumed. If
p_par ent isnot NULL thenit must bethe obtained information for adirectory. The gathered information
isplaced into thei nf o object.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

Ht t pdFi | eSyst emimplementations should take notethat (for efficiency) callersmay use
the same Ht t pdFi | el nf o object repeatedly to query information about multiple paths.
As such implementations of this method should always be sure to set all the fields.

OpenFi l e

int HtpdFileSystem:QpenFile (const HttpdFilelnfo & nfo, int node,
HtpdFile *&p file);

Assuming that | sDi r isnot truefor i nf o, the associated file is opened. The address of the opened file
system object isplaced inp_f i | e. For node, it can be one of HttpdFileSystem::FILE_READ_ONLY
or HttpdFileSystem::FILE_READ_WRITE depending on the desired access.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

penDirectory

Open

i nt Ht t pdFi | eSystem : QpenDi rectory (const Htt pdFil el nfo &i nf o,
HtpdDirectory *&p dir);

Assuming that | sDi r istruefor i nf o, the associated directory is opened for iteration. The address of
the opened directory object isplacedinp_fil e.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

int HtpdFileSystem: Open (const char *p_nane, int node, HtpdFile
*&p file);

80

Support Classes

Thismethod isalittle helper that obtainsfile information for thefilenamed p_nane withtheFi | el nf o
and then opens thefile.

An error code from Table 4.1, “OS Abstraction Layer Error Codes’ is returned.

LoadFi | e (ASCII)

int HtpdFil eSystem: LoadFile (const char *p_fil enane, char *&p_result);

This hel per method loads the contents of the file specified by p_f i | enan®e into anull-terminated buffer.
Upon success, p_r esul t pointsto thefile contentsin allocated storage.

It isthe caller's responsibility to free the buffer (using HttpdOpSys::Free).

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

LoadFi | e (binary)

int HtpdFil eSystem:LoadFile (const char *p fil enanme, char *&p result,
size t &size);

Thisversion of the LoadFi | e isidentical to the ASCII version with the exception of the size (in bytes)
of thefileisplaced inthe si ze parameter.

Del et e (Parent & path tuple)

int HtpdFileSystem:Delete (const HttpdFilelnfo *p parent, const char
*p_nane) ;

This method deletes afile named p_nane that is contained in the directory identified by p_par ent . If
p_parent is NULL then the root of the hierarchy of this filesystem is assumed. If p_par ent isnot
NULL then it must be the obtained information for a directory.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’).

File systems must not implement a recursive delete. If the file to be deleted is a directory and it is not
empty then it must not be removed and an error must be returned.

@ Note
Thismethod isonly available if INC_MODIFIABLE _FILESYSTEMS s enabled.

Del et e (via HttpdFilelnfo))
int HtpdFileSystem:Delete (const HitpdFilelnfo & nfo);
This method deletes the file identified by i nf o.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

File systems must not implement a recursive delete. If the file to be deleted is a directory and it is not
empty then it must not be removed and an error must be returned.

81

Support Classes

Note
Thismethod is only available if INC_MODIFIABLE _FILESY STEMS s enabled.

MakeDi rectory

int HttpdFileSystem:MukeDirectory (const HtpdFilelnfo *p_parent,
const char *p_nane);

This method creates an empty directory named p_nane that is contained in the directory identified by
p_parent. If p_parent is NULL then the root of the hierarchy of this filesystem is assumed. If
p_par ent isnot NULL then it must be the obtained information for adirectory.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
This method isonly availableif INC_MODIFIABLE_FILESY STEMS s enabled.

MakeFi | e

int HtpdFil eSystem: MakeFil e (const HttpdFilelnfo *p_parent, const char
*p_name, HitpdFile *&p file);

This method creates and opens an empty file named p_nanre that is contained in the directory identified
by p_parent. If p_parent isNULL then the root of the hierarchy of this filesystem is assumed. If
p_par ent isnot NULL then it must be the obtained information for a directory.

If successful the open file isreturned in p_f i | e which must be closed when no longer needed by the
caler. Thefileis always opened for reading and writing.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
Thismethod is only available if INC_MODIFIABLE _FILESY STEMSis enabled.

CopyFrom

int HtpdFileSystem:CopyFrom (const HttpdFilelnfo & rom const
Ht t pdFil el nfo *p_parent, const char *p_dest);

This method creates a new file, named p_dest , from the contents of the file identified by f r om The
newly created file is placed in the directory identified by p_par ent . If p_par ent is NULL then the
root of the hierarchy of thisfilesystemisassumed. If p_par ent isnot NULL then it must be the obtained
information for a directory.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
This method isonly available if INC_MODIFIABLE_FILESY STEMS is enabled.

82

Support Classes

MoveTo

i nt Ht t pdFi | eSystem : MoveTo (const HtpdFilelnfo & rom const
Ht t pdFil el nfo *p_parent, const char *p_to);

This method relocates (or renames) the file or directory identified by f r omto p_dest in the directory
identified by p_par ent . If p_par ent is NULL then the root of the hierarchy of this filesystem is
assumed. If p_par ent isnot NULL then it must be the obtained information for adirectory.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
This method isonly available if INC_MODIFIABLE_FILESY STEMS is enabled.

CGet Quot a

i nt Ht t pdFi | eSyst em : Get Quot a (const Ht t pdFil el nfo &i nf o,
Ht t pdFi | eQuot a " a) ;

If quotainformation is available for this filesystem then this method popul ates the fields of quot a with
guotainformation.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Note
Thismethod is only available if INC_FILE QUOTAS is enabled.

Members of HttpdFileQuota

Type: unsigned long

Name: mAvai | abl e

Description: The available writing space in units of 1000 bytes.
Type: unsi gned | ong

Name: nmJsed

Description: The available space used in units of 1000 bytes.

SupportsQuot a

int HtpdFil eSystem : SupportsQuota (void); const

If thisfilesystem supports quotainformation then thismethod returnst r ue. Otherwisef al se isdefined.

Note
Thismethod is only availableif INC_FILE QUOTAS is enabled.

Protected Methods

CommonFi | el nfo

int HtpdFil eSystem : ConmonFilelnfo (const HttpdFilelnfo & nfo);

83

Support Classes

Thisisahelper routine for subclassesof Ht t pdFi | eSyst em It setsupfieldsintheHt t pdFi | el nfo
object i nf o with values for parameters common to all file systems.

Public Data

Thisis an abstract interface class and therefore contains no data members of interest.

Ht t pdFi | el nf o Reference

Introduction

Generally, adistinction is made between a file's contents and metadata concerning the file. Ht t pdFi | e
objects provide access to a file's contents, while Ht t pdFi | el nf o objects provide access to
file metadata. Ht t pdFi | el nf o instances are generally created by the caller and populated by
HttpdFileSystem::Filelnfo.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
IsDr
bool HtpdFilelnfo::1sDr (void);

Determine whether this Ht t pdFi | el nf o object refers to a directory, on platforms where this concept
exists.

Returnstrueif adirectory, falseif not.

Fi | eSyst em(getter)
Ht t pdFi | eSystem *Htt pdFil el nfo:: Fil eSystem (voi d);

Returns the file system provider associated with thisfile.

M nmeType (getter)
const char *HttpdFilelnfo:: M neType (void);
Determine the MIME type of the file described by the parent Ht t pdFi | el nf o object.

Returns a pointer to a string containing the MIME type encoding upon success. The returned value should
never be NULL if aFi | el nf o call returned success on this object.

Note

This method should not be considered an absolute guarantee of file type; some file systems
(such asthe platforms' nativefile system) do not provide any method for explicitly describing
afile's contents other than direct inspection. For these file systems, this method provides at
best an educated guess based on naming conventions, etc.

Support Classes

Si ze (getter)
unsi gned long HttpdFilelnfo::Size (void);
Determine the size in octets of the file described by the parent Ht t pdFi | el nf o object.
Returns the number of octets (on systems with 8-bit bytes, this also happens to be the number of bytes).
Last Modi ficationTi ne
const HttpdTi meStanp * HttpdFil el nfo:: Last ModificationTime (void);
This method returns the last time the file was modified.
CreationTi ne
const HttpdTimeStanp * HttpdFilelnfo::CreationTinme (void);
This method returns the time the file was created.
Fi | eSyst em(setter)
void HtpdFilelnfo::FileSystem (HttpdFil eSystem *p _fs);
This method is used to set the associated file system provider of thefile.
ChangelLast Modi fi cati onTi ne

Ht t pdTi neStanp * Htt pdFi |l el nf o: : ChangelLast Modi fi cati onTi me (void);

This method is used to set the last modification time of the file information. Normally this method is only
used by providers of afile system interface.

ChangeCreati onTi ne
Ht t pdTi nestanp * Ht t pdFil el nfo:: ChangeCreationTi me (void);

This method is used to set the creation time of the file information. Normally this method is only used by
providers of afile system interface.

Si ze (setter)

void HtpdFilelnfo::Size (unsigned |ong sz);

This method is used to set the size (in bytes) of the file information. Normally this method is only used
by providers of afile system interface.

| sDir (setter)
void HitpdFilelnfo::1sDir (bool is_it);

This method is used to set the directory flag of the file information. Normally this method is only used
by providers of afile system interface.

M meType (setter)

void HttpdFilelnfo::MmeType (const char *p_type, bool nust_free);

85

Support Classes

This method is used to set the MIME type of the file information. If nust _fr ee istrue, it is assumed
that the storage for p_t ype was allocated with HttpdOpSys::Malloc. Normally this method is only used
by providers of afile system interface.

Locat i on (getter)
Ht t pdPar amet er HttpdFil el nfo::Location (void);

This obtains the location property of the file. Thisis an internal value that should be used by afile system
provider to track the referenced file.

The purpose of the location is to split apart the operation of finding a file from a catalog and to actually
doing 1/0 from the file. Of course, for some operating systems (such as POSIX) this can store the file
name if separating these two actionsisimpossible.

Because this data is specific to afile system provider only the associated provider should be used to open
thefile.

Locat i on (setter)

void HttpdFilelnfo::Location (HttpdParameter param bool nust_free);

Thismethod is used to set the location tag of thefileinformation. If nust _f r ee istrue, itisassumed that
the storage for mpVoid field of par amwas allocated with HttpdOpSys::Malloc. Normally thismethod is
only used by providers of afile system interface.

ETag (setter)

void HtpdFilelnfo::ETag (const char *p_tag, bool nust_free, bool
i s_weak = false);

This method isonly present if INC_ETAGS isenabled. If so, this method sets the ETag member to point
tothenew ETaginp_t ag. If nust _f r ee istrue, it isassumed that the string pointed to by p_t ag was
allocated with HttpdOpSys.:Malloc and therefore must be freed when no longer needed. Normally this
method is only used by providers of afile system interface.

Entity tagscomein two flavors: weak and strong which affect how they compare. Thei s_weak argument
can be used to indicate the specified tag is aweak one.

In most cases generating a completely unique entity tag for a given file is prohibitively expensive. Most
file system implementations use meta-data to construct the entity tag rather than a hash function (such as
MDD5). Inthese casesimplementations should be careful to not generate an entity tag with ahigh probability
of not changing if the file contents can change.

If p_t ag isNULL then the weak flag should be ignored.
ETag (getter)

const char *HttpdFilelnfo::ETag (void);

This method is only present if INC_ETAGS is enabled. If so, this method returns the ETag of the file
object if one exists. If no ETag isavailable for the file, NULL is returned.

ETagl sWeak

bool HttpdFilel nfo:: ETagl sWwak (void);

This method determinesiif the entity tag is weak.

86

Support Classes

Attri but es (setter)

void HitpdFilelnfo::Attributes (HtpdCgi Paranmeter *p_attrs);

Every file can have various name-value pairs associated with it. This meta-data is managed using the
HttpdCgiParameter class. If any attributes are available for a file this method stores the list in the
Ht t pdFi | el nf o object. It is important to understand that this method does not make a copy of the
attributes and once given to this method they should no longer be managed by the caller. If no attributes
are available for this file it is safe to call this method with ap_at t r s value of NULL. Normally this
method is only used by providers of afile system interface.

Attri but es (getter)

Ht t pdCgi Paraneter *H tpdFilelnfo::Attributes (void);

This method obtains the attribute list for the file. If there are no attributes then NULL is returned. The
Ht t pdFi | el nf o object ownsthelist and callers should refrain from modifications of the attribute list.

Public Data

Ht t pdFi | el nf o contains no publically accessible data members.

Ht t pdFi | e Reference

Introduction

An Ht t pdFi | e object represents a valid file “handle” suitable for performing I/O operations on. Its
semantics are as consistent as possible across heterogeneous platforms, and this class should be used to
perform file-related tasks in a portable manner.

The Ht t pdFi | e class is an abstract interface. File systems provide appropriate implementations of
thisinterface. These specific implementations are accessed through Ht t pdFi | eSyst em : QpenFi |l e
method and do not need to be created by users of this class.

If the INC_MODIFIABLE_FILESY STEMS feature is enabled the interface specified by Ht t pdFi | e
alsoincludes HttpdWritable. Filesthat are writable can be used anywherethe Ht t pdW i t abl e interface
can be utilized.

Even though the compile-time feature enables methods for modifying files and filesystem structure this
does not guarantee that afile (or filesystem) is modifiable. The default implementation of modification
methodsreturn aHt t pdQpSys: : ERR_NOTREADY error code.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instanceis accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Read

int HtpdFile::Read (void *p_buffer, size t &sz);

87

Support Classes

Read sz bytesfromtheHt t pdFi | e object, and store the result in the storage pointed to by p_buf f er .

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). sz is updated to reflect the actual number of bytes read. If end-of-file
isreached, successisreturned and sz isset to 0.

Readbj ect

Wite

int HtpdFile::ReadOhject (void *p_buffer, size_t sz);

Read exactly sz bytes from the Ht t pdFi | e object, and store the result in the storage pointed to by
p_buffer.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes’). If sz bytes could not be read, this method returns
Ht t pdOpSys: : ERR_BADFORVAT.

int HtpdFile::Wite (size_t sz, const void *p_buffer);
Write sz bytes from the storage pointed to by p_buf f er totheHt t pdFi | e object.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful, all bytes were writtenby Wi te().

Note
Thismethod is only available if INC_MODIFIABLE _FILESY STEMSis enabled.

Set Si ze

Seek

int HtpdFile::SetSize (unsigned |ong size);

This method sets the size of thefileto si ze bytes. If the fileislarger then it will be truncated. If the file
issmaller then it will be grown.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
This method is only available if INC_MODIFIABLE_FILESY STEMS s enabled.

int HtpdFile::Seek (long offset, int whence);

Change the current position of the seek pointer associated with the Ht t pdFi | e. If whence is set to
FI LE_SEEK START, of f set represents the new absolute position of the seek pointer. A value of
FI LE_SEEK CURaddsof f set totheseek pointer'scurrent position. FI LE_ SEEK ENDaddsof f set
to the size of the file and sets the seek pointer to that value.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’).

88

Support Classes

Tel |
int HtpdFile::Tell (unsigned |ong &offset);
Obtain the current position of the seek pointer associated with the file. The zero-based position is stored
inof f set on success.
Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

PushToSi nk

int HtpdFile::PushToSink (HtpdWitable *p_sink);

This method writes the entire contents of the file to the object pointed to by p_si nk. Before calling the
file pointer should be at the begining of the file and isindeterminate after this operation.

The default implementation of this method simply transfers files in blocks of XFER_BUF_SI ZE bytes.
Implementations of the Ht t pdFi | e interface may overridethe default implementation if amore efficient
approach is possible.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

PushFi | eSegnent

int HtpdFile::PushFileSegment (HtpdWitable *p_sink, unsigned |ong
start_offs, unsigned |long end _offs);

This method writes the specified window of the contents of the file to the object pointed to by p_si nk.
Therange of byteswritten startsat st art _of f s byte offset (inclusive) and ends at the byte position of
end_of f s (exclusive). After this call the file pointer isindeterminate.

The default implementation of this method simply transfers files in blocks of XFER_BUF_SI ZE bytes.
Implementationsof theHt t pdFi | e interface may override the default implementation if amore efficient
approach is possible.

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’).

Public Data

Other than the constants mentioned in the Seek () entry, Ht t pdFi | e contains no publically available
data members.

Ht t pdDi r ect ory Reference

Introduction

For those filesystems which support the concept of hierarchical namespaces or file listings,
Htt pdDi rectory objects provide the ability to traverse one directory's contents in a
linear fashion. Like Htt pdFi | e objects the Htt pdDi rectory object is opened using the
Ht t pdFi | eSyst em : OpenDi r ect or y given afileinfo object.

89

Support Classes

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instanceis accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Nane
const char *HttpdDirectory:: Nane (void);
Return the currently loaded directory entry inthisHt t pdDi r ect or y object. The syntax of the resultant
string is entirely system-dependent.
The provided string pointer isvalid until the originating Ht t pdDi r ect ory is closed.
Next
bool HttpdDirectory::Next (void);
Load the next directory entry in series within the parent Ht t pdDi r ect or y object.
Returnstrue if successful, falseif no further directory entries exist.
Cl ose

void HttpdDirectory::C ose (void);

Destroy the Ht t pdDi r ect or y object and release any allocated resources. After calling this method the
pointer tothe Ht t pdDi r ect ory isno longer valid.

Public Data

Ht t pdDi r ect or y contains no publically accessible data members.

Ht t pdReadOnl yMenor yFi | e Reference

Introduction

TheclassHt t pdReadOnl yMenor yFi | e implements the file interface against a read-only buffer.

Note
Only additional methods are described here. This class implements the methods in the
Ht t pdFi | e class.

Public Methods
Ht t pdReadOnl yMenoryFi | e

Ht t pdReadOnl yMenoryFi | e: : Ht t pdReadOnl yMenoryFil e (const void *p_data,
size t sz);

90

Support Classes

Associates afile with sz bytes pointed to by p_dat a.

Ht t pdMenor yFi | e Reference

Introduction

Theclass Ht t pdMenor yFi | e implements the file interface against a data buffer.

Note
Only additional methods are described here. This class implements the methods in the
Ht t pdFi | e class.

Public Methods
Ht t pdMenoryFil e

Ht t pdMenoryFil e:: Ht t pdMenoryFile (void *p_buffer, size t sz);

Associates afilewith sz bytespointedtoby p_buf f er.

Ht t pdRedi r ect Response Reference

Introduction

TheHt t pdRedi r ect Response class coordinates sending back redirect responses to HT TP requests.
For simple applicationsthe Ht t pdRequest : : Redi r ect method is more appropriate. Using thisclass
additional MIME headers (such as Set - Cooki e) can be appended to the redirect.

Instances of Htt pdRedi r ect Response encapsulate the state involved in sending out a redirect
response. Under normal use the Begi n method is called. If successful the response is partially complete
and in the MIME header phase. Callers can then write out additional headers to the Ht t pdRequest
object. After writing any additional headers, callers should invoke the End method to complete the
response.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instanceis accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdRedi r ect Response

Ht t pdRedi r ect Response: : Ht t pdRedi r ect Response (Htt pdRequest *p_request,
int status);

The constructor prepares the object to perform the redirect. The p_r equest parameter is a pointer to
the current request. The type of redirect responseis specifiedin st at us; see Supported HTTP Response
Codesfor possible values.

91

Support Classes

Begi n
int HttpdRedirect Response::Begin (const char *p_url);

Begin the response to the Ht t pdRequest object given to the constructor of this object. The p_ur |
parameter isthe target URL for the redirection. The URL does not have to be absolute.

I mportant

Thereturn codeindicatesasuccessor failure of the operation (see Table 4.1, “ OS Abstraction
Layer Error Codes’). If O is returned the caller should generate any additional headers and
invoke the End method.

Upon failure no further action should be taken as an appropriate error response is sent to the
client before the failure return of this routine.

End

voi d HttpdRedirect Response: : End (void);

This method must be called after the MIME headers are sent to the client (assuming Begi n returned
success).

Ht t pdSocket Reference

Introduction

Ht t pdSocket serves as a container for protocol-specific network operations, and provides abstract
access to a communication endpoint connected with aclient.

If the INC_MULTIPLE_TRANSPORTS option is not enabled then the Ht t pdSocket is simply a
synonym for the platform-specific Ht t pdTcpSocket object. If INC_ MULTIPLE TRANSPORTS is
enabled then Ht t pdSocket acts as an abstraction to one or more transport layers.

Theinterfaceof Ht t pdSocket closely mirrorsthe Berkeley sockets API, and hencewill be quite familiar
to experienced UNIX® or WinSock programmers. It is expected that additional abstraction or separation
of platform independent and dependent code will occur in this area, so its interfaces are subject to future
change.

Generally, Ht t pdSocket itself is encapsulated by an Ht t pdRequest object, so it is often of little
concern to programmers modifying Seminole within the existing framework (e.g. adding a handler).

Transport objects (i.e. Htt pdTcpSocket) are derived from Htt pdSocket | nterface. The
Ht t pdSocket | nt er f ace interface is ultimately derived from HttpdWritable and thus provides an
interface for writing data.

The interface provided by Ht t pdSocket | nterface closely paralels the methods provided
by Htt pdSocket . Implementors porting Seminole are encouraged to study the existing socket
implementations for reference.

Public Methods
Initialize

static int HtpdSocket::Initialize (void);

92

Support Classes

Wite

Initialize the socket abstraction. This static method is called by Ht t pd: : | ni t before any any socket
(including the listening socket) is created.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
This method does not have to be idempotent. It is called once and only once by
Htpd::Init.

int HtpdSocket::Wite (size_t nbytes, const void *ptr);

Given a pointer pt r to ablock of storage nbyt es bytes in length, attempt to write the data therein to
anetwork endpoint (socket).

It isimportant to note that some network API's have semantics which make it possible for writes to return
successfully, yet incomplete, as opposed to blocking until an error occurs or all data has been written.
W i t e takesthe latter approach, so Seminole programmers need not make allowances for it.

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ent er ReadMbde

ReadN

Read

int HttpdSocket: : Ent er ReadMode (void);

Before the Ht t pdSocket : : ReadN, Ht t pdSocket : : Read, or Ht t pdSocket : : Get s methods
can be called, this method must be invoked to prepare the socket for reading.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

i nt HtpdSocket::ReadN (void *ptr, size_t nbytes, unsigned int tinmeout);

Given a pointer ptr to a block of previously allocated storage, read nbyt es bytes of data from
a network endpoint (socket). If no data is received for t i neout seconds, the read is aborted and
Ht t pdOpSys: : ERR_NOTREADY isreturned.

It isimportant to note that some network API's have semantics which make it possible for reads to return
successfully, yet incomplete, as opposed to blocking until an error occurs or all data has been read. ReadN
takesthe latter approach, so Seminole programmers need not make allowancesfor it. Success will only be
returned if nbyt es are actually received. If partial reads are desired, Read should be used instead.

An error code from Table 4.1, “OS Abstraction Layer Error Codes’ is returned.

Note
The Ent er ReadMbde method must be called before ReadN can be called.

int HtpdSocket::Read (void *ptr, size_t &nbytes, unsigned int tinmeout);

93

Support Classes

Given apointer pt r to ablock of previously allocated storage, read up to nbyt es bytes of data from a
network endpoint (socket). The value of nbyt es is updated with the actual number of bytes read. If no
datais available then Read will block for uptot i meout seconds. As soon as any datais received this
function copies it into the buffer and returns.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Note
The Ent er ReadMbde method must be called before Read can be called.

Read (multiple wait version)

int HtpdSocket::Read (void *ptr, size_t &nbytes, unsigned int timeout,
Ht t pdSocket Wai t Handl e wait_for);

This method only exists if the portability layer defines HAVE_SOCK_WAI T to 1. If the portability layer
and underlying operating system support waiting for other events in addition to a socket event then the
wai t _f or parameter acts as an “escape hatch” to pass an object to wait on to the operating system (and/
or network stack).

LeaveReadMbde

int HttpdSocket::LeaveReadMbde (void);

After reading on the socket iscompl ete, thismethod must beinvoked to allow write operations(viaW i t e)
on the socket.

An error code from Table 4.1, “OS Abstraction Layer Error Codes” is returned.

Get s

bool HttpdSocket::CGets (char *p _buf, size t nmaxbuf, unsigned int
ti meout);

Given apointer p_buf toablock of previously alocated storage, read one line from the communications
endpoint represented by the parent Ht t pdSocket object, assuming that each line is terminated by a
newline character (ASCII line feed). The value of maxbuf isused to advise Get s() of the maximum
length of the storage pointed to by p_buf . The resulting string is terminated by an ASCII NUL character.

It isworth noting that a carriage return may be embedded in the buffer, as Get s() does not purge them.
If an entireinput lineisnot receivedint i meout seconds this function should return false.

Returns true on success, false upon failure. This method should never return true unlessthe string p__buf
contains at |least one character.

Abort Get s

bool HttpdSocket:: AbortGets (void);

This method attempts to abort another thread on this socket blocked in the Get s method. If the thread
is sucessfully unblocked then this method should return true. If the thread can not be aborted or is not
blocked in Get s then falseisreturned. The return value does not have to be precise as there may be race
conditions involved with this operation. The intention of this method is a“best effort” attempt.

94

Support Classes

Socket

Cl ose

Note
This method need only be implemented if INC_OVERLOAD_PROTECTION is non-zero.

bool HttpdSocket:: Socket (const char *p_transport);

Initializes a communications endpoint, which can subsequently be used to receive a connection from
clients, or to establish an outbound connection with a server.

Calling Socket () is a generally a prerequisite for calling any other method in Htt pdSocket
meaningfully.

Returns true on success, false upon failure.

The p_transport is the transport to be used for this socket and its children. If
INC_MULTIPLE_TRANSPORTS s not enabled then this parameter should not be provided.

voi d HttpdSocket::d ose (void);

Destroysthe communications endpoint associated with the parent Ht t pdSocket object. O ose() does
not perform an orderly cleanup of an active connection, so if “graceful” termination of a connection is
desired, use the Shut down() method instead.

Li sten

bool HttpdSocket::Listen (HttpdlpPort port, const char **pp_options);

Causesapreviously initialized communications endpoint to be placed into alistening state, so that network
clients can connect to it. Thelocal port designated by por t isused to discriminate incoming connections.

pp_options contains a list of open-ended list of name/value pairs that can be used to
configure the specifics of the various transport layers. The list must be terminated with a
NULL pointer. If no socket options are desired then the default value of the parameter,
Ht t pdSocket : : nEnpt ySocket Opt i ons, may be passed as this parameter.

The life-time of pp_opti ons is not required to extend beyond the call to Li st en. Therefore it is
the responsabilty of the socket implementation to locally copy any information it may need from the
pp_opti ons array.

Although the options supported by the socket are dependant on the implementation of the portability layer
most implementations handle acommon subset of options. What followsisageneral summary rather than
a specification. Those implementing a new portability layer should attempt to follow existing practice.

Option Meaning Example

bi nd This option binds the socket to albi nd: 192. 168. 1. 16
particular interface.

i pv6 If the target supports IPv6|i pv6
(I NC_I| PV6_SUPPORT) then
this option configures the socket
for communication on an IPv6
network.

95

Support Classes

Option M eaning Example

bi nd6 If the target supports [Pv6|bind6:19::12ab:00d1
(I NC_I PV6_SUPPORT) thenthe
socket is bound to a specific IPv6
listening address. This option is
mutually exclusivewith thebi nd
andi pv6 options.

Li st en returns true on success, false upon failure.

Connect

bool HttpdSocket:: Connect (Htpdl pAddress addr, Httpdl pPort port, const
char **pp_options);

Causes a previoudly initialized communications endpoint to be connected with a remote system and
process. The remote system's network address is provided in addr , while the remote port is provided in
port.

pp_opti ons contains alist of open-ended list of name/value pairs that can be used to configure the
specifics of the various transport layers.

Returns true on success, false upon failure.

Connect To

i nt HtpdSocket:: Connect To (const char *p_host, HttpdlpPort port, const
char *const *pp_options);

This method connects to the specified port using the provided host hame. Optional platform-specific
parameters may be specified in pp_opt i ons to control how the socket is connected.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Shut down

voi d HttpdSocket:: Shutdown (void);

Destroys the communications endpoint associated with the parent Ht t pdSocket object. The currently
established connection, if any, isfirst closed in an orderly fashion.

Accept

bool Ht t pdSocket : : Accept (Ht t pdPar anet er &con, Ht t pdl pAddr ess
&client _addr);

Accept incoming connections to the communications endpoint (previously prepared with Li st en())
contained within the parent Ht t pdSocket object.

Upon successful acceptance of anew connection, the peer's network addressisplacedincl i ent _addr,
while a handle for the connection itself is placed in con. Once the new connection is appropriately
dispatched (typically by the creation of a new server thread, process, or task), Accept () can be called
again to set up the next incoming connection request on the original endpoint. Thus, each connection
accepted creates a new, unique pair of endpoints.

96

Support Classes

Returns true on success, false upon failure.

Note

A newly accepted connection should be aborted by means of the
HttpdSocket::Cancel method or initiadlized using the HttpdSocket::Socket method.
When no longer needed client _addr should be disposed of by caling
Ht t pdSocket Foundat i on: : Fr eeAddr ess.

Cancel

voi d Htt pdSocket:: Cancel (HttpdParaneter paranj;

After acceptance of a hew connection via HttpdSocket::Accept, it is possible to find that the connection
should be prematurely ended, either for administrative reasons or system errors. In that case, the new
connection should be aborted by means of this method.

Note
The object used to invoke this method should be the listening socket that generated the
HttpdParameter value.

Socket
bool HttpdSocket:: Socket (HttpdSocket *p |isten, HttpdParaneter param;

After acceptance of a new connection via HttpdSocket::Accept, this method takes the generated
HttpdParameter valueand initializes asocket object associated with theincoming connection. Thelistening
socket that generated par amshould be passed inasp_| i st en.

Note
If this method fails no further methods should be called on the socket object.

CGet Local Addr ess
int HttpdSocket:: GetLocal Address (Httpdl pAddress &addr);
This method obtains the local address (near end) that a listening or accepted socket is associated with.

On success a 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
If successful it isthe responsahility of the caller to discard the | P address object returned with
the Ht t pdSocket Foundat i on: : Fr eeAddr ess method.

For ceShut down

voi d HttpdSocket :: For ceShut down (voi d);

This method is called on a listening socket. When called it will unblock all waiting calls on any socket
objects for any thread that were originated from this listening socket. Methods such as Get s and Read
and ReadN should return with an error in the case of this method being called in another thread.

97

Support Classes

Note

When implementing this particular method it is important to pay close attention to the
lifetimes of the sockets. In particular the listening socket may be destroyed before al of its
children sockets are.

In this case if For ceShut down is called and then the listening socket is immediately
destroyed all of the child sockets must still have been released.

In addition, this method is not required to block while the other threads are released. The
synchronization isinstead handled by waiting for the worker threads to terminate.

After thismethodiscalled, al child sockets should remain as unreadabl e until thelistening socket is closed.
Transport

const HttpdTransport * HttpdSocket:: Transport (void);

This method returns a pointer to the transport object associated with the socket. This method should only
be called after the socket has been initialized with the Ht t pdSocket : : Socket method.

Note
Thisfunction is not available unless INC_MULTIPLE_TRANSPORTS is enabled.

Public Data
nEnpt ySocket Qpt i ons

const char *nEnptySocket Options[];

Some socket calls (i.e. Ht t pdSocket : : Li st en) take alist of parameters. Thisvariable is the default
list of optionsif no extra parameters are needed.

Ht t pdSocket | nt er f ace Reference

Introduction

TheclassHt t pdSocket | nt er f ace isthe base class for all transports that are used by Seminole.

The following methods must be provided by subclasses of Ht t pdSocket | nt er f ace. The behavior
of the transport-specific implementations should be identical to the definitions of the following methods
in HttpdSocket.

e static int HtpdSocketlnterface::Initialize (void),

e int HttpdSocketlnterface:: Wite (size tnbytes, const void *ptr);

int HttpdSocketl| nterface:: Ent er Readivbde (void);
e int HttpdSocketlnterface::Read (void*ptr,size t &nbytes, unsigned int timeout);

e int HttpdSocketlnterface::Read (void *ptr, size t &nbytes, unsigned int timeout,
HttpdSocketWaitHandle wait_for);

98

Support Classes

@ Note
This method is only provided if the portability layer defines HAVE_SOCK_WAI Tto 1.

int HttpdSocketlnterface:: ReadN (void *ptr, size t nbytes, unsigned int timeout);
int HttpdSocketl|nterface:: LeaveReadMbde (void);

bool Htt pdSocket| nterface:: Gets (char *p_buf, size t maxbuf, unsigned int timeout);
voi d Htt pdSocket | nterface::C ose (void);

bool HttpdSocketlnterface::Listen (HttpdipPort port, const char **pp_options);

bool HttpdSocket|nterface:: Connect (HttpdlpAddressaddr, HttpdlpPort port, const char
**pp_options);

voi d Htt pdSocket | nterface:: Shut down (void);

bool Ht t pdSocket I nt er face: : Accept (HttpdParameter &con, HttpdipAddress
&client_addr);

voi d Htt pdSocket I nterface:: Cancel (HttpdParameter param);
int HttpdSocketlnterface:: Get Local Address (HttpdlpAddress &addr);

bool Ht t pdSocket I nt erf ace: : Abort CGets (void); (only if
INC_OVERLOAD_PROTECTION is enabled).

@ Im portant
The methods defined in HttpdSocketlnterface Public Methods are methods that must be

provided in addition to those listed above.

Public Methods

Socket

Socket

bool HttpdSocketlInterface:: Socket (void);

Initialize the communications object. This method isalmost always called before calling any other method
of theclass.

Returns true on success, false upon failure.

bool Ht t pdSocket I nterface: : Socket (HttpdSocketlnterface *p_listen,
Ht t pdPar anet er paran ;

After acceptance of anew connectionviaHt t pdSocket | nt er f ace: : Accept this method converts

the HttpdParameter handle value and initializes a socket object associated with the incoming connection.
The listening socket that generated par amispassedinasp_| i st en.

99

Support Classes

Factory

static HtpdSocketlnterface * HttpdSocketlnterface::Factory (void);

This method only needs to be defined if INC_MULTIPLE TRANSPORTS is enabled. Using the
oper at or newthatisprovidedinHt t pdSocket I nt er f ace, thisfunction should return aninstance
of the particular socket associated with the class.

The address of this method is registered with the HttpdTransport structure associated with this particular
protocol.

Ht t pdSocket Foundat i on Reference

Introduction

The Htt pdSocket Foundati on class is the base class for anything related to the socket
and networking abstraction provided by the portability layers. Htt pdSocket I nt erf ace and
Ht t pdUdpSer ver Socket are derived from this class although this class has no non-static members.
Theinheritanceis solely to provide access to the utility routines in this namespace.

The utility routines are general purpose helpers for dealing with HttpdipAddress values. They
may be called anywhere they are necessary or useful not just from classes derived from
Ht t pdSocket Foundat i on.

If the portability layer definesHTTPD_HAVE_BULKY_SOCKET_ADDRESSES then afew additional

methods are available for use by portahility layers to help manage large address objects. These methods
should not be called by platform independent code.

Public Methods

Cr eat eAddr ess

int HtpdSocket Foundati on:: Creat eAddress (Httpdl pAddress &addr, const
char *p_str_rep);

This routine translates a string representation of an addressto an Ht t pdl pAddr ess object. The format
of the string representation may be platform dependent and is determined by the portability layer.

On success a 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

@ Note
If successful it isthe responsability of the caller to discard the | P address object created with
the Ht t pdSocket Foundat i on: : Fr eeAddr ess method.

This method should be implemented by the portability layer.
Addr essEqual

bool Ht t pdSocket Foundat i on: : Addr essEqual (Ht t pdl pAddr ess addr _1,
Ht t pdl pAddr ess addr _2);

100

Support Classes

Thismethod should be used by platform independent codeto determineif twoHt t pdl pAddr ess objects
refer to the same address. If so then this method returnst r ue otherwise f al se isreturned.

CopyAddr ess

i nt Ht t pdSocket Foundat i on: : CopyAddr ess (Ht t pdl pAddr ess &dest ,
Ht t pdl pAddress src);

This method copies an address object from sr ¢ into the variable referred to by dest .

On success a 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
If successful it is the responsability of the caler to discard the IP address object in dest
withthe Ht t pdSocket Foundat i on: : Fr eeAddr ess method.

Fr eeAddr ess

voi d Htt pdSocket Foundati on: : FreeAddress (Httpdl pAddress addr);

Thismethod freesanHt t pdl pAddr ess whenitisnolonger needed. All address objects must eventually
be released using thismethod. Thisistrueevenif theHt t pdl pAddr ess originated from amethod other
than Cr eat eAddr ess (such asthe one returned from Ht t pdSocket | nt er f ace: : Accept .

Cr eat eAddr ess (Portability Layer Support)

i nt HttpdSocket Foundation::Create (Httpdl pAddress &addr);

This method is only available if the portability layer defines
HTTPD_HAVE BULKY_SOCKET_ADDRESSESto anon-zero value. As such thismethod should only
be called by the portability layer code when it must create an address object and return it to the caller. A
typical example of thisisthe socket object method Get Local Addr ess.

On success a 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
If successful it is the responsability of the caler to discard the IP address object in dest
withthe Ht t pdSocket Foundat i on: : Fr eeAddr ess method.

HashAddr ess

size_ t Ht pdSocket Foundati on:: HashAddress (Httpdl pAddress addr);
This method computes a hash value for addr . The hash value can be computed with any appropriate

algorithm. Preferrably the algorithm should evenly distribute addresses around the hash space (the entire
range of size t).

For mat Addr ess

voi d HttpdSocket Foundati on: : For mat Address (Htt pdl pAddress addr, char
*p_str);

101

Support Classes

This method converts addr to a string representation. The size of the buffer pointed to by p_str is
guaranteed to be at least HTTPD | PADDR_STR_LEN bytesin length by all callers. The portability layer
must define this constant as appropriate.

Ht t pdUdpSer ver Socket Reference

Introduction

If the platform supports UDP sockets (HAVE_UDP_SOCKETS not equal to zero) then the portability layer
should provide an implementation of this class which is used to send and receive datagram packets. If the
platform supports multicast then the preprocessor symbol HTTPD_HAVE _UDP_MULTICAST should
be defined to a non-zero value and it should be possible to use multicast addresses with this class.

This class abstracts a UDP socket that is capable of both sending and receiving packets on a port that is
bound at creation time. Aswiththe Ht t pdTcpSocket various parameters for the socket are specified
asan array of strings. Thisallows platform specific options to be passed easily from the client application
through protocol code to the socket layer.

Public Methods

int HtpdUdpServer Socket:: Socket (HttpdlpPort &port, const char *const
*pp_options = nDefaul tOptions);

This method must be called before the Ht t pdUdpSer ver Socket can be used. The port parameter
specifies what port the UDP socket listens on. If any socket specific options are to be specified then
pp_opt i ons should point to an array of parameter strings terminated by a NULL.

If port issetto O (and the system supports this concept) a free port is allocated and upon successful
return the value of por t isset to the alocated port.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

The options supported by the socket are dependant on the portability layer. However the included
portability layers provide some general options that work across most platforms.

Option Meaning Example

bi nd This option binds the socket to a|bi nd: 192. 168. 1. 16
particular interface.

ncast If the target supports multicast|ntast: 238.17.1.1 or with
(HAVE_UDP_MULTI CAST) then|an interface address:

into a particular multicast group.
Optionally an interface address
can be specified to join the
multicast group on a particular
interface.

nc- | oop If the socket is part of almc-loop:0
multicast group this enables
loopback of multicast packets.
Any packets transmitted are

102

this option joins this socket|ntast:238.17.1.1,192.168.1.16

Support Classes

Option Meaning Example
aso queued for reception. The
argument is zero to turn off
loopback or non-zero to turn it
on. This option is only available
if HAVE_UDP_MULTI CAST is
enabled. Not all platforms support
this option.

nc-ttl This sets the TTL for packets|nc-ttl: 32
transmitted with a multicast
address. Not all platforms support
this option.

sndbuf This option sets the size of the|sndbuf : 65536
send buffer (in bytes) that holds
packet data until the necessary
interface becomes available. Not
al platforms support this option.

r cvbuf This option sets the size of the|r cvbuf : 65536
receive buffer (in bytes) that
holds packet data received from
network interfaces until it can
be processed. Not al platforms
support this option.

Cl ose

voi d HttpdUdpServer Socket:: Cl ose (void);

This method shuts down any operations on the socket and releases any resources owned by the socket. No
operations should be performed on the socket once this method is called.

For ceShut down

voi d Htt pdUdpSer ver Socket : : For ceShut down (voi d);

In order to halt a thread that may be suspended performing a read operation on the socket this method
aborts the readers with an error code.

Note
Portability layers may only perform a“best effort” implementation of this method. So it care
should be taken that shutdown can happen without this method being perfect.

ReadPacket

int HttpdUdpServer Socket:: ReadPacket (void *p buffer, size t &len,
Ht t pdl pAddr ess &addr, Httpdl pPort &port, unsigned int tinmeout);

This method reads a packet from the socket. If no packet is available it will block for up tot i meout
milliseconds. If no packet is received within this time then ERR_NOTREAD is returned.

If apacket isreceived properly it is placed into the buffer pointed to by p_buf f er and| en isset to the
length of the packet (in bytes). The source address and port are placed into addr and por t , respectively.

103

Support Classes

Upon receiving a packet, 0 is returned. On timeout ERR_NOTREADY is returned. If the read operation
is aborted by the For ceShut down method then ERR_SYSPERM is returned. Otherwise a system
dependent error valueis returned (see Table 4.1, “ OS Abstraction Layer Error Codes”).

SendPacket

i nt HttpdUdpServer Socket : : SendPacket (const void *p_buffer, size_t |en,
Ht t pdl pAddr ess addr, Htpdl pPort port);

This method is used to send responses to requests. It is not limited to sending packets on the port that
the socket is bound to. Rather the port and destination address are specified for each packet sent and may
differ for each packet.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdl pAddr essBase Reference

When the representation of an IP address is large (i.e. more complex than a single scalar value) the
portability layer may defineHTTPD_HAVE _BULKY_SOCKET_ADDRESSESto request that Seminole
handle the larger addresses in an efficient manner.

When bulky addresses are present the HttpdipAddress type becomes a pointer to the
Ht t pdl pAddr essCbj ect class.

The Ht t pdl pAddr essbj ect is a platform specific class that is defined and implemented by the
portability layer if address objectsarelarge. The Ht t pdl pAddr essBase class provides support for the
storage and lifetime of its only intended superclass - Ht t pdl pAddr essObj ect .

Note
Ht t pdl pAddr essBase is only available if the portability layer defines
HTTPD_HAVE_BULKY_SOCKET_ADDRESSES to a non-zero value.

AnHt t pdAl | ocat or Cache isused to efficiently allocate Ht t pdl pAddr essObj ect instances. It
isrequired that Ht t pdl pAddr essObj ect implement:

* operator==
« virtual destructor (if necessary)
» oper at or = (if necessary)

Ht t pdl pAddr essObj ect is also free to implement any methods in addition to the above provided
they are not called from platform independent code.

Ht t pdMenor yAl | ocat or Reference

Introduction

Ht t pdMenor yAl | ocat or provides a dynamic memory pool with an interface similar to the
mal | oc() andf ree() functionsprovided by the standard C runtime system. It can be used for pooling
memory in certain thread contexts or to provide dynamic heap allocation in the portability layer for an
underlying operating system with no notion of dynamic memory.

104

Support Classes

Instances of this class are not thread-safe, and multiple accesses to it should be guarded by a mutual
exclusion mechanism such as that provided by an HttpdMutex.

Public Methods
Create

void Htt pdMenoryAl |l ocator::Create (void *p_nmem size t sz);

Ht t pdMenor yAl | ocat or objects are not usable until this method initializes the memory allocator,
given apre-existing memory arena of size sz bytes pointed to by p_nmem

Thismethod is guaranteed not to fail, and instead will generate assertions (if enabled) when givenincorrect
parameters.

Al |l ocat e

void * HttpdMenoryAl |l ocator::Allocate (size_t sz);
Allocate new memory sz bytesin length.

Returnsapointer to abuffer of at least the requested size, taking into account host alignment requirements,
or NULL upon error or exhaustion of the memory pool.

Free
voi d Htt pdMenoryAl |l ocator::Free (void *p_ptr);
Release ablock of allocated memory pointedtoby p_ptr.
Real | ocat e

void * Htt pdMenoryAl |l ocator:: Reallocate (void *p_oldptr, size t newsz);
Expand or shrink the size of the memory block pointed to by p_ol dpt r, to be newsz bytesin length.

Returns arevised pointer upon success, or NULL upon failure.

I mportant

If Real | ocat e() failsto change the size of a given block of memory, the original block
remains valid and can be used normally. Therefore, it is important to keep track of the
previous allocation and free it as necessary.

Public Data

Ht t pdMenor yAl | ocat or contains no publically accessible data members.

Ht t pdAl | ocat or Cache Reference

Introduction

Ht t pdAl | ocat or Cache caches pre-allocated memory buffers for quick allocation of fixed size
objects. The contents of the blocks are not guaranteed across allocations. The allocator is thread safe and
may be accessed by multiple threads simultaneously.

105

Support Classes

Thread Safety

This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods
Ht t pdAl | ocat or Cache

Ht t pdAl | ocat or Cache: : Ht t pdAl | ocat or Cache (size_t object _size, size_t
nmax_dept h) ;

This constructs an alocation cache for objects of obj ect _si ze bytes. The max_dept h parameter
controls the maximum number of free objects that the cache will hold.

The object can not be used until the Cr eat e method is called first.

Create
int HttpdAllocatorCache::Create (size t initial _depth = 0);
This method creates and initializes the cache. The cache populatesitself withi ni ti al _dept h objects.

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes’).

Prune

voi d Htt pdAl |l ocat or Cache:: Prune (size_t desired = 0);

This method reduces the size of the cache to desi r ed objets. If lessthan desi r ed objects exist in the
cache then the method simple returns success.

Al | ocat e(bj ect

void * Htt pdAl | ocat or Cache: : Al | ocat eCbj ect (void);

This method allocates an object from the cache. If the cache is empty then it attempts to allocate an object
using HttpdOpSys::Malloc.

Returns a pointer to the newly allocated upon success, or NULL if thereisinsufficient memory to allocate
the object.

FreeQbj ect

void HttpdAllocatorCache:: FreeCbject (void *p_object);

Thismethod freesan object allocated fromthe cache. If p_obj ect isNULL thenthismethod performsno
operation. If p_obj ect isnot NULL then it must have been avalue returned from Al | ocat eQbj ect .

Pur geAl | Caches

void HttpdAllocatorCache:: PurgeAl | Caches (void);

106

Support Classes

If INC_ALLOCATION_CACHE_PURGE is enabled then this static method frees all cached memory
from all alocator caches. If INC_ALLOCATION_CACHE_PURGE is disabled then this method does
nothing.

Ht t pdLi st and H t pdLi st Node Reference

Introduction

The Ht t pdLi st and Ht t pdLi st Node classes implement compact and efficient doubly-linked list
container support. Listscan bemade circular and insertions can be performed at any point. A very important
featureisthat Ht t pdLi st Node contains a backpointer to the object that ownsiit. This allows an object
to be linked into severa lists at the sametime.

There are several strategiesfor doubly linked-lists. The most common approachisto use NULL asavaue
of anext or previous pointer to indicate that no node exists beyond the current one. Thisrequiresthat many
special cases for end of node be peppered al over the code for inserts and deletes. A workaround for this
isto usetwo “dummy nodes’ that are always present, even in an empty list.

List Nodes

i il o

Traditional approach to dummy nodes
The dummy nodes waste little space for the amount of code they save, but they till waste four pointers
worth of space. We can optimize this further by overlapping the dummy nodes. This optimization reduces

the overhead to three pointers per list. Without any dummy nodes a list would need to contain aminimum
of ahead and tail pointer so the dummy node overhead is minimal.

List Nodes

B

Compact dummy nodes

107

Support Classes

Public Methods (Ht t pdLi st Node)
Owner (Getter)

void *Ht t pdLi st Node: : Omer (void);

Each node object maintains a backpointer to the owning object. This method obtains the value of the
backpointer.

Owner (Setter)
voi d HttpdLi st Node: : Owmer (void *p_val ue);
Set the backpointer inthe nodeto p_val ue.
Next
Ht t pdLi st Node *Htt pdLi st Node: : Next (void);
Get the address of the next node in the list.
Prev
Ht t pdLi st Node *Htt pdLi st Node: : Prev (void);
Get the address of the previous node in the list.
| nsertBefore
voi d HttpdLi st Node: : 1 nsertBefore (HttpdLi st Node *p_pos);
Insert this node before the node specified by p_pos.
| nsert After
voi d HttpdLi st Node::lnsertAfter (HtpdLi st Node *p_pos);
Insert this node after the node specified by p_pos.
Renove
voi d HttpdLi st Node: : Renmove (voi d);
Remove the node from the list it isinserted in.
MakeCi rcul ar

voi d HttpdLi st Node: : MakeCircul ar (void);

This method allows a node to be constructed that is considered asingle, circular list. Other nodes can then
be inserted around it.

108

Support Classes

Public Methods (Ht t pdLi st)
Initialize

void HitpdList::Initialize (void);

Initialize alist object. This method must be called before the list can be used.
| SEnpty

bool HttpdList::IsEmpty (void);

This method returns true if the list is empty (contains no nodes other than the dummy nodes). Otherwise
thelist is not considered empty and falseis returned.

AddToHead
voi d HttpdList:: AddToHead (Ht pdLi st Node *p_node);
Insert p_node to the front of list.
AddToTai
void HttpdList:: AddToTail (HtpdLi st Node *p_node);
Insert p_node to the rear of list.
Head
Ht t pdLi st Node *Htt pdLi st:: Head (void);
Return the front node on the list or NULL if thelist is empty.
Tai
Ht t pdLi st Node *HttpdList:: Tail (void);
Return the rear node on the list or NULL if thelist is empty.
Count Chi | dren
size_t HtpdList:: CountChildren (void);

This method counts the number of nodes in the list and returns the value. For large lists this operation
may take some CPU time.

Concat enat e

void HttpdList::Concatenate (HttpdList &src);

This method concatenates all of the nodesin the list specified by sr ¢ to thetail of thislist. After thiscall,
src isnolonger avalid list and must be re-initialized (vial ni ti al i ze) if it isto be used again.

MakeCi r cul ar

voi d HttpdList::MakeCircul ar (void);

109

Support Classes

This method removes the dummy nodes of the list from the nodes already linked in to the list. Thus, the
nodes that were previoudly linked in the list object are turned into acircular chain of nodes. After thiscall,
sr c isno longer avalid list and must be re-initialized (vial ni ti al i ze) if it isto be used again.

It isimportant to get a pointer to at least one of the nodes in the list before calling this method. After this
call completesthelist object is no longer associated with any of the nodesin the list.

Iterating over lists

Iterating the contents of Htt pdLi st objects can be error prone. Therefore a helper class, called
Ht t pdLi stlterator, is provided to make this easier. Instances of Htt pdLi stlterator are
typically used as index variablesin for-loops.

For example, to iterate the contents of alist from head to tail the following construct can be employed:

for(HttpdListiterator i(list.Head()); i.Continue(); i.Next())
{

SoneC ass *p_obj = (Sonmed ass *)(void *)i;

p_obj - >DoSonet hi ng() ;
}

The conditional state of the loop is always provided by the Ht t pdLi stlterator:: Conti nue
method. Notice the way we obtain the object pointer. Casting the iterator to void * is equivalent to calling
Ht t pdLi st Node: : Omner to obtain the data pointer from the node.

Traversing the list from tail to head is follows a similar structure:

for(HttpdListlterator i(list.Tail()); i.Continue(); i.Prev())
{

Ht t pdLi st Node *p_node = (HttpdLi st Node *)i;

ProcessNode(p_node);
}

Herewecast theHt t pdLi st |t er at or object to aHttpdListNode *. This obtains the current node we
are iterating over. Deleting nodes from a list during traversal deserves special attention. If we wanted to
remove the node from the list during iteration we would have to do something like this:

HttpdListlterator i(list.Head());
while (i.Continue())

{

/1 W must store the pointer to the node here as we nay be

/1 nmodifying the list |ater on.

Ht t pdLi st Node *p_node = (HttpdLi st Node *)i;

bool need_adj = NeedsAdj ustment ((SomeObj ect *)p_node->0Omner());

/1 Advance the iterator before we alter the node.
i . Next();

// Now we can fiddle with the node.

110

Support Classes

if (need_adj)
{
p_node- >Renove();
adj ustment _| i st. AddToHead(p_node) ;

}

Theiterator can be repositioned to an arbitrary node withthe Ht t pdLi stlterator:: Reposition
method.

Ht t pdBi t Set Reference

Introduction

The Ht t pdBi t Set class acts as a pointer to HttpdBitWord where each bit can be individually
mani pulated or examined. Thisclassismainly useful for maintaining arrays of boolean values or for small
set membership. No memory allocation or range checking is done by this class, it really does function just
like a native pointer.

TousetheHt t pdBi t Set it must first be assigned storage of asuitable size. Thethe static method Si ze
can be used to compute the size of the storage required. The store (as a pointer to HttpdBitWord) can be
assigned tothe Ht t pdBi t Set object.

To set abit the operator += isused. To clear a bit the operator - = isused. To check the value of abit the
Ht t pdBi t Set object can be dereferenced like an array.

@ Note
The storage provided is accessed as an array of Ht t pdBi t Wor d objects. Therefore the
storage must have alignment that is appropriate for these accesses.

Ht t pdBi t Set bs;
Ht t pdBi t Wor d storage = 0;

bs = &storage; // Assign the storage.

/Il Set bits #9 and #11.
bs += 9;
bs += 11;

/1 Now print out all the set bits.
for(unsigned int i = 0; i < 16; i++)
printf("Bit % is %\n", i, bs[i] ? "set" : "clear");

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

111

Support Classes

Public Methods

Si ze
size t HtpdBitSet::Size (size_ t bits);
This static method returns the number of bytes required for an Ht t pdBi t Set object to hold the number
of bits specified by bi t s.

El ement s

size t HtpdBitSet::El ements (size t bits);

Thisstatic method returnsthe number of Ht t pdBi t Wor d entriesin the storage needed to hold the number
of bits specified by bi t s.

Renoveleadi ngSet
size_t HtpdBitSet:: RenpbvelLeadi ngSet (size_t bits);
Thisoperationislike aleft shift on the entire bitmap. The portion of the bitmap affectedislimitedtobi t s
bits in length. The number of bits the bitmap is shifted is computed automatically such that the first bit in
the resulting bitset isthe first (leftmost) O (i.e. unset) bit in the bitset.

The number of bits shifted out is returned.

St or age
Htt pdBi t Word *Htt pdBit Set:: Storage (void);

This static method returns the pointer to the storage the Ht t pdBi t Set isusing.

Ht t pdMacr oPr ocessor Reference

Introduction

Ht t pdVacr oPr ocessor isautility class for doing string substitutions. An input string is written to
either a dynamic string or an HttpdWritable interface. Tokens in the input string are parsed and a pure
virtual method is called to replace the macro.

Substitutions are broken up into an array of strings— much like a POSI X command line. In fact two forms
of quoting are available as well. The argument vector is then used by the Conmmand method to perform a
substitution. For example, consider the following macro string:

The user is $(age -years) years old $(today "\n\x1lb") and has a bank account

bal ance of $$ $(account 'John Q Public' 1234).

Notice that doubling the specia character, $ inthiscaseisused asalitera escape. Otherwiseit isrequired
that a macro begin with a left parenthesis following the special character. Notice in the above example

112

Support Classes

that a macro may contain three types of tokens: non-quoted strings, single-quoted strings, and double-
guoted strings.

Non-quoted strings must not have a*) ” or whitespace character in them. Either of those charactersis a
delimiter either ending the substitution or delimiting the next argument.

Strings quoted with a single quote character can have any character in them except for a single quote
character. Thisisthe most general form of quoting.

Strings quoted with a double quote character allow ANSI C style escape sequences.

Thread Safety

Thisclassis completely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Ht t pdMacr oPr ocessor

Ht t pdMacr oPr ocessor: : Ht t pdMacr oProcessor (char special = "'$');

This constructs the macro processor object with speci al asthe delimiter character.

Expand (sink version)

int HtpdMVacroProcessor:: Expand (HtitpdWitable *p target, const char
*p_nacro);

Thisfunction writesp_rmacr o top_t ar get expanding tokens delimited by the specia character in the
process.

Upon success 0 is returned. Otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’).

Expand (string version)
i nt HttpdMacroProcessor:: Expand (char *&p_out put, const char *p_nacro);

This function copies p_nmacr o into a string pointed to by p_out put . The resultant string is allocated
dynamically and should be freed using HttpdOpSys:.:Free by the caller if successful.

Upon success 0 is returned. Otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Protected Methods

Command

int H tpdMacroProcessor:: Command (void);

113

Support Classes

This pure virtual method is caled when a substitution has been parsed and is to be replaced. The
substitution is broken apart into avector of arguments— the mAr gCount and mAr gs protected member
variables. The substituted text (if any) should be written to npTar get .

WiteString
i nt Ht t pdiVacr oProcessor:: WiteString (size_t ar gs, const char
*p_string);

This function formats p_stri ng as a macro substitution. This method should be called from the
implementation of Conmmand.

The remaining arguments (starting at offset ar gs) allow various transformations to be performed on
p_stri ng beforeit iswritten. The following transformations are possible:

ht m escapes characters that are HTML tokens.
uri encodesthestringusingtheHt t pdUtiliti es:: Uri Encode routine.
unuri decodesthestringusingtheHtt pdUtiliti es:: Ui Decode routine.

unuri + decodes the string using the HttpdUtilities:: Ui Decode routine with the
pl us_xl at parameter settot r ue.

c-ascii encodes the string using the section called “CQuot eSt ri ng” with the STR_QUOTE_C
mode.

j s- ut f 8 encodesthe string using the section called “CQuot eSt r i ng” withtheSTR_QUOTE_J SON
mode.

Ther enove- char s attribute causes any characters in its value to be removed from the formatted
string.

r enove removes any characters from the string as specified by the next argument.

filter removesany characters from the string as not specified by the next argument.

Upon success 0 is returned. Otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdCgi Macr oPr ocessor Reference

Introduction

The Ht t pdCgi Macr oPr ocessor is a subclass of Ht t pdMacr oPr ocessor . This class takes a
Ht t pdCgi Par anet er list and uses the contents of that list for expanding macros. When a value is
found inthelist it iswritten using Ht t pdMacr oPr ocessor: : WiteStri ng.

Public

Methods

Ht t pdCgi Macr oPr ocessor

Ht t pdCgi Macr oProcessor: : H t pdCgi Macr oPr ocessor (Ht t pdCgi Par anet er
*p_parans, char special ='$");

114

Support Classes

This constructs the macro processor object where p_par ans is used to satisfy the value of the
substitutions. The character speci al specifiesthe delimiter character.

Ht t pdHt M Quot er Reference

Introduction

Ht t pdHt M Quot er is a helper class for HTML-escaping strings. Although this task can be
accomplishedwiththeHt t pdUti | i ties:: Ht m Quot e method using thisclassismoreefficient. The
Ht M Quot e method always copiesthe resulting string to dynamically allocated storage, even if there are
no characters to be escaped.

The HttpdUtilities:: NeedsHt m Quoti ng method scans a string for characters that need
guoting. If none are found then the call to Ht M Quot e can be avoided. However care must be taken to
free the allocated memory only if Ht Ml Quot e isactualy called.

This class handles these detail s, automatically freeing allocated memory when it is destroyed. The typical
use case for this classis to be allocated on the stack for the duration that the quoted string is needed. For

example:
i nt rc;
Ht t pdHt M Quoter quoter(sone_string, rc);

if (rc !=0)

{

// Handl e the error!
return;

}

rc = p_stream>Printf("<code>¥%</code>\n", quoter.Quoted());
if (rc !=0)

/1 Things just aren't good today.
return;

}

Ht t pdDat aSour ce Reference

Introduction

The Ht t pdDat aSour ce is a base class that represents a source of data. Examples are things
like flash chips, files, and memory buffers. The interface exposed by this class is realized by the
HttpdM emoryDataSource class provided by Seminole. For specialized data sources such as banked flash
chips, external files, or even network sources user-written implementations of thisinterface may be created.

Public Methods
ReadAt

int HtpdDataSource:: ReadAt (void *p_data, size_t sz, unsigned |ong
of fset);

115

Support Classes

Thispurevirtual functionistheinterfacefor reading datafrom the source. On success, sz bytesarewritten
to the buffer pointed to by p_dat a starting at of f set bytes from the start of the data from the source.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

ReadVal ue (32-bit)
i nt HttpdDat aSour ce: : ReadVal ue (Htt pdUi nt 32 &val , unsi gned | ong of fset);

This method reads a 32-bit unsigned value from the source starting at offset of f set from the start of the
datain the source. The decoding is performed by the HttpdUTtilities:: AssembleU32 routine.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). The returned valueis placed in theval argument.

ReadVal ue (16-bit)

i nt HttpdDat aSour ce: : ReadVal ue (Htt pdUi nt 16 &al , unsi gned | ong of f set);

This method reads an unsighed 16-bit value from the source starting at offset of f set from the start of
the data in the source. The decoding is performed by the HttpdUTtilities:: AssembleU16 routine.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). Thereturned valueis placed intheval argument.

Addr essOx

const void * HttpdDataSource:: AddressO (unsigned |ong offset, size_t
sz);

Some sources of data are accessible directly viaamemory address. For those kinds of sources this method
allows access to the memory space. If aHt t pdDat aSour ce does not support access via a pointer this
function can safely return NULL and the data will be accessed using the ReadAt and ReadVal ue
methods.

If the data can be mapped for sz bytes starting at of f set from the start of the data in the source, the
mapped address should be returned. The returned address should be valid until Rel easeAddr ess is
called on the returned pointer.

This function should only be implemented for cases where access through a pointer would be faster than
callsto ReadAt . For example, alocating a buffer and reading the contents of a file into it is not really
any more efficient than having the data read into a buffer provided to ReadAt .

However, an implementation data source backed by something like a Disk-On-Chip® from M-Systems

with a memory-mapping window would implement this method in a special way to avoid the copy if
sufficient mapping window is available.

Rel easeAddr ess
voi d HttpdDat aSour ce: : Rel easeAddress (const void *p_addr);

This method releases any resources associated with a mapped address obtained from Addr essCf .

116

Support Classes

Ht t pdMenor yDat aSour ce Reference

Introduction

The Ht t pdMenor yDat aSour ce is a class that abstracts an addressable region of memory as a data
source (see HttpdDataSource).

A very typical use of this class is to provide an interface between content data stored in an array
by the bin2c tool and the HttpdRomFileSystem. The initialized array from bin2c is accessed via a
Ht t pdMenor yDat aSour ce that is provided to an instance of Ht t pdRonti | eSyst em

Thread Safety

This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Public Methods
Ht t pdMenor yDat aSour ce

Ht t pdMenor yDat aSour ce: : Ht t pdMenor yDat aSource (void *p_data, size t sz);

This function initializes amemory data source that pointsto p_dat a and issz bytesin length.

Ht t pdFi | eDat aSour ce Reference

Introduction

The Ht t pdFi | eDat aSour ce is a class that abstracts a Ht t pdFi | e object as a data source (see
HttpdDataSource).

There are two distinct implementations of this class depending on the
INC_CACHING_FILE_DATA_SOURCE option. If this option is disabled then it is assumed that read
and seek operations on afile are very fast.

If the INC_CACHING_FILE_DATA_SOURCE is enabled then the Ht t pdFi | eDat aSour ce object
maintains a cache of buffersto avoid having to read continually from thefile. Thisis especially desirable
if Ht t pdFi | e objects have high overhead performing seeks and reads.

The Ht t pdFi | eDat aSour ce arbitrates access to the underlaying file object so that the data source
may be used in a thread-safe manner. This allows a single file object to service many threads using the
data source; asis common when the data source is used to back an instance of the HttpdRomFileSystem.

If your platform provides either virtual memory (and an interface similar to POSIX mmap()) or haslarge
amounts of directly addressable storage then consider using the HttpdM emoryDataSource class instead.
OtherwisetheHt t pdFi | eDat aSour ce object isdoing the samework that the memory manager within
the operating system is doing; and performing this work twice is less efficient.

117

Support Classes

Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

This class provides athread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Caching

The caching version of Ht t pdFi | eDat aSour ce maintains a set of fixed-size cache buffersin a hash
tablefor easy access. The hash isindexed on the logical address of the block and the ordering of the nodes
within each bucket is explicitly from most recently used (list head) to least recently used (list tail).

Once the maximum number of buffer blocks areresident in the cache any access outside theresident blocks
requires that a block be evicted. The eviction process rotates through all the buckets to avoid punishing
any particular group of blocks. Buffers are evicted starting from the end of the list which iswhere theleast
recently used blocks reside.

In order to support mapped access (see Ht t pdDat aSour ce: : Addr essOf) some blocks are “pinned”
and are never removed from the cache until they are “un-pinned.”

Tuning the cache is a matter of understanding the costs of the Htt pdFi | e object backing
the Ht t pdFi | eDat aSour ce and the access pattern of the data source. In most cases the
HttpdRomFileSystem package will be accessing the data source. The ROM filesystem performs two types
of accesses: Small random accesses for searching the meta-data and large consecutive accesses to the data
once found. The Ht t pdRonTi | eSyst emclass attempts to map data areas directly.

It is best to keep the cache block size (FILE_ DATASRC _CACHE_SIZE) a multiple of the
underlaying filesystem block size as well as a power of two (to avoid lengthy division). The
FILE DATASRC_MAX_PINNED setting should be increased for lots of concurrent access as multiple
threads attempt to map different regions of data.

The FILE_DATASRC HASH BUCKETS and FILE_DATASRC_MAX_CACHE_BLOCKS
parameters should be increased for large amounts of data.

Public Methods
Ht t pdFi | eDat aSour ce

Ht t pdFi | eDat aSour ce: : Ht t pdFi | eDat aSource (HtpdFile *p_file);

This function initializes a file data source backed by p_fi | e. The file must be reserved exclusively for
the use of the data source aslong asthe Ht t pdFi | eDat aSour ce object exists. In addition the lifetime
of p_fil e must meet or exceed the lifetime of the Ht t pdFi | eDat aSour ce object.

Create

int HttpdFil eDataSource:: Create (void);

This method should be called once before the Ht t pdFi | eDat aSour ce object is used. If this method
returns failure then the object should not be used.

118

Support Classes

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdCont ent Si nk Reference

Introduction

The HttpdCont ent Si nk implements the interface of HttpdWritable. Data written to the
Ht t pdCont ent Si nk is buffered up in memory for later use. The buffering is done in such a way
that when the contents are written out to a sink (which is typically a socket) the writes are in chunks of
S| NK_BUFFER_SI ZE bytes.

The most common use is to direct the output of an operation such that the output datais queued for later
transmission. In fact, once stored within the Ht t pdCont ent Si nk the data can be sent multiple times.

Another common use of Ht t pdCont ent Si nk isto buffer up dataso that acorrect Cont ent - | engt h
header can be sent as the result of an HTTP request. If a sink that can convert the content into a null-
terminated C string isdesired consider using aHt t pdSt ri ngSi nk.

The Ht t pdCont ent Si nk class provides a guaranteed atomic behavior for writes. If a write will not
succeed the stored content within the sink remains unchanged as if the W i t e method was not called.

This behavior allows recovery from afailure when using the Ht t pdCont ent Si nk. In fact thisis how
the INC_BUFFER_OVERFLOW_RECOVERY option isimplemented.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Cont ent Lengt h
size_t HtpdContentSink::ContentlLength (void);

This function returns the number of bytes queued in the Ht t pdCont ent Si nk at the current moment.

SendDat a
int HttpdContentSink:: SendData (HtpdWitable *p _data);
This function writes the queued data to the interface specified by p_dat a.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

119

Support Classes

Pur ge
voi d Htt pdContent Si nk:: Purge (void);

This method removes all stored content from the sink.

Ht t pdBat chW it er Reference

Introduction

>

TheHt t pdBat chW i t er implementsafilter that can beappliedtoaHt t pdW i t abl e object to batch
up smaller writesinto larger ones.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Many TCP implementations do not perform well when many small writes of various sizes are performed
on a socket. This can be avoided by enabling the Nagle algorithm although this resultsin higher latency.
The Ht t pdBat chW i t er isafilter that sitson top of aHt t pdSocket sink and normalizes the size
of the writes to the socket to XFER_BUF_SI ZE bytes.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdBat chWiter

Ht t pdBatchWiter:: HtpdBatchWiter (HtpdWitable *p_target);

Initialize the batch writer. The batched dataiswrittentop_t ar get periodically.

Fl ush
int HtpdBatchWiter::Flush (void);
This method flushes the pending data that has not been batched yet.

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes’).

Note

Pending dataisnot flushed if theHt t pdBat chW i t er isdestroyed; although all allocated
resources are released. Therefore it isimportant to call FI ush before releasing this object
in the event of successful request processing.

120

Support Classes

Ht t pdNul | Si nk Reference

Introduction

TheHt t pdNul | Si nk implementstheinterface of HttpdWritable. DatawrittentotheHt t pdNul | Si nk
is destroyed.

The most common use (from auser point of view) for thisstrange classisfor multipart MIME file handling.
To ignore aparticular entity of a MIME multipart message, the address of an instance of this class can be
passed to Ht t pdBoundar yReader : : Read asthep_t ar get parameter.

Because thereisno instance specific datain thisobject, aninstance of Ht t pdNul | Si nk isavailableasa

singleton from Ht t pdNul | Si nk: : Nul | . Thisinstance isvalid for the lifetime of the system and may
be used any time after global constructors are executed.

Thread Safety

This class provides a thread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods
Nul |

static HtpdWitable *HttpdNul I Sink::Null (void);

Thisfunction returnsawritableobject that simply ignores any datawrittentoit. Thepointerisnever NULL.

Ht t pdSt ri ngSi nk Reference

Introduction

The Htt pdStringSi nk implements the interface of HttpdWritable. Data written to the
Ht t pdSt ri ngSi nk isstored as aregular, contiguous, zero-terminated string.

ThisclassdiffersfromaHt t pdCont ent Si nk in that the buffer is contiguous and can be used asanull-
terminated C string. If the content is only to be stored and then written out to another sink consider using
aHt t pdCont ent Si nk asit is more efficient.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

121

Support Classes

Public Methods
String

const char * HtpdStringSink::String const (void);

Thisfunction returns a (read-only) pointer to the current contents of the sink. If the sink is empty a pointer
to the empty string is returned.

Buf f er

char * HttpdStringSi nk::Buffer const (void);

Thisfunction returns a pointer to the current contents of the sink. Unlikethe St r i ng method if thesink is
empty thereturn valueisundefined. This method isdlightly more efficient than calling St r i ng, however.

TakeBuf f er
char * HttpdStringSi nk:: TakeBuf fer (void);
This method removes the current string in the sink and reset the sink to contain an empty string. A pointer
to the string that contains the contents of the sink. If the sink is empty, NULL is returned. After this call

the string is owned by the caller. It is the responsibility of the caller to release it using HttpdOpSys::Free
when no longer needed.

Lengt h
size t HtpdStringSink::Length (void);
This method returns the size (in bytes) of the string data. The return value is the number of bytes written

to the buffer not the actual size of the buffer. The size of the buffer may be larger than the number of
bytes written.

d ear
void HttpdStringSink::Cear (void);

This function removes any content written to the sink. The allocated buffer is not returned to the system
however and is re-used when more data is written to the sink.

Cl ear AndRel ease

void HttpdStringSi nk:: d ear AndRel ease (voi d);

This function removes any content written to the sink. Additionally, the allocated buffer is returned to
the system.

Pr epar e
void HttpdStringSink::Prepare (size_t size);

This method pre-allocates si ze bytes of free space within the sink. This is useful for avoiding heap
fragmentation if the size of the data being written to the sink is known in advance.

122

Support Classes

It is okay to call this method at any time during the life of the object. This method will never reduce the
size of the allocated free space if it isgreater than si ze.

Rel easeBuf f er

voi d HttpdStringSi nk: : Rel easeBuffer (void);

This method releases any unused buffer space in the sink. It is a good ideato call this method for long-
lived sinks that will not be modified once built.

It is okay to call this method at any time during the life of the object. Writing additional data to the sink
will simply reallocate the buffersif needed.

Ht t pdBuffer Wit er Reference

Introduction

The Ht t pdBuf f er Wi t er classis similar in purpose to the Ht t pdSt ri ngSi nk class. This class
implements the interface of HttpdWritable such that data written to the interface is stored in afixed size
buffer. Attempts to write more data than the buffer has available resultsin an error. The buffer is not null
terminated and is not allocated or managed by this class.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instanceis accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Count

size_t HtpdBufferWiter::Count const (void);

This function returns the number of bytes written into the buffer. The count is reset to zero when a new
buffer is assigned.

Buf f er

void HtpdBufferWiter::Buffer (void *p_buffer, size_t nax_size);

This method assigns a new buffer as the target for written data. The p_buf f er parameter points to the
address of the new buffer. Themax_si ze parameter isthe maximum number of bytesthat may bewritten
into the buffer.

The buffer set by this method remains the target for writing until either the Ht t pdBuf fer Wi ter
instance is destroyed or anew buffer is set with this method.

123

Support Classes

Setting a new buffer resets the number of bytes written counter

Ht t pdFi f 0 Reference

Introduction

This class implements a dynamically sized buffer that can be used to capture streamed data for analysis.
The expected use of this classisthat datais removed from the buffer asit is processed. A typical example
would be to process datain a streaming fashion where processing must be delayed until a certain amount
of data has arrived.

Use of this class provides a very efficient solution to producer/consumer type problems. Ht t pdFi f o
implementsthe Ht t pdW i t abl e interface in addition to a zero-copy interface that can directly access
theinternal buffer of the FIFO. The latter interface isideal for processing datafromaHt t pdRecei ver

object efficiently.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instanceis accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdFi f o

HtpdFifo::HtpdFifo (size_t initial _buffer = 0, size t max_buffer =
infinity);

This function constructsthe Ht t pdFi f o object. If i ni ti al _buf f er isnot 0 then thisisthe number
of bytes allocated initially. If max_buf f er is specified then this is the maximum amount of data that
may be buffered before the methods of this object return an error condiition.

Avai | abl eWi t eBuffer

size_t HtpdFifo:: Avail abl eWwiteBuffer const (void);

This method returns the number of bytes that the current write buffer can take without a reallocating
memory.

TransferSi ze
size_t HtpdFifo:: TransferSize const (void);

This method returns the ideal size to use for the buffer window specified to the Get Wi t eBuf f er ()
method. It avoids lots of repeated small (inefficient) writes by rounding the transfer size up if necessary.

124

Support Classes

Get Wi teBuffer
void *Hi tpdFi fo:: GetWiteBuffer (size_t wi ndow);

This method returns a pointer to the buffer for writing data. The buffer will be at least wi ndow bytesin
size. If NULL isreturned then there isinsufficient memory to open the buffer to the specified size.

After writing upto wi ndow bytes to the returned buffer Pr oduce() should be called with the number
of bytes actually written.

Pr oduce
int HtpdFifo::Produce (size_ t count);

This method registers that count bytes were written to the write buffer returned by
GetWiteBuffer().

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Used

size_t HtpdFifo::Used const (void);

This method returns the number of bytes available in the FIFO for reading (i.e. used buffer space).
ReadDat a

voi d *H t pdFi fo:: Used const (void);

This method returns a pointer to the FIFO data. The pointer pointsto al of the data available: the number
of bytesreturned by Used() .

Consune
voi d HttpdFifo::Consune (size_t count);

Thismethod removescount bytesfrom the FIFO. Typically this method isinvoked after processing data
accessed by the pointer returned from ReadDat a() .

Read

size t HtpdFifo::Read (void *p buffer, size t count);

This method moves up to count bytes from the FIFO to p_buf f er . If fewer than count bytes are
available then the actual number of bytesread is returned.

Rel easeBuf f er

voi d HttpdFifo::Rel easeBuffer (void);

This method releases any memory allocated by the FIFO if the FIFO isempty. The FIFO can be used after
this at which point it will reallocate the buffer automatically.

125

Support Classes

Fi ni sh
int HtpdFifo::Finish (void);

This method is to be called when no more datais written to the tokenizer. In this classit smply returns 0
but subclasses may override it to provide additional functionality.

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). The returned value is obtained from the Er r or method which may be
overridden for additional error reporting.

ReadBody

int HttpdFifo::ReadBody (HttpdRequest *p_request, unsigned int tinme_out
= HTTPD_Cd _TI MEQUT) ;

This method reads an document that is provided with the entity body of p_r equest . If the entity body
isfully digested then Fi ni sh() isautomatically called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdCount i ngSi nk Reference

Introduction

The HttpdCounti ngSi nk implements the interface of HttpdWritable. Data written to the
Ht t pdCount i ngSi nk isdiscarded but arunning total of the number of byteswritten iskept. This class
is especially useful when generating the Cont ent - Lengt h headers.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instanceis accessed
only by one thread at atime. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
WittenSi ze (Getter)

size_t H tpdCountingSink:: WittenSize (void); const
This method determines how many bytes have been written into the sink object.
WittenSi ze (Setter)

voi d HttpdCountingSink::WittenSize (size t sz);

126

Support Classes

This method sets the current byte count of the sink.

Ht t pdChunkedSi nk Reference

Introduction

The HttpdChunkedSi nk implements the interface of HttpdWritable. Data written to the
Ht t pdChunkedSi nk isreformatted to the HT TP chunked transfer encoding.

This transfer encoding is only necessary for dynamically generated content where the length is unknown
beforeit isgenerated. Unless chunked encoding is used, persistent connections can not be maintained with
dynamically generated content.

Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods
Ht t pdChunkedSi nk

Ht t pdChunkedSi nk: : Ht t pdChunkedSi nk (HttpdWitable *p_out);

This constructor initializesthe sink. The output of thesink issenttop_out . This parameter should almost
always be the socket from a request object.

Open
i nt HttpdChunkedSi nk:: Open (void);

This method should be called before any dataiswritten to the object. Not calling this method when asink
is not used avoids memory waste for the chunking buffers.

An error code from Table 4.1, “OS Abstraction Layer Error Codes’ is returned. However, this error code
can beignored asit is not fatal. Should Open fail writes to this object will simply return an error.

Fi nalize
int HttpdChunkedSi nk:: Finalize (void);

This method should be called after al datais written to the object. No more data should be written after
Fi nal i ze iscalled. The only reason for not calling this is if the socket the sink is attached to is being
abandoned due to error.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

127

Support Classes

Ht t pdRonti | eSyst emReference

Introduction

Ht t pdRonFi | eSyst em provides an interface for the abstract class Ht t pdFi | eSyst em which
provides an abstract interface for a file system. The structure of the filesystem is stored in a packed form
generated by the SCPG tool.

The packed content generated by SCPG must be stored in some form of read-only storage and provided
tothe Ht t pdRonti | eSyst emviaaHttpdDataSource class.

This class can be used independently of Seminole. However, the file system semantics implemented by
this class are really oriented for HTTP style transactions. Files are directly associated with MIME types
and thereisno concept of a“ current working directory.” The ROM filesystem is designed to have full path
names for the most efficient file lookup.

The ROM filesystem also allows named attributes on a per-file basis if the INC_ROM_ATTRIBUTES
configuration option is enabled.

Even if your embedded platform has a flash filesystem it is probably optimal to use a
Ht t pdRonFi | eSyst emcontained in a single file holding al of the web content. There are severa
reasons for this:

» Many flash filesystems do not deal well with the kinds of access patterns that HT TP requests generate.

» Websites are composed of many small files. Sophisticated flash filesystems that perform wear-leveling
and bad block handling (e.g. YAFFS or jffs2) keep alarge amount of meta-data per file. Storing web
content in these filesystems can waste a large amount of space.

e Htt pdRonFi | eSyst em provides highly optimized versions of the PushToSi nk and
PushFi | eSegnment methods. These operations are fundamental to web serving.

» Traditiona filesystem semantics (e.g. POSIX) do not keep track of content types or other meta data
while Ht t pdRonti | eSyst emdoes.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

Ht t pdRonFi | eSyst em is thread safe provided the underlaying data source is reentrant. For
performance reasons there is no locking within Ht t pdRonti | eSyst em Therefore multiple threads
may be opening filesagainst the Ht t pdRonti | eSyst emalthough each individual open file object may
only be used by one thread at atime.

Public Methods

Mount

int HttpdRonFil eSystem : Mount (HttpdDataSource *p_source);

128

Support Classes

This method should be called once after the construction of the Ht t pdRonti | eSyst em Givenavalid
ROM file system image contained in p_sour ce, the ROM filesystem becomes active.

No accesses to the filesystem should be made until it is mounted without error.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdRecei ver Reference

Introduction

Ht t pdRecei ver isan abstract interface that is used to read data from an HTTP inbound transfer. It
has similar methods to a socket for reading data. This interface is mainly used when reading data from
POST requests.

Public Methods
Ht t pdRecei ver

Ht t pdRecei ver:: Ht t pdRecei ver (HttpdSocket &p request);

This function constructs the abstract portion of the Ht t pdRecei ver object.

ReadUnt i |

bool Htt pdReceiver:: Readuntil (char term char *&p_buffer, size_t bufsz,
unsi gned int tineout);

This function reads bytes from the transfer until either t er mis seen; in which caset er misnot stored in
the resulting buffer. The method returns if the timeout period elapses.

In order to avoid excessive memory allocations on entry p_buf f er should point to astatically allocated
buffer that isbuf sz bytesin size. If the amount of data to be read exceeds the statically allocated buffer
size then adynamic buffer will be allocated. When this method returnsif p_buf f er no longer pointsto
the statically allocated buffer then it must be freed by the caller.

This method returnstrueif at least one byte of datawas returned. The returned dataisterminated by azero
byte. If no data was received then falseis returned.

Read
int HttpdReceiver::Read (void *p_buf, size_t &nbytes, unsigned int
ti meout);
This function reads upto nbyt es from the transfer into p_buf . If no data is received for t i meout
secondsthen an error is returned. Upon successful return nbyt es will be set to the number of bytes read,
which may be less than the requested amount.

Punp

int HtpdReceiver::Punmp (HtpdFifo *p fifo, unsigned int tineout);

Thisfunction transfers all of the received dataintop_fi f o.

129

Support Classes

ReadN

Get s

Mor e

Punp

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

int HtpdReceiver::ReadN (void *p_buf, size_t nbytes, wunsigned int
ti meout);

This function reads exactly nbyt es from the transfer into p_buf . If not enough data is received for
t i meout secondsthen an error isreturned.

int HtpdReceiver::Gets (char *p_buf, size_ t nbytes, unsigned int
ti meout);

Thisfunction reads one line from the receiver, assuming that each lineisterminated by anewline character
(ASCII linefeed). The value of maxbuf should be the size of the buffer, p_buf .

As with the Ht t pdSocket version of this method, it is worth noting that a carriage return may be
embedded in the buffer, as Get s() does not purge them.

If the entire line is not received by the specified timeout (in seconds) then
Ht t pdOpSys: : ERR_NOTREADY is returned. If the line would exceed the available
buffer size then HttpdQOpSys:: ERR LIM TRCHD is returned. For an empty string
Ht t pdOpSys: : ERR_BADFORNVAT isreturned.

Callers should keep in mind that it is possible that this method returns some other error code surfaced from
the underlying socket layer.

bool HttpdReceiver::Mre (unsigned int tinmeout);

This function returns true if there is likely to be more data available in the transfer. If the transfer is
complete then falseis returned.

int HtpdReceiver::Punp (HtpdWitable *p_sink, unsigned int tineout);

This function transfers the body of the HT TP transaction (the received content) into p_si nk. If datais
not received int i meout seconds then the transfer is aborted with an error.

If successful 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdBoundar yReader Reference

Introduction

The Ht t pdBoundar yReader classis used for processing MIME multipart messages. These are used
for encapsulating many kinds of data; in particular, HTTP file uploads are done using multipart MIME.
Multipart MIME separates components with a unique boundary string that is obtained from encapsulation
headers. This class does not parse these headers.

130

Support Classes

Instancesof Ht t pdBoundar yReader areassociated with areceiver and can be used either by “pulling”
the data or pushing the data into a subclass of HttpdWritable.

Public Methods
Ht t pdBoundar yReader

Ht t pdBoundar yReader : : Ht t pdBoundar yReader (HttpdReceiver *p_receiver,
const char *p_boundary, int &rc);

The Ht t pdBoundar yReader must be provided with a reference to the receiver to read from
(p_r ecei ver) and the boundary string (p_boundar y). Ther c parameter is set to an error status after
the constructor returnsif there was a problem initializing.

Note
The boundary should be found (using HttpdUtilities::FindBoundary before this class is
constructed.

Read (pull model)

int HttpdBoundaryReader:: Read (const void *&p buffer, size t &l en,
unsi gned int tineout);

This function reads from the associated receiver, waiting for uptot i neout milliseconds for data.

If thereisdatato beread then | en is set to the number of bytesthat wereread and p_buf f er ispointed
to the data and O is returned.

The returned pointer is valid until the next call to this method or the destruction of the object.

If the boundary is found then Ht t pdBoundar yReader : : HTTPD_M ME_BOUNDARY is returned.
In this case callers should call HttpdUtilities::IsLastBoundary to complete the boundary parsing and
determine if another part of the multipart entity is present.

Otherwise asystem dependent error valueisreturned (see Table 4.1, “ OS Abstraction Layer Error Codes”).
Read (push model)

int HtpdBoundaryReader:: Read (HtpdWitable *p_target, unsigned int
timeout);

This method writes the contents of the current part of the multipart message into p_t ar get . If no data
isreceivedint i meout milliseconds the operation is aborted and an error code is returned.

As with the pull verson of Read if success is returned (a return value of 0) then
HttpdUTtilities::IsLastBoundary should be called to complete the boundary parsing.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note

Data is written into the sink in chunks no larger than the boundary size. If the target stream
does not perform well with small writes then the HitpdBatchWriter class can be used to
increase the write size.

131

Support Classes

Ht t pdMuxFi | eSyst emReference

Introduction

To support the modular construction of systems, the Ht t pdMuxFi | eSyst emclass alows multiple
separate Ht t pdFi | eSyst em objects to be combined into a single object. Each filesystem is
addressed with a specific prefix that is assigned at registration time. Ht t pdMuxFi | eSyst em
provides an abstract interface for a file system although the OpenFi | e method is not used. The
Ht t pdMuxFi | esyst emclassfillsin the correct filesystem in the Ht t pdFi | el nf o object when the
Ht t pdMuxFi | esystem : Fi | el nf o method iscalled.

A good examplefor the use of this classisan embedded device with dotsthat allow additional modulesto
beinserted. It would be convenient if each module could contain its own filesystemimagefor configuration
of its specific parameters. With this approach new modules can be developed without even having to
update the software on the embedded device.

@ Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

This class provides athread-safe API. Multiple threads may call methods on a single instance of this class
without issue.

Public Methods

Mount

int HtpdWVuxFileSystem: Mount (const char *p_prefix, HtpdFileSystem
*p_fs);

Thismethod adds p_f s to the tranglation table addressed by the prefix stringinp_pr ef i x.

No accesses to the filesystem should be made until all callsto Mount complete without error. Once the
filesystem is accessed no more prefixes should be added.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

132

Chapter 4. Portability Layer Reference

Platform Specific Definitions

The definitions in sem sys. h are specific to the target OS. The specifics of the TCP implementation
aredefinedinsem syssock. h. Seminole comes with reference implementations for several operating
systems. The reference implementations do not have to be used, and the class specifications in this section
can be implemented in any way necessary.

It is also okay to change the reference code to work around any special platform needs. Unless the target
platform is very different from any of the other targets it is suggested that an existing portability layer
be taken as a base when attempting a new port. The source code for all of the reference applications are
insrc/target s/ OS- NAMVE. New portability layers should be placed in the same parent directory as
the existing ones.

Although it is not necessary, application code may also make use of the portability layer if desired. It is
also not strictly necessary for the portability layer to use the operating system to implement its services.
For example instead of implementing the memory allocation service in terms of mal | oc and f r ee the
Ht t pdMenor yAl | ocat or class within Seminole can be used to allocate from a statically declared
chunk of storage.

Ht t pdOQpSys Reference

Introduction

Ht t pdOpSys serves as an abstraction layer between Seminol€'s platform-independent code and the
specific interfaces offered by the host operating system. Primarily, it provides generic memory and
process management facilities, since these are the most basic requirements for Seminole. Like the
Htt pdUtiliti es classal members of this class are static and there is no need to ever instantiate this
class.

More detailed architectural discussion of Seminolée's portability mechanisms can be found in the section
called “Operating Environment Abstraction Layers’.

When requesting services from the underlying host operating system through Ht t pdOpSy's, itispossible
for interna errors to eventually be returned to the caler within Seminole. However, these errors are
abstracted to generic equivalents which are descriptive of the error condition, but do not depend on any
platform-specific representation. The possible OS errors are listed in Table 4.1, “OS Abstraction Layer
Error Codes’.

Table4.1. OS Abstraction Layer Error Codes

Constant M eaning

ERR_NOTFOUND File, directory, or entity not found
ERR_SYSPERM Administrative permission denied
ERR_NOTREADY Device, resource, or unit not ready
ERR LI M TRCHD Maximum limit or capacity reached
ERR | O Low-level or hardware 1/O error
ERR_VWRONGTYPE Inappropriate type or target for operation

133

Portahility Layer Reference

Constant M eaning

ERR_OUTCOFMEM Ran out of memory

ERR_BADPARAM Invalid or out-of-range parameter

ERR_BADFORMAT The provided data is corrupted or not in a valid
format.

ERR_NOSPACE Thereisinsufficient permanent storage to complete
this operation.

ERR _UNKNOWN Unknown/untranslatable error

ERR_USER This is the base number for error codes
in components that use HttpdQOpSys. Some
components in Seminole need these numbers to
return extended error or status codes and use this
number as a starting base.

Public Methods

I nit
int HtpdOpSys::Init (void);
Thisstatic method initializesthe operating system abstraction layer. No other servicesfrom Ht t pdQpSy's
can be utilized before this method is called and returns success.
Returns an error code from Table 4.1, “OS Abstraction Layer Error Codes’ on failure or zero on success.
Note
@ This method does not have to be idempotent. It is called once and only once by
Htpd::Init.
Mal | oc

void *H t pdOpSys:: Malloc (size_t sz);
Allocate new memory sz bytesin length.

Returnsapointer to abuffer of at least the requested size, taking into account host alignment requirements,
or NULL upon error.

If desired implementations can make use of the HTTPD _MALLOC RETRY_LOOP and
HTTPD_MALLOC_RETRY_TAIL macrosto add aretry mechanism for allocations. These macros clear
the allocation caches if INC_ALLOCATION_CACHE_PURGE is enabled. A typical implementation in
the portability layer would be:

voi d *H t pdOpSys: : Mal | oc(si ze_t size)
{
HTTPD_MALLOC RETRY_LOCP
{
void *p_buffer = malloc(size);
if (p_buffer != NULL)
return (p_buffer);

134

Portahility Layer Reference

HTTPD_MALLOC_RETRY_TAI L
}

return (NULL);

}
Free
void Htt pdOpSys::Free (void *p_ptr);
Release ablock of allocated memory pointed to by p_pt r.
Real | oc

void *H t pdOpSys:: Realloc (void *p_oldptr, size t newsz);
Expand or shrink the size of the memory block pointed to by p_ol dpt r, to be newsz bytesin length.

Returns a revised pointer upon success, or NULL upon failure.

I mportant

If Real | oc() failsto change the size of a given block of memory, the original block is
invalidated and cannot be used. Therefore, if the block being resized has pointers to other
objects embedded within, it is better to use the Saf eReal | oc method and explicitly free
the original pointer.

As with Mal | oc() implementations may opt to use the HTTPD_MALLOC_RETRY_LOOP and
HTTPD_MALLOC_RETRY_TAIL macros to add aretry mechanism.

Saf eReal | oc
void *H t pdOpSys: : SafeReal l oc (void *p_oldptr, size t newsz);

This method is similar to Real | oc. It expands or shrinks the size of the memory block pointed to by
p_ol dptr,tobenewsz bytesin length.

Returns a revised pointer upon success, or NULL upon failure.

UnlikeReal | oc, if thismethod returnsNULL the original block pointedtoby p_ol dpt r isnot rel eased.
It must be explicitly released. This gives callers a chance to perform further cleanup before releasing the
allocated memory block.

For k

bool HttpdOpSys::Fork (void (*p_func)(HttpdParaneter pl, HttpdParaneter
p2, Ht t pdParaneter p3), Ht t pdParaneter pil, Ht t pdParaneter p2,
Ht t pdPar aret er p3, HttpdParaneter p3, HitpdPriorityH nt pri_hint);

Create a new process, job, or task (depending on the host platform), which will immediately enter the
function p_f unc, passing it p1, p2, and p3 as arguments.

pri _hi nt serves as a characterization to the underlying operating system of the type of work the new
thread of execution will be performing, so that it can be scheduled accordingly. The behavior this hint

135

Portahility Layer Reference

elicitsis completely dependent on the operating system abstraction layer being used; while all layers must
support the standard values of pri _hi nt , they are not actually required to take any action on it. These
standard values are listed in Table 4.2, “Fork() Priority Hints”. The existence of other values should not
be relied upon, since the operating system abstraction layer is only required to support the listed values.

Table4.2. Fork() Priority Hints

Constant M eaning

HTTPD_PRI _WORKER Standard worker thread

HTTPD_PRI _ ACCEPTOR Webserver connection acceptor thread
HTTPD_PRI _SESSI ON_SCRUBBER Session table scrubbing thread
HTTPD_PRI _DI SCOVERY Discovery server thread

Returns true upon successful process creation, false upon failure.

TaskSl eep

voi d Htt pdOpSys: : TaskSl eep (unsigned int nsec);

This method suspends the calling thread for nsec milliseconds. Ideally, the operating system should
schedule other tasks during the interval.

Now
void Htt pdOpSys: : Now (H t pdOpSys: : Ti neSt anp &now) ;
This method obtains the current time as measured from some arbitrary epoch and placesit into now. This
notion of “current time” is not necessarily connected with the actal wall-clock time. Instead it is used to
measure time redltive to other values of the same clock.
On some systems the wall-clock time is either not available or changes in a manner that does not reflect
the passage time (e.g. is periodically adjusted to some other reference clock). In these cases this routine
can be implemented to provide a“pure”’ time measurement source.
The TimeStamp type must bedefined by Ht t pdOpSy's asan abstract typethat can represent thismeasured
time.

DffTine
int HtpdOSys::DiffTime (const HtpdQpSys::TineStanp &1, const
Ht t pdOpSys: : Ti nreSt anp &t 0) ;
This method computes the signed difference, in seconds, between the time values given by t 1 and t 0
by subtractingt O fromt 1.
This method is similar to the standard library routine di f f t i me except that it does not return afloating
point value (which is frequently inappropriate for embedded systems).

Random ze

voi d Htt pdOpSys: : Randoni ze (voi d);

This method is caled by Seminole just before it is about to obtain entropy (via the
Ht t pdOpSys: : Ent r opy method) to potentially give some additional randomnessto the obtained data.

136

Portahility Layer Reference

In particular the timing of when this function is called is typically a function of the requests delivered
to Seminole Although this is not an ideal source of entropy (since it can be manipulated externally) in
systems with few other sources of entropy it can be helpful.

Note
Thisfunction may be called from multiple threads becauseit isnot called at startup but rather
when a stream of entropy is needed.

Ent r opy

unsi gned int HttpdQOpSys::Entropy (unsigned int max_val);

This method should return a random value between 0 and max_val (inclusive). Ideally the data should
be totally random as it may be used for cryptographic purposes. However, the only real source of true
randomness is from specialized hardware (such as an avalanche noise). For cost-sensitive applications it
may be necessary to gather entropy from other sources such as the time between keypresses or the input
of an analog-to-digital converter.

Therefore the implementation of this method (and the associated Ht t pdQpSys: : Random ze method)
is considered to be very platform specific.

Nat | veFi | eSystem
Htt pdFi | eSystem * Htt pdOpSys: : NativeFi | eSystem (voi d);

Some operating systems have their own native file systems (well, most actually). On these systems, the
native filesystem is abstracted as afile system interface (Ht t pdFi | eSyst em).

On operating systems that do not have a native file system available this routine shall return NULL.

OpenSystentil e

int HtpdOpSys:: OpenSystentil e (const char *p_filenane, HttpdDataSource
*&p_source);

This routine maps a native operating system file to a HitpdDataSource abstraction.

The address of the created data source object isplacedin p_sour ce. When the object isno longer needed
it should be released with HttpdOpSys::CloseSystemFile.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Note
This routine is optional and does not have to be implemented. If implemented, the symbol
HTTPD_HAVE_NATIVE_FILE_SOURCES should be defined to a non-zero (true) value.

Cl oseSystentil e

void Htt pdOpSys: : O oseSystentil e (HttpdDataSource *p_source);

This releases the file mapping created with HttpdOpSys::OpenSystemFile. The data source pointed to by
p_sour ce isno longer valid after this method is called.

137

Portahility Layer Reference

@ Note
This routine is optional and does not have to be implemented. If implemented, the symbol
HTTPD_HAVE_NATIVE_FILE_SOURCES should be defined.

Public Data

Ht t pdOpSys contains no publically accessible data members.

Ht t pdTcpSocket Reference

Introduction

The Ht t pdTcpSocket class provides an implementation of the required interface for a transport
abstraction. It inherits the interface defined by HttpdSocketinterface. In particular, the TCP protocol is
implemented viathisinterface.

Seminole does not provide its own TCP/IP stack. It is expected to be part of the host operating system
or support package. Thus, this class is not defined as part of Seminole proper. Rather, it is part of the
portability layer.

Ht t pdSsl Socket Reference

Introduction

The Ht t pdSsl Socket class provides an implementation of the required interface for a transport
abstraction. It inherits the interface defined by HttpdSocketinterface. In particular, the SSL protocol is
implemented viathis interface.

Seminole does not provide its own SSL stack. Thus, this classis not defined as part of Seminole proper.
Rather, it is part of the portability layer.

On most platforms, the OpenSSL [http://www.openss.org/] library is used. The Ht t pdSsl Socket
interface uses the primitives of the OpenSSL ™ library to manage secure connections.

Unlike normal TCP traffic, SSL traffic requires lots of configuration information. In particular, digital
certificates and keys must be provided to the SSL engine. These are passed through the pp_opt i ons
parametersto theLi st en and Connect methods.

For OpenSSL ™ implementations of Ht t pdSs| Socket the following parameters can be specified:

Table 4.3. OpenSSL Socket Options

key: fil enane Specify the RSA keys. This key is used for the
certificate validation as well as encryption of the
session if ephemeral keying isnot used. Thekey file
should be in the PEM format.

cert:filenane Specify the digital certificate used to identify the
server. The “common name” field of the certificate
should be the hostname that the server is addressed
by. The certificate file should bein the PEM format.

138

http://www.openssl.org/
http://www.openssl.org/

Portahility Layer Reference

pem fil enane Specify a PEM file containing both the RSA keys
and the certificate.

ci pher: ci pher selection Specify the suite of ciphers to use. This
is the list pased by the OpenSSL™
SSL_CTX_set _ci pher _li st function.

dh-512: fil enane For ephemera keying the Diffie-Hellman key-
agreement protocol is used. This protocol
requires some specific random numbers that are
computationally intensive to generate. This option
loads the 512-bit version of the parameters from the
specified PEM file.

dh-1024:fil enane This specifies the 1024-bit version of the Diffie-
Hellman key used for ephemera keying of the
session.

dh-reuse: Reuse Diffie-Hellman keys. This adds security at

the expense of CPU time. In most cases the added
security benefits out weigh the additional overhead.
However this option may be specified on especially
low-end processors to quicken response times.

rand- egd: EGD socket path Load entropy (randomness) from a socket managed
by an EGD daemon. This is only supported on
POSIX platforms.

rand-fil e:size, fil ename Load entropy from afile. The size (and comma) are
optional. If specified only that many bytes will be
read from the file. If the size is not specified the
contents of the entire file are analyzed.

A good example for the use of the size would be the
/ dev/ ur andomdevice available on some POSI X
systems. This device generates an endless source
of entropy so the size must be specified or else the
server will never start.

Although the configuration of SSL may seem daunting at first, the makecert tool automatically generates
most of the files needed to support SSL

Ht t pdMut ex Reference

Introduction

Instancesof Ht t pdMut ex areused to protect shared objectsfrom the effects of being accessed by multiple
threads.

Note
The implementation of Ht t pdMut ex is provided by the portability layer. It isimportant to
keep in mind that under some operating systems mutexes may not be “recursive.”

A recursive mutex (also called a “counting” mutex) is one that can be taken by a thread
that already owns the mutex without deadlocking. Seminole does not require that mutexes
are recursive — however the target platform may only provide for recursive mutexes. For

139

Portahility Layer Reference

maximum portability code that makes use of Ht t pdMut ex objects should not assume they
can be taken recursively.

Public Methods
Ht t pdMut ex

Ht t pdMut ex: : Ht t pdMut ex (void);

Thisinitializesthe mutex object. The mutex object isnot usable though until the Cr eat e method iscalled.

~Ht t pdMut ex

Ht t pdMut ex: : ~Ht t pdMut ex (voi d);

Release all associated resources with the mutex object. It isimportant that the mutex not be obtained when
it is destroyed.

Create

int HtpdMitex::Create (void);

This method should be called once after construction of the object. It registers the mutex object with the
operating system and must be called before the Lock or Unl ock methods are called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Lock
void HttpdMutex::Lock (void);
This method requests exclusive access to the mutex (and the object protected by the mutex). Only one
thread at atime will return from this call. The rest will remain queued until the mutex is unlocked.

Unl ock

voi d HttpdMitex:: Unl ock (void);

This method rel eases exclusive access to the mutex. If other threads are pending on access, another thread
should be allowed to take the mutex as this thread releasesiit. It is up to the scheduling policy of the host
operating system to determine when threads are allowed to obtain the mutex.

If the host operating system provides per-mutex selectable scheduling policies then in general a FIFO
scheduling policy isthe best for Seminole. Priority inversion protection isalso not really required and may
be disabled on mutexes used by Seminoleif it provides a performance boost.

Ht t pdEvent Semaphor e Reference

Introduction

Instances of Ht t pdEvent Semaphor e is used to allow one thread to wait for a signal from another
thread.

140

Portahility Layer Reference

@ Note
This class only exists if the portability layer definesHTTPD_HAVE_THREADS to a hon-
zerovalue.

Public Methods
Ht t pdEvent Senmaphor e

Ht t pdEvent Semaphor e: : Ht t pdEvent Semaphore (void);

Thisinitializesthe semaphore object. The semaphore object isnot usablethough until the Cr eat e method
iscalled.

~Ht t pEvent Semaphor e
Ht t pdEvent Senaphor e: : ~Ht t pdEvent Semaphore (voi d);

Release all associated resources with the semaphore. No threads should be waiting on the semaphore when
it is destroyed.

Create
i nt HttpdEvent Semaphore:: Create (void);

This method should be called once after construction of the object. It registers the semaphore object with
the operating system and must be called before the Wai t or Si gnal methods are called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Wi t
voi d Htt pdEvent Semaphore::Wait (void);

This method suspends the calling thread until the semaphore object issignaled (viathe Si gnal method).
Only one thread at atime should wait on the semaphore object.

Once released the semaphore is reset to a non-signaled state.
Wai t (with timeout)

i nt HttpdEvent Semaphore:: Wait (unsigned | ong nsec);

This method suspends the calling thread until the semaphore object is signaled (viathe Si gnal method)
or msec milliseconds have elapsed. Only one thread at atime should wait on the semaphore object.

Once released the semaphore is reset to a non-signaled state.

Upon SUCCESS, 0 is returned. If the wait times out, the value
Ht t pdEvent Semaphor e: : ERR Tl MEQUT is returned. If an operating system error prevents the
operation from succeeding, then asystem dependent error valueisreturned (see Table 4.1, “OS Abstraction
Layer Error Codes”).

141

Portahility Layer Reference

Si gnal
i nt HttpdEvent Semaphore:: Signal (void);

Thismethod allowsthe waiting thread to continue executing. If athread isnot yet waiting on the semaphore
object then the semaphore object is marked as signaled and the thread will not be suspended during the
Wi t method.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

142

Chapter 5. Generating Dynamic
Content with Templates

Understanding the Template Engine
Why Templates?

Although other methods exist for generating dynamic content they are often difficult to modify and bulky.
Templates enforce a strict separation between content and code. This separation is especially important
when the content devel oper is not the same person as the engineer writing the code backing the application.

Some template systems make the mistake of providing almost a complete programming language. This
gives template authors too many freedoms and often results in a large amount of the program logic
within thetemplate. The Seminol etemplate system providesonly three constructs: substitution, conditional
inclusion, and iteration. This keeps the content developers “honest” by forcing the actual program logic
to reside in the application layer.

Sometimes it is okay to break the rules. For these cases Seminole includes many pre-built template
commands that are quite flexible and generic. The penalty for breaking the rules and using these pre-built
commands is twofold. First, there is the increase in code size brought about by the generic code. Second
isthe increased CPU overhead used during formatting. It is up to the designer of the content to determine
if the tradeoff is worthwhile.

Compiled Templates

For efficiency and reliability reasons, templates in Seminole are compiled. The template-specific
markup is processed by SCPG and encoded into a binary form. The binary form is then executed by
Ht t pdTenpl at ePr ocessor and its supporting classes.

Thisresultsin much more efficient templ ate execution because the portions of the template skipped due to
conditional evaluation do not have to be parsed. In traditional template systems that process the template
file, al portions (even those that are in the false part of a conditional) must be parsed.

Template Syntax

Template directives are denoted by the %4 opening token and the } %closing token. These directives can
appear anywhere in the template file. Therefore they can even be used inside of quoted HTML attributes
without problems.

Tableb5.1. Template Directives

Directive Description

eval This is the most basic directive. It is used like a
function call in procedural languages. The C++ code
can substitute any string for thisdirective. Of course,
it can also be used to perform an operation and
substitute the empty string for this directive. The
directive must be followed by a symbol name to
identify the operation:

143

Generating Dynamic
Content with Templates

Directive Description
Hel | o user 9% eval : user nane} % <p>
| oop This directive is used to repeat a body of the

template zero or more times. The loop body can
contain text and any other directives.

<h2>User nanes</h2>

% | oop: usertabl e} %
<l i >% eval : user nane} %
% endl oop} %
</ ul >

Loops are often used in conjunction with eval
directives because loops can bind certain variables
(such as username above) as aloop index.

Templates can have conditionals with the i f
directive:

The system stores data on a flash chip
% i f:has_hard_di sk}%and hard di sk% endif} %

Conditionals can also have if-else blocks as well:

You nust connect a the systemto
%{if:ethernet nodel }%
an et hernet
%W el se}%
a token ring
% endi f}%
net wor k upl i nk.

If-else chains can even be done:

You nust connect the systemto
% i f:ethernet _nodel }%
an et hernet
% el sei f:token_ring_nodel }%
a token ring
% elseif:bri}%
an | SDN basic rate
% el se}%
a magi cal
% endif}%

net wor k upl i nk.

144

Generating Dynamic
Content with Templates

Directive

Description

i f not

This conditional executes the contents of its body if
the specified condition is not true:

The systemis %ifnot:ready}% busy% endi f}%

No else clause can be used with this statement.

Some template directives can contain name/val ue attribute pairsjust like an HTML tag. In these casesthe
syntax and quoting rules are similar to HTML. The following tags can have attributes:

+ evd
 loop
o if

* else
¢ elsaif

For example:

Your password is % eval : password
set _insecured
coment
t agtype
sal t

1

"the magi ¢ word"

"& t;a hrefé>"

" A B &H#67; "} %

There are four attributes associated with the eval of password. Notice that HTML quoting rules apply.
However, only asmall subset of entity names are allowed:

* "

o &'t

o >

. &anp

o &HXXX (Character XXX)

Programming Template Interfaces

All of the definitions for the template processor are in the sem t enpl at e. h. This file automatically
includesseni nol e. h if it has not been included already.

All of the names referenced in template directives must eventually reference some application specific
code in C++. Each of these directives get instantiated into an object when interpreted. This “command
object” isthen passed to amethod in the class Ht t pdSynbol Tabl e. Thereis one receiver method for
each command type, Handl eEval ,Handl eLoop, Handl eCond for each symbol table. These various
methods are overridden in subclasses to implement the specific operations that templates can employ.

145

Generating Dynamic
Content with Templates

Rather than maintain one instance of Ht t pdSynbol Tabl e (or subclass), the template processor
maintains a stack of them. This provides a simple scoping mechanism that is especially useful for loops.
A particular name is sent to each instance starting from the most recently added to the |east recently added
until it is properly handled.

Each symbol table in the chain is given a chance to either handle the symboal, fail the request with a fatal
error or let outer symbol tables attempt to resolve the symbol. If no symbol table resolves the symbol
processing of the templateis halted and an error is returned.

To handle a symbol implementations of Handl eEval or Handl eLoop should
recurn 0 while Handl eCond should return either HTTPD TEMPLATE FALSE CASE or
HTTPD _TEMPLATE TRUE_CASE. To stop any further searches for the name and fail the template
processing any of the symbol table methods can return HTTPD TEMPLATE UNKNOAN_ NAME.
If a symbol table method wishes to continue the search to outer symbol scopes
HTTPD _TEMPLATE_NOT_HANDLED should be returned.

Thenamein thetemplatefile can also be prefixed with one or more carets () to indicate previouslevels of
lexical scope. For example, if the current loop defines an evaluation label of username and we are nested
in this loop three times then we can get to the username of the first loop with a”~#:

%1 oop: user _table}%
0/1{| oop: user _tabl e} %
“6/1{I oop: user _tabl e} %
'.Ilﬁe current top-level user is %eval:*"usernane}%
0/:{ endl oop} %
O/:{Iéndl oop} %

% endl oop} %

Referencing previous scopes can be helpful when more than one scope handles the same name.

The stack of symbol tables is maintained by a helper class called Ht t pdTenpl at eScope. This
class uses constructors and destructors to keep the template scope in sync with C++ lexical scope.
Another helper class, Ht t pdSynbol Map provides easy access to select C++ variables from templates.
A combination of thesetwo classes, Ht t pdScopedSynbol Map providesthe combined functionality of
Ht t pdTenpl at eScope and Ht t pdSynbol Map.

The error code HTTPD_TEMPLATE_UNKNOAN_NAME should be returned by the top-most symbol
table if the named action does not exist. Although if no symbol table handles the request an error of
HTTPD_TEMPLATE_UNKNOWN_NAME will be returned.

Returning HTTPD_TEMPLATE_UNKNOAN_NAME causes the template engine to stop searching any
further for asymbol table willing to handle the symbol. The HTTPD_TEMPLATE_NOT_HANDLED return
code indicates that a symbol table does not handle this name however the search should also be applied
to previous scopes.

When using templates with the Ht t pdFi | eHandl er request handler, the top-most symbol table is
already implemented with afew bonuses aswell. ThisHt t pdFSTenpl at eShel | handlesfile service
requests and provides processing for include files.

146

Generating Dynamic
Content with Templates

Ht t pdFSTenpl at eShel | also provides a static helper routine, called Execut e that can be called
from the DoFi | e phase of Ht t pdFi | eHandl er . This helper handles all of the setup work necessary
to execute atemplate from asubclass of Ht t pdFi | eHandl er .

The demonstration code (mai n. cpp) providesagood example of subclassing Ht t pdFi | eHandl er to
add both authentication and template processing. The MIME type x- server-i nternal /t enpl at e
should be used to identify files that require template processing. However, thisis only a convention and it
can be circumvented if necessary. In fact, the entire symbol table can be made different based upon MIME.

Ht t pdSynbol Tabl e Reference

Introduction

TheHt t pdSynbol Tabl e classisabase class that accepts template commands and executes them. The
default implementation simply returnsHTTPD_TEMPLATE_NOT_HANDLED for all commands.

This class is designed to be subclassed and to handle application specific actions during template
processing. Only the methods for the commands that must be handled need to be overridden.

Thetypical method for implementing one of the handler methodsisto call the Name method of the supplied
command pointer and then determineif thisis one of the names that should be handled. It is probably best
to implement this as a simple chain of if-else statements:

i nt MySynbol Tabl e: : Handl eEval (Htt pdEval Command *p_eval)
{

const char *p_nanme = p_eval ->Name();

if (strcnp(p_nane, "user_nane") == 0)
return (DoUser Name(p_eval));

else if (strcnp(p_nanme, "hone_dir") == 0)
return (DoHoneDir(p_eval));

el se
return (HTTPD_TEMPLATE_NOT_HANDLED) ;

Because overriding thisclassfor each scope can cause quite afew classesto be defined, for the simple cases
of accessing avariablethe Ht t pdSynbol Map helper class can be used instead of subclassing this class.

Public Methods

Handl eEval
i nt HttpdSynbol Tabl e: : Handl eEval (Ht pdEval Command *p_eval);
An eval command needs to be executed by the template engine. The command should be analyzed by this
method and handled if appropriate. If not appropriate, thevalueHTTPD_TEMPLATE_NOT_HANDLED
should be returned.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes”).

147

Generating Dynamic
Content with Templates

Handl eLoop

i nt HttpdSynbol Tabl e: : Handl eLoop (Ht t pdLoopConmand *p_| oop) ;

An loop command needs to be executed by the template engine. The command should be analyzed by this
method and handled if appropriate. If not appropriate, thevalueHTTPD_TEMPLATE_NOT_HANDLED
should be returned.

The function | t er at e method of p_| oop should be called each time the body of the loop should be
evaluated. It is also very useful to add a new lexical scope during the iterations for variables that change
as the loop progresses.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes’).

Handl eCond

i nt HttpdSynbol Tabl e: : Handl eCond (Htt pdCondi ti onal Conmrand *p_cond);

A conditional command needs to be executed by the template engine. There are three possible outcomes
for processing a conditional command:

» The condition istrue, indicated by returning HTTPD_TEMPLATE_TRUE_CASE
» Theconditionisfalse, indicated by returning HTTPD_TEMPLATE_FALSE _CASE

» The operation failed or should not be handled, indicated by returning the appropriate error code.

Note
This method should never return 0. This is an ambiguous result to the template engine.

Ret ur nBool
i nt HttpdSynbol Tabl e: : Ret ur nBool (bool val ue);

This helper function mapsthe val ue to the appropriate return value for handling template conditionals.

Ht t pdPr ef i xSynbol Tabl e Reference

Introduction

TheHt t pdPr ef i xSynbol Tabl e classis asmall wrapper that adds functionality for named prefixes
tothe Ht t pdSynbol Tabl e abstract interface.

With many symbol tables active simultaneously it can be difficult to differentiate between them. The
Ht t pdPr ef i xSynbol Tabl e class allows command names to be given an easily recognizable prefix.
Thereis no additional implementation to the command handlers from Ht t pdSynbol Tabl e.

The registered prefix can then be used to address all commands. For example:

% eval : buf f er - show} %

148

Generating Dynamic
Content with Templates

would match an object with aprefix of buf f er andthestring s howwould bereturned from the Command
method.

Public Methods
Ht t pdPrefi xSynbol Tabl e

Ht t pdPr ef i xSynbol Tabl e: : Ht t pdPr efi xSynbol Tabl e (const char *p_prefix);

ThisinitializesaHt t pdPr ef i xSynbol Tabl e object. The lifetime of the p_pr ef i x string must be
equal to or exceed the lifetime of this classasit is not copied internally.

Prefix
const char * HttpdPrefixSynbol Table:: Prefix (void);
This method returns the prefix that was used to initialize the object.
Conmmand

const char * Ht t pdPr ef i xSynbol Tabl e: : Conmand (const
Ht t pdTenpl at eConmand *p_conmand) ;

Given acommand object thisfunction determinesif it matchesthe prefix of thisobject. If so theremaining
portion of the command object (following the prefix) is returned. Otherwise, NULL is returned and no
further processing should be performed.

Ht t pdTenpl at eConmand Reference

Introduction
Ht t pdTenpl at eCommrand serves as the base class for all of the command classes:
* Htt pdEval Comrand
* Htt pdLoopCommrand
* Htt pdCondi ti onal Command

The public methodsin this class are available from any command and should be called in one of the handler
methods of Ht t pdSynbol Tabl e derivatives.

Public Methods
Nanme

const char * Htt pdTenpl at eComrand: : Name (void);

Returns the name of the of the command. For example, in atemplate directive such as:
% eval : user _nane_string}%

the returned value would bethe string user _nane_st ri ng.

149

Generating Dynamic
Content with Templates

@ Note
Thismethod will never fail or return NULL by the time the command is passed to aahandler
method. Thereforeit is safe for callers to always assume a valid name.

Attri bute

const char * Htt pdTenpl at eConmand: : Attri bute (const char *p_nane);
If the specified attribute of the command exists, its value is returned. Otherwise NULL is returned.
Attributes

Ht t pdCgi Par aneter * HttpdTenpl at eCommand: : Attri butes (void);

Returns alist of the parsed attributes. For example, in atemplate directive such as:

% eval : user_nane_string class = "logged-in"
node = | ocal
id = 65 }%

the parameters get encoded by SCPG when the template is compiled. This method reads the encoded
attributes (viathe At t r i but eSt r i ng method) and parsesthemoutintoaHt t pdCgi Par anet er list.

If no attributes exist or there is an error loading the attributes the value NULL is returned.

é Caution
Thereturned list must not be released by the caller. It is owned by the command object and
will be released when command processing is completed. Do not keep pointers to the nodes
of the list or the strings contained within them; make a copy if necessary.

Qut put
H t pdWitable * Ht pdTenpl at eConmand: : Qut put (void);

Returns the associated output object that is the results of the template. This is commonly needed when
processing eval commands. For example:

i nt MySynbol Tabl e: : Handl eEval (Htt pdEval Command *p_eval)

{
if (strcnp(p_eval ->Nanme(), "user_name") == 0)
return (p_eval ->Qutput()->Printf("user%", userld));
el se
return (HTTPD _TEMPLATE_NOT_HANDLED) ;
}

@ Note
There is aways an output stream; therefore this method will never return NULL.

150

Generating Dynamic
Content with Templates

Processor

Ht t pdTenpl at eProcessor * Htt pdTenpl at eCommand: : Processor (void);

This method returns a pointer to the associated template processor object.

Ht t pdEval Conmand Reference

Introduction

An Ht t pdEval Cormand represents an evaluation command in the template. It is derived from
Ht t pdTenpl at eCommand and possesses its public interface. See Template Command Objects.

@ Note
This class is never instantiated in application code. It is created during template execution
and passed to the various Handl eEval methods of the symbol tables.

Public Methods

For mat

i nt H tpdEval Conmmand: : Format (const char *p_string);

There are many different rules for escaping strings when dealing with HTTP and HTML. This helper
routine will format a string with support for some basic attributes that help deal with the quoting issues.
The following attributes are supported:

» Thequot e attribute will perform quoting in the specified order using one of the following tokens:

ht m Characters that are HTML tokens such
as & o < ae escgped using the
HitpdUtilities::H m Quot e routine

uri The string is encoded using the
HttpdUtilities:: Ui Encode routine

unuri The string is decoded using the
HttpdUtilities:: Ui Decode routine
unuri + The string is decoded using the

HttpdUtilities:: Ui Decode routine.
Withthe pl us_xI at parameter settot r ue.

C-asci i The string is encoded using the section called
“CQuot eString” with the STR_ QUOTE _C
mode. Enclosing quotation marks are not
automatically appended.

js-utf8 The string is encoded using the section called
“CQuot eStri ng” withtheSTR_QUOTE_JSON
mode. Enclosing quotation marks are not
automatically appended. This mode is especially
useful for placing strings within JavaScript
functions or encoding datain JSON format.

151

Generating Dynamic
Content with Templates

e Therenove- char s attribute causes any characters in its value to be removed from the formatted
string.

e Thefilter-chars attribute causes any characters not in its value to be removed from the formatted
string.

 Thetrimfront attribute causes|eading whitespace to be removed.
e Thetri mrear attribute causes trailing whitespace to be removed.
e Thet r unc attribute limits the maximum number of output characters.

For example to HTML-quote and remove al trailing and leading whitespaces for atable field limiting the
output to a maximum of 32 characters use the following template directive:

<td>% eval : synbol quote="htm"
trunc="32"
trimfront trimrear}%/td>

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

For mat | nt eger
i nt HttpdEval Command: : For mat | nt eger (| ong val ue);
i nt HttpdEval Conmand: : For mat Unsi gned (unsi gned | ong val ue);

Thisfunction performsflexibleformatting of val ue. Most of the standard mechanismsof thepr i nt f ()
family of functions can be employed with the appropriate attributes. In addition to the common attributes
the following type-specific attributes may be used:

hex The converted valueis output in hexadecimal using
lower-case a phabetic characters.

HEX The converted value is output in hexadecimal using
upper-case a phabetic characters.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

For mat Fl oat

i nt HttpdEval Command: : For mat Fl oat (doubl e val ue);

Thisfunction performsflexible formatting of val ue. Most of the standard mechanismsof thepr i nt f ()
family of functions can be employed with the appropriate attributes. In addition to the common attributes
the following type-specific attributes may be used:

format =X This specifies the formatting style (as per
printf())whereXisoneoff,g,Ge,orE.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

152

Generating Dynamic
Content with Templates

@ Note
This method is only avalable if the target porting layer defines the
HAVE_FLOATING_POINT preprocessor symbol to a non-zero value.

Common Formatting Attributes

Attribute Effect

wi dt h =val ue Sets the minimum field width (in characters). If
the converted value has fewer characters than the
field width, it will be padded according to the other
formatting attributes.

prec =val ue An optional precision. If this attribute is omitted,
the precision is taken as zero. This value gives the
minimum number of digits to appear for integral
conversions, the number of digits to appear after
the decimal point for scientific notation, or the
maximum number of significant digits for floating
point values.

alt If this attribute is present then an “aternative’ form
is used for the value. This is identical to using
the “#” modifier with the pri ntf () functions.
For hexadecimal output this results in aleading 0x
prefix. For floating point conversions typicaly a
decimal point is always printed.

zero If this attribute is present then zero padding rather
than space padding is used: The converted value is
padded with zeros rather than blanks.

| eft The presenceof thisattributeindicatesthe converted
value is to be left justified: The converted value is
padded on the right instead of the | eft.

bl ank This attribute specifies that a blank should be left
beforeapositive number. Thisattributeisanal ogous
toaspaceinaprintf () styleformat string.

pl us This attribute causes a sign to aways be placed
before athe produced number.

Ht t pdLoopCommand Reference

Introduction

An Htt pdLoopConmand represents a loop command in the template. It is derived from
Ht t pdTenpl at eCommand and possesses its public interface. See Template Command Objects. In
addition, this class has additional methods that handlers can use during the processing of this command.

Note
This class is never instantiated in application code. It is created during template execution
and passed to the various Handl eLoop methods of the symbol tables.

153

Generating Dynamic
Content with Templates

Public Methods

Iterate
int HttpdLoopCommand: :lterate (void);

This method causes the body of the loop to be evaluated. 1t may be called as many times as the loop body
needs to be executed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS

Abstraction Layer Error Codes”). If the return value of this method is not O then the return value should
be returned without modification from the handler method.

Count er

unsi gned | ong Htt pdLoopComrand: : Counter (void); const
During the execution of the loop the Ht t pdLoopConmand object keeps a counter of the number of

iterations executed. The counter starts at 0 and is incremented by one for each iteration. This method
returns the counter value.

Ht t pdCondi t i onal Command Reference

Introduction

An Ht t pdCondi t i onal Command represents an conditional command in the template. It is derived
fromHt t pdTenpl at eCommand and possesses its public interface. See Template Command Objects.

@ Note
This class is never instantiated in application code. It is created during template execution
and passed to the various Handl eCond methods of the symbol tables.

Public Methods

Test (String Version)

i nt HttpdConditional Command: : Test (const char *p_conmand, const char
* H .
p_string);

Thismethod implementsa series of standard testsonp_st r i ng depending onthevalueof p_comrand.
The following tests are supported:

» Theenpty conditionistrueif p_stri ng isempty.
» Thebl ank condition istrueif there are no non-whitespace charactersinp_st ri ng.

» Thel engt h condition is used for comparing the length of p_st ri ng to the value in the attribute
| en. Theattributei s can be one of < (less than), > (greater than), or = equal to.

e For numbers represented as strings the nunber symbol can be used to perform rudimentary
comparisons. As with the | engt h a relational operator is specified in the i s attribute. A val ue

154

Generating Dynamic
Content with Templates

attribute holds the value being compared against and the base attribute holds the base of the numbers
being compared. If abase of 0 is specified then the base of the numbersis determined using the standard
C syntax for numbers.

For more complex string matching the mat ch symbol can be used. A patt er n attribute is used to
apply thestring to the HttpdUTtilities::MatchPattern method. If the attribute not ispresent thenthetestis
considered trueif the pattern does not match. Otherwise thetest is considered trueif the pattern matches
the string.

The return value of this function should be returned from the Handl e Cond method.

Test (Integer version)

i nt HttpdConditional Command: : Test (const char *p_command, |ong val ue);

This method implements a series of standard testson val ue depending on thevalue of p_command. An
attribute with aname of t o gives the value to compare against. The following tests are supported:

Thel t conditionistrueif val ue islessthan the value of thet o attribute.

Thel e conditionistrueif val ue islessthan or equal to the value of thet o attribute.
The eq condition istrueif val ue isequal to the value of thet o attribute.

Thene conditionistrueif val ue isnot equal to the value of thet o attribute.

Thegt conditionistrueif val ue isgreater than the value of thet o attribute.

The ge condition istrueif val ue isgreater than or equal to the value of thet o attribute.

Thedi v condition istrueif val ue isdivisable by the value of thet o attribute. If ther emattributeis
provided then this condition is true if the remainder isthe value of that attribute.

The return value of this function should be returned from the Handl e Cond method.

Test (Unsigned version)

i nt HttpdConditional Command: : Test (const char *p_command, unsigned | ong
val ue);

This method implements a series of standard testsonval ue depending on thevalue of p_conmand. All
of the test of the signed version (see above) are supported as well as an additional test of bi t s. Thistest
requires an additiona attribute, mask. The bits that are set in mask are compared with the value of the
t o attribute for equality. If equal then the condition is considered true.

The return value of this function should be returned from the Handl e Cond method.

Test (Floating-point version)

i nt HttpdConditional Command: : Test (const char *p_conmand, doubl e val ue);

This method implements a series of standard tests on val ue depending on the value of p_comand.
The following tests are supported:

* Thewhol e conditionistrueif val ue isawhole number.

155

Generating Dynamic
Content with Templates

» Thel t conditionistrueif val ue islessthan the value of thet o attribute.

» Thel e conditionistrueif val ue islessthan or equal to the value of thet o attribute.

» Theeq conditionistrueif val ue isequal to thevalue of thet o attribute. Because comparing floating-
point values for equality is not well defined an additiona attribute, pr ec, may set the epsilon value
that defines the tolerance of equality.

» Thene condition istrueif val ue isnot equa to the value of the t o attribute. An optional attribute,
pr ec, may set the epsilon value that defines the tolerance of inequality.

e Thegt conditionistrueif val ue isgreater than the value of thet o attribute.
» Thege conditionistrueif val ue isgreater than or equal to the value of thet o attribute.

The return value of this function should be returned from the Handl e Cond method.

@ Note
This method is only avalable if the target porting layer defines the

HAVE_FLOATING_POINT preprocessor symbol to a non-zero value.

Ht t pdTenpl at eScope Reference

Introduction

Ht t pdTenpl at eScope is a very interesting class. It has no methods beyond its constructor and
destructor. Its purpose is to temporarily add a lexical scope to the current template processor. The
constructor inserts the new scope and the destructor removesit.

This behavior means that the lexical scope of the templates (roughly) follows the lexical scope of the C+

+ handler code. The most common use for this class is to temporarily add additional symbols during the
evaluation of aloop. A typical construct might be:

i nt MySynbol Tabl e: : Handl eLoop(Ht t pdLoopComrand *p_I oop)

{
if (strcnp(p_l oop->Nane(), "session_table") == 0)
{
AppLoopVari abl es vars;
Ht t pdTenpl at eScope | oop_scope(p_| oop->Processor(), &vars);
whil e (!vars. Done())
{
int rc = p_loop->lterate();
if (rc 1=0)
return (rc);
}
}
el se
return (HTTPD_TEMPLATE_NOT_HANDLED) ;
}

156

Generating Dynamic
Content with Templates

In the above exampl e the scope becomes active when the if body is entered. The scope is removed when
the block is exited. If another loop were to be executed during the call to | t er at e (even the same loop
again) then additional scopes can be entered. The caret (*) can be used to access obscured variables in
previous Scopes.

Public Methods
Ht t pdTenpl at eScope

Ht t pdTenpl at eScope: : Ht t pdTenpl at eScope (Htt pdTenpl at ePr ocessor
*p_proc, HttpdSynbol Table *p_synbol s);

The constructor of this class opens a new lexical scope in the chain of symbol tables in the template
processor. The first parameter, p_pr oc is typically obtained by calling the Pr ocessor method of
a command object. The second parameter, p_synbol s is a pointer to the symbol table that is to be
temporarily installed. The symbol table must be unique per scope and is typically instantiated as a local
variable along with this object.

Ht t pdTenpl at ePr ocessor Reference

Introduction

Ht t pdTenpl at ePr ocessor isthe engine that reads a template file, parses the contents, instantiates
the command objects and calls the various handler methods of the various symbol tables.

Of course, the most important function Ht t pdTenpl at ePr ocessor must doisto keep track of all the
things that are internal to the template processor. Thus, a pointer to this object is ailmost always required
(explicitly or implicitly through another object) when performing any template operations.

Thereshould beoneinstanceof Ht t pdTenpl at ePr ocessor for eachtemplatefile being processed. In
the case of include files amechanism is provided for cloning anew processor object from an existing one.

In the case of a newly created (non-cloned) template processor the symbol scope is empty and (at
a minimum) a top-level symbol table must be installed before processing a template file. The top-
level symbol table must never return the value HTTPD_TEMPLATE_NOT_HANDLED from the handler
methods. Additionally, more scopes (in addition to the top scope) may beinstalled before starting template
processing, if necessary.

Ht t pdTenpl at ePr ocessor Internals

Thetemplate processor useswhat isoften called the “ visitor pattern”. The compiled templatefileisdivided
into blocks. Each block begins with a byte called the “op code”. The value of the op code determines the
remaining format of the block.

When atemplateisto be executed, the processor starts processing the blocksin thefile sequentially starting
at the beginning of the file. The op code is analyzed and processed. When a block that represents an
encoded command is to be processed a “visitor” object is constructed and is then asked to process the
remainder of the block.

Thevisitor objects are used to encapsul ate the transient information for processing acommand. Thevisitor
objects are the objects that are passed to the handler methods of the symbol tables. There is a unique
handler method for each type of command object so thereislittle extraoverhead at runtimefor dispatching
different commands to the same “name’”.

157

Generating Dynamic
Content with Templates

Public Methods

Ht t pdTenpl at ePr ocessor (Clone constructor)

Ht t pdTenpl at ePr ocessor: : H t pdTenpl at eProcessor (HttpdTenpl at eProcessor
*p_cl one, bool isolate);

This constructor initializes a template processor using an aready existing object (p_cl one) as a base.
The constructed object can process a new template file but can use arelated scope.

If i sol at e is false then the newly constructed object has the exact same lexical scope available to it
asp_cl one. If i sol at e istrue then the new object only shares the top-level (first installed) symbol
table with its predecessor. In either case, the newly created object does not need atop-level symbol table
installed.

St art Processi ng

Top

i nt Ht t pdTenpl at eProcessor: : Start Processi ng (HttpdFile *p_i nput,
H t pdWitable *p output);

This method invokes the processing of the input file specified by p_i nput . The output is sent to
p_out put .

If the object was not constructed with the clone constructor then atop-level symbol table must beinserted
(with the help of the Ht t pdTenpl at eScope class) before St art Pr ocessi ng can be called.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes’).

@ Note
During the execution of this method (such as in the symbol tables), the
Ht t pdTenpl at ePr ocessor object may be casted to a HttpdWritable * type to obtain
the output pointer.

Ht t pdSynbol Tabl e * Htt pdTenpl at eProcessor:: Top (void);

This method returns the top-level symbol table, regardiess of lexical scope. Often the first lexical scope
contains important state information that may be useful to other symbol tables.

é Caution

This method should only be called after at least one lexical scope level has been established.

Ht t pdFSTenpl at eShel | Reference

Introduction

Ht t pdFSTenpl at eShel | is a top-level symbol table designed to be used when subclassing
Ht t pdFi | eHandl er . Thisclass has severa duties:

158

Generating Dynamic
Content with Templates

e ActasananchortotheHt t pdFi | eHandl er: : Request St at e object.

» Handle an evaluation command called i ncl ude_fi | e that can be used for pre-canned headers and
footers.

» Catch symbols that undefined by returning HTTPD_TEMPLATE_UNKNOWN_NAME for unknown
names.

This class is typically created during the DoFi | e method of Ht t pdFi | eHandl er subclasses. The
example mai n provided demonstrates handling template object with Ht t pdFSTenpl at eShel | .

By default the MIME type for the expanded content is aways text/htm . This can be
overridden if the | NC_TEMPLATE_M ME_TYPES feature is enabled. When enabled files carrying the
expanded_m me_t ype attribute will use the value of that attribute as the MIME type.

Public Methods
Ht t pdFSTenpl at eShel |

Ht t pdFSTenpl at eShel | : : Ht t pdFSTenpl at eShel |
(Htt pdFi | eHandl er: : Request St ate &state);

Constructor for Ht t pdFSTenpl at eShel | . A referenceto st at e is kept inside the shell object. It is
therefore important that the lifetime of the shell is a subset of the lifetime of the file request.

Note

After construction the shell can be inserted into a template processor via a
Ht t pdTenpl at eScope. This is rarely necessary, however, because the entire
functionality of processing a template is implemented in the Execut e (static) method of
this class.

State
Ht t pdFi | eHandl er: : Request State & Htt pdFSTenpl ateShel | :: State (void);

This method returns the stored reference to the request state. Thisis really a convenience mechanism so
that any handler in the chain can obtain areference to the per-request state.

TopSt at e

Ht t pdFi | eHandl er: : Request St at e & Htt pdFSTenpl at eShel | :: TopStat e (voi d);

Given a pointer to a template command obtain the request state object. Subclasses of
Ht t pdFi | eHandl er canusethenpDat a member to store application-specific data. Thishelper allows
easy access to that pointer from the command object.

Note
Thisis astatic method and does not require an instance of Ht t pdFSTenpl at eShel | .

é Caution
This method should only be called after at least one lexical scope level has been established.

159

Generating Dynamic
Content with Templates

Execut e

i nt Ht t pdFSTenpl at eShel | : : Execut e (Htt pdFi | eHandl er: : Request St at e
&state, HttpdSynbol Tabl e *p_synbol s);

This method handles all of the setup work involved in processing a request from the DoFi | e of
Ht t pdFi | eHandl er . It creates atemplate processor object, sets up the input and output, installs atop-
level symbol table, places p_synbol s inthe scopelist, and finally executes the template.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes’).

@ Note
Thisis astatic method and does not require an instance of Ht t pdFSTenpl at eShel | .

Ht t pdFSTenpl at eRequest Reference

Introduction

The Ht t pdFSTenpl at eRequest classis subclass of Ht t pdTenpl at ePr ocessor . The purpose
of the class is to provide a simple way of using the Ht t pdFSTenpl at eShel | class with handlers
subclassed from Ht t pdFi | eHandl er .

When arequest for atemplate comesintoasubclassof Ht t pdFi | eHandl er aninstance of thisclasscan
be associated with the Ht t pdFi | eHandl er : : Request St at e object. Once associated symbol table
instances may be attached to the Ht t pdFSTenpl at eRequest as necessary. Finally, the Execut e
method is called to evaluate the associated templ ate.

All of the machinery for opening the templatefile, creating the shell scope and handling errorsiswrapped
up inside the methods of this class. If only one symbol table is needed then an even easier approach may
be used: Simply call the static Ht t pdFSTenpl at eShel | : : Execut e method.

Public Methods
Ht t pdFSTenpl at eRequest

Ht t pdFSTenpl at eRequest : : Ht t pdFSTenpl at eRequest
(Htt pdFi | eHandl er: : Request State &state);

Constructor for Ht t pdFSTenpl at eRequest . A referenceto st at e iskept inside the request object.
It istherefore important that the lifetime of the request is a subset of the lifetime of the file request.

Execut e

i nt HttpdFSTenpl at eRequest : : Execute (void);

This method actually executesthe template. It is assumed that all initial symbol tables have been attached
tothe Ht t pdFSTenpl at eRequest object before calling this method.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes’).

160

Generating Dynamic
Content with Templates

Ht t pdConst ant Synbol Tabl e Reference

Introduction

This class introduces a simple way to map string constants into templates. It is useful to avoid the
proliferation of many nearly identical template files.

A simple mapping of evaluation name to string constant is specified during object construction via an
array of HttpdPair structures.

Public Methods
Ht t pdConst ant Synbol Tabl e

Ht t pdConst ant Synbol Tabl e: : Ht t pdConst ant Synbol Table (const Ht t pdPai r
*p table, size t numpairs);

Initialize the constant symbol table to use the symbols and values specified by p_t abl e. No copy
of the table is made, therefore the lifetime of the table must meet or exceed the lifetime of the
Ht t pdConst ant Synbol Tabl e object.

Note
Thetable specified by p_t abl e issearched using abinary search algorithm. The table must
be in sorted order.

Ht t pdSynbol Map Reference

Introduction

Constructing code to handle fetching of variables for templates that do reporting can become tedious and
resultin codebloat. Ht t pdSynbol Map actsasageneric symbol tableimplementation for dealing with C
or C++ structures. When constructed it is passed an array of Ht t pdSynbol Ent r y structuresthat define
the layout of the fieldsin an application specific structure.

Note
Because a binary search is used on the Ht t pdSynbol Ent ry array, the elements must be
sorted on the name field.

Ht t pdSynbol Ent ry associates a field name with a byte offset to locate the data item in question and
function pointers for processing the commands. Because it uses function pointers to handle the actions it
can be extended easily without subclassing. TheHt t pdSynmbol Map classcontains severa static methods
that handle most common data types.

Table5.2. Ht t pdSynbol Map Default Handlers

M ethod Template Directive Data Type Description

Eval String eval const char * A pointer to a
NUL-terminated string
is formatted “as is’
excluding the NUL byte.

161

Generating Dynamic
Content with Templates

Method

Template Directive

Data Type

Description

Eval Stri ngBuffer

eval

const char array

An array of characters
(NUL-terminated string)

Eval U ong

eval

unsigned long

The vaue is displayed
as decimal with as many
digits asrequired.

Eval HexUl ong

eval

unsigned long

The vaue is displayed
as hexadecimal with as
many digits as the
maximum possible value
would take.

Eval Long

eval

long

The signed vaue is
displayed in decimal
with as many digits as
required. An optional
leading minusindicates a
negative value.

CondBool

Given the following example object from an application using Seminole:

struct Userlnfo

{
Userlnfo
const char
unsi gned | ong
| ong
bool

}s

All conditional directives

*next ;
*name;
useri d;
bal ance;
| ogged_on;

bool

A C++ bool vaue is
examined and used as
the basis for the template
condition.

Thefollowing array of Ht t pdSynbol Ent r y objects describes the above structure;

const

{
{

"bal ance",

of f set of (User | nf o,

Ht t pdSynbol Map: : Eval Long,

NULL,
NULL

"l ogged_on",

of f set of (User | nf o,

NULL,

Ht t pdSynbol Entry Userlnfo_map[] =

bal ance),

/1 Eval uation

/1 Loopi ng

/1 Condi tional

| ogged_on),

/1 Eval uation

162

Generating Dynamic
Content with Templates

NULL, /1 Loopi ng
Ht t pdSynbol Map: : CondBool /1 Conditional
b
{
"name",
of f set of (User | nfo, name),
Ht t pdSynbol Map: : Eval Stri ng, /1 Eval uation
NULL, /1 Loopi ng
NULL /1 Condi tional
b
{
"userid",
of f set of (User | nfo, userid),
Ht t pdSynbol Map: : Eval HexU ong, // Eval uation
NULL, /1 Loopi ng
NULL /1 Condi tional
}

b

Using the above symbol map we can desigh atemplate for displaying user recordsin an HTML table:

<t abl e>
<t h>
<t d>Nane</td>
<t d>Bal ance</td>
<td>User ID</td>
<t d>Logged On</td>
</th>
%1 oop: user _t abl e} %
<tr>
<t d>% eval : nanme} %/ t d>
<t d>% eval : bal ance} %/ t d>
<td>% eval : useri d} %/ td>
<td>%if:| ogged_on}%yes% el se} mo% endi f} ¥/t d>
</tr>
% endl oop} %

Writing the code to then traverse the user_table loop becomestrivial:

i nt MySynbol Tabl e: : Handl eLoop(Ht t pdLoopComrand *p_I oop)
{

if (strcnp(p_l oop->Nanme(), "user_table") == 0)

{

Userlnfo *ui;

for(ui = userList; ui->next !'= NULL; ui = ui->next)
{
Ht t pdSynbol Map map(User | nf o_nmap,
HTTPD_NUMELEM User | nf o_nap),

163

Generating Dynamic
Content with Templates

(const void *)ui);
Ht t pdTenpl at eScope | oop_scope(p_I oop->Processor (), &map);

int rc = p_loop->lterate();
if (rc 1=0)
return (rc);
}
}
el se
return (HTTPD_TEMPLATE_NOT_HANDLED) ;

Note

Because the usage of Ht t pdSynbol Map and Ht t pdTenpl at eScope together is so
common, the above example can be simplified with the Ht t pdScopedSynbol Map that
acts as an automatically scoped Ht t pdSynbol Map.

Public Methods
Ht t pdSynbol Map

Ht t pdSynbol Map: : Ht t pdSynbol Map (const Ht t pdSynbol Entry *p_table,
size_t num el em const voi d *p_base, i nt not _f ound =
HTTPD_TEMPLATE_NOT_HANDLED) ;

The constructor of thisclassinitializesthe symbol table from the sorted table of elements(p_t abl e). The
number of elements in the table should be passed as num_el em The parameter p_base should point
to the object associated with the symbols.

The optional not _f ound argument is the result code to return if the symbol is not found. Ordinarily
the default of HTTPD_TEMPLATE_NOT_HANDLED is appropriate. However, if the symbol map is the
terminal symbol table then HTTPD_TEMPLATE UNKNOAN_NANME should be used to prevent further
searching.

Ht t pdScopedSynbol Map Reference

Introduction

Ht t pdScopedSynbol Map is wrapper class for Ht t pdSynbol Map that automatically inserts and
removes its self from the lexical scope of aninstance of Ht t pdTenpl at ePr ocessor .

This class makes certain constructs, such as looping over alist of structures, much easier. The codein the
HttpdSymbolMap example can be simplified down to:

i nt MySynbol Tabl e: : Handl eLoop(Ht t pdLoopComrand *p_I oop)

{
if (strcnp(p_l oop->Nane(), "user_table") == 0)

{

Userlinfo *ui;

164

Generating Dynamic
Content with Templates

for(ui = userList; ui->next !'= NULL; ui = ui->next)
{
Ht t pdScopedSynbol Map map(p_l oop- >Processor (),
User I nf o_map,
HTTPD_NUMELEM User | nf o_nap),
(const void *)ui);

int rc = p_loop->lterate();
if (rc 1=0)
return (rc);
}
}

el se
return (HTTPD_TEMPLATE_NOT_HANDLED) ;

Public Methods
Ht t pdScopedSynbol Map

Ht t pdScopedSynbol Map: : Ht t pdScopedSynbol Map (Htt pdTenpl at ePr ocessor
*p_processor, const HtpdSynbol Entry *p_table, size_t numelem const
void *p_base);

The constructor of this class initializes the symbol table from the table defined by p_t abl e and
num el em The new symbol table is inserted in the top of the scopelist of p_pr ocessor . The object
isremoved from the scope list when it is destroyed.

CGl-template Interfacing

Introduction

There may be cases when repeated HTML forms must be generated for "wizard" like interfaces. In these
situations it may be helpful to propagate CGI parameters into a template. There are three classes with
dlightly different interfaces that can be used to accomplish this goal.

» Ht t pdCgi Synbol s provides generic template support for any kind of name-value pair storage.

e Htt pdCgi Li st Synbol s provides template support for a singly-linked list of
Ht t pdCgi Par anet er objects. These lists are returned from the CGI parser routines. Because the
lists are ordered this class also supports looping directives.

* Htt pdCgi HashSymnbol s provides template support for a Ht t pdCgi Hash object. Unlike linked-
lists, hash objects have quicker lookup performance. However, they are not ordered in any meaningful
way so no looping directives are defined.

All of these classes are derived from Ht t pdPr ef i xSynbol Tabl e so that multiple instances can be
active simultaneously with different lists and no ambiguity.

For all of these commands the parameter name is specified with the nane attribute. If no nane attribute
is specified then the current iteration (if any) position is used.

e The val symbol evaluates to the contents of the specified parameter. If the def aul t attribute is
specified and no parameter exists for that name then the its value is used instead.

165

Generating Dynamic
Content with Templates

e Thecurrent symboal isthe current iteration point (if any).
e Theexi st s condition istrueif the specified variable exists.

e Thefor-each loop is only available when using the Ht t pdCgi Li st Synbol s class. It iterates
through each Ht t pdCgi Par amet er nodein order.

Note

Formatting and conditionals are done using the Ht t pdEval Cormand: : For mat and
Ht t pdCondi ti onal Command: : Test methods. Any behavior those methods support
are supported by these classes.

Public Methods

Ht t pdCgi Synbol s
Ht t pdCgi Synbol s: : Ht t pdCgi Synbol s (const char *p_prefix);

This constructs the basic CGlI interface class for templates. The class responds to commands with the
specified prefix. This classis an abstract base class and can not be instantiated directly. Instead, it must
be subclassed and the Fi nd method implemented.

Ht t pdCgi Li st Synbol s

Ht t pdCgi Li st Synbol s: : Ht t pdCgi Li st Synbol s (Htt pdCgi Paraneter *p_list,
const char *p_prefix = "cgi");

This constructs the CGlI interface class that uses a linked-list of Ht t pdCgi Par anet er nodes pointed
tobyp_list.

Ht t pdCgi HashSynbol s

Ht t pdCgi HashSynbol s: : Ht t pdCgi HashSynmbol s (Htt pdCgi Hash &hash, const
char *p_prefix = "cgi");

This constructs the CGlI interface class that uses a hash table implemented by Ht t pdCgi Hash.

Protected Methods
Fi nd
Ht t pdCgi Par aneter *Htt pdCgi Synbol s:: Find (const char *p_key);

This method should return a pointer to a Ht t pdCgi Par anet er object where the npKey member is
equal to the string in p_key. If no such parameter exists then this routine may return NULL.

Ht t pdLoopCount er Synbol s Reference

Introduction

Thisclassisasimple hel per that can be used to expose theloop counter of aHt t pdLoopCommand object
to templates. The principle use of this class is for numbering rows of atable or highlighting aternating
entries of alist.

166

Generating Dynamic
Content with Templates

The typical usage for this classisto allocate it on the stack during the handling of aloop command. This
class automatically stacks itself on the symbol scope of the associated loop command. For example:

i nt SomeSymnbol Tabl e: : Handl eLoop(Ht t pdLoopComand *p_I| oop)

{
Ht t pdLoopCount er Synbol s | cs(p_Il oop);

Public Methods
Ht t pdLoopCount er Synbol s

Ht t pdLoopCount er Synbol s: : Ht t pdLoopCount er Synbol s (const
Ht t pdLoopCommand *p_| oop, const char *p_prefix = nDefaul tPrefix);

Thismethod constructsthe loop-counter symbol table and installsit in the scope of thep_| oop command.
For the duration of this object (which must be lessthan the lifetime of the Ht t pdLoopCormand object)
the loop counter may be accessed within the loop body.

The p_pr ef i x function specifies the prefix used for accessing the loop counter. The default value is
| oop- count er . Evaluating this symbol results in formatting the numerical value of the loop counter.
If the attribute bi as is present then this value is added to the counter before formatting. See the integer
formatter reference for details.

The loop counter can also be tested by using template conditionals on the prefix string followed by a
relational test as specified in the unsigned value conditional s section.

For exampleto number alist of entriesin atable (starting at 1) and having every other row use an alternate
background color consider the following fragment:

% | oop: t abl e- obj ects} %
<tr
% if:loop-counter-div to=2}%
bgcol or =" #555555"
% el se} %
bgcol or =" #bbbbbb"
% endi f}%
>
<td>% eval : | oop-counter bias=1}%/td>
<t d>% eval : sone- synbol } %/t d>
</tr>
% endl oop} %

Public Data

TheHt t pdLoopCount er Synbol s definesastatic datamember called mDef aul t withthefollowing
definition:

167

Generating Dynamic
Content with Templates

static const char mDefault[] = "l oop-counter”;

This variable is used as the default command prefix for the symbols of the
Ht t pdLoopCount er Synbol s symbol table.

168

Chapter 6. Processing XML

“Streamy” Processing of XML

Seminole includes a set of classes to assist in parsing XML documents. Unlike some parsers
Ht t pdXm Par ser isnot avalidating parser. The parser also operatesin a” streamy” fashion. Thismeans
that the document can be pumped piecemeal into the parser as it arrives. The Ht t pdXm Par ser is
derived from HttpdFifo. This allows POST requests to easily drive the parser with Ht t pdRecei ver or
Ht t pdBoundar yReader objects.

Therearetwo different modelsof processing XML. Thefirst model, implemented by Ht t pdXm Par ser,
calls various overridable methods of the parser as syntax is recognized. The second model, implemented
by Ht t pdXm DonBui | der , converts the entire document into an in-memory structure.

In memory constrained environments or when dealing with very large documents the callback-driven
approach is preferrable as there is no intermediate representation stored in memory. If the document can
not be processed until the entire document is parsed then the latter approach makes more sense. Infactitis
only natural that Ht t pdXm DonBui | der isimplemented using Ht t pdXm Par ser asits base class.
The events trigger the construction of the tree structure.

The XML framework is defined in a header file called sem xmni . h. In order to use any of these classes
or methods, this header file must be included.

Ht t pdXm Attri but e Reference

Introduction

This class represents an attribute on Ht t pdXm Node and Ht t pd X DomNode objects.

Public Methods

Fr eeLi st

Fi nd

void HtpdXm Attribute::FreeList (HtpdXm Attribute *p_list);

DestroysaHt t pdXm At tri but e list, and freesits resources.

Htt pdXm Attribute *HttpdXm Attribute::Find (HtpdXm Attribute *p_|ist,
const char *p_nane);

Find the named attribute the specified node forward. Typically this method is called from the first nodein
thelist but it can be used to walk alist with multiple parameters of the same name.

On success this method returns a pointer to the found node. NULL is returned on error.

Fi ndVal ue

const char *HttpdXm Attribute::FindValue (const HttpdXm Attribute
*p_list, const char *p_nane);

169

Processing XML

Find the named parameter from the current node forward.

On success this method returnsthe value of the found node. NULL isreturned if the node can not be found.

Fi ndVal ue (Namespace version)

const char *HttpdXm Attribute::FindValue (const HttpdCgi Paraneter
*p_list, const char *p_nane, const char *p_nanespace);

Find the the parameter named p__nare that belongs to the namespace p_nanespace.

On success this method returns the value of the found node. NULL is returned if no node satisfies the
search criteria

Note
This method isonly present if the INC_XML_NAMESPACES feature is enabled.

CopylLi st

int HtpdXm Attribute:: CopyLi st (HttpdXm Host &host, HttpdXm Attribute
*&v result, const HttpdXm Attribute *p_src);

This static method copies all of the nodes pointed to by p_sr ¢ into a new list. The pointer to the first
nodeinthelistisplacedintop_resul t if successful.

The host object provided should be the same one used for the XML document that will be holding this
attribute list.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Public Data
npNext

Ht t pdXm Attribute *nPair;

This member points to the next attribute if any or NULL if there are no attributes.
npNane

char *npNane;

Thisis the name of the attribute.
npVal ue

char *npVal ue;

Thisisthe value of the attribute.
npNamespace

const char *npNanespace;

170

Processing XML

Thismember isthe namespace of theattribute. Thismember isonly presentif INC_XML_NAMESPACES
is enabled.

npSel ect or
char *nmpSel ect or;

This member isthe name of the selector used to give this attribute its namespace. It may be NULL if there
is no selector used. This member isonly present if INC_XML_NAMESPACES s enabled.

Ht t pdXm Host Reference

Introduction

The Ht t pdXm Host class contains infrastructure needed to manage the lifetime of an XML document.
It is important that the lifetime of the Ht t pdXm Host meets or exceeds the lifetime of any XML data
structures.

A single Ht t pdXm Host object may be shared between multiple XML data structures. In fact this is
more efficient in terms of memory usage.

Ht t pdXm Tokeni zer Reference

Introduction

TheHt t pdXm Tokeni zer classisused for tokenizing XML style documents. This pure abstract class
isderived from Ht t pdFi f o and calls various methods when tokens are written to the FIFO. This class
istypically not used directly. Rather it serves as abase for the Ht t pdXnl Par ser class.

Public Methods
Ht t pdXm Tokeni zer

Ht t pdXm Tokeni zer: : H t pdXm Tokeni zer (size_t initial_buffer_size = 0,
size_t max_buffer_size = infinity);

This method constructs the tokenizer. The i nitial _buffer_size and max_buffer_size
arguments control the size of the Ht t pdFi f o buffer.

Fi ni sh
int HttpdXm Tokeni zer:: Finish (void);

This method should be called when no more data is written to the tokenizer. It validates that all of the
written data that has been digested.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). The returned value is obtained from the Er r or method which may be
overridden for additional error reporting.

171

Processing XML

Protected Methods

Transl ateEntity

virtual int HttpdXm Tokeni zer::Transl ateEntity (const char *p_entity,
HtpdWitable *p target);

This method is called to process entity references. The value of the entity named inp_ent i t y should
bewrittentop_t ar get .

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

St art Text

virtual int HttpdXm Tokeni zer:: StartText (void);

This method is called when non-tag content is encountered. It should set the protected data
membernpTar get to awritable object that will receive the content. The default implementation selects
the null sink as the target.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Fi ni shText
int HttpdXm Tokeni zer: : Fi ni shText (void);

Thismethod is called at the end of non-tag content. It may clean up any action doneby St ar t Text . The
default implementation does nothing.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Begi nDoct ype
virtual int HttpdXm Tokeni zer:: Begi nDoctype (void);

This method is called when the special <! DOCTYPE tag is opened. Subclasses must ensure they call the
default implementation at some point to keep the tokenizer state consistent.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

EndDoct ype

virtual int HtpdXm Tokeni zer:: EndDoct ype (void);

This method is called when the special <! DOCTYPE tag is closed. Subclasses must ensure they call the
default implementation at some point to keep the tokenizer state consistent.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

172

Processing XML

ParaneterEntity

virtual int HttpdXm Tokeni zer:: ParanmeterEntity (const char *p_entity);
This method is called when a parameter entity reference (i.e. %ent i t y;) istokenizer.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Token

virtual int HtpdXm Tokeni zer:: Token (char ch);

This pure virtual method is called for various single character separator tokens. Ataminimum <, >, =,/ ,
and insomecases ?, [and] tokens are detected.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

String
virtual int HttpdXm Tokenizer::String (const char *p_string);
This pure virtual method is called when a quoted string is tokenized.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

TakeQuot edStri ng

char *HttpdXm Tokeni zer:: TakeQuot edString (void);

This method may be called within St ri ng to obtain a dynamically allocated (via HttpdOpSys::Malloc)
copy of the quoted string. Calling this method may in some cases be more efficient than copying the string
directly.

Upon success a pointer to the quoted string is returned. Upon failure NULL is returned.

I dentifier
virtual int HtpdXm Tokenizer::Ildentifier (const char *p_id);
This pure virtual method is called when an identifier within atag is tokenized.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Error

virtual int HttpdXm Tokenizer::Error (int error_type, .);

This method is called for malformed input. The er r or _t ype parameter determines how many string
parameters follow.

173

Processing XML

Error Type Additional Parameters

XM._ERR_EXPECTED What was tokenized followed by what was
expected.

XM._ERR_UNEXPECTED The unexpected item.

XML_ERR_UNKNOWN_ENTI TY The undefined entity name.

XML_ERR EARLY_EOF None.

XML_ERR DUP_NS_SELECTOR Selector name.

XM._ERR_UNKNOWN_NS SELECTOR _ON_ATTRSelector name followed by attribute name.

XML_ERR EMPTY_NS_SELECTOR Attribute name.

XM._ERR_UNKNOWN_NS_SEL ECTOR_ON_NODESelector name followed by tag name.

XM._ERR _RESERVED_ SELECTCR Selector name followed by namespace.

XM._ERR_UNCLOSED TAG Tag name

The default implementation returns Ht t pdOpSys: : ERR_BADPARAM and ignores the additional
parameters. The protected data member mLi neNumnber isthe current line number within the document
where the error occured.

Ht t pdXm Par ser Reference

Introduction

The Htt pdXm Parser class is used for processing XML documents. It is subclassed (via
Ht t pdXm Tokeni zer) fromHt t pdFi f o and sharesthe samepublicinterfacefor receiving data. Only
the additional methods are documented here.

Public Methods
Ht t pdXm Par ser

Ht t pdXm Parser:: H t pdXm Parser (Ht pdXm Host &host, HttpdUint8 flags =
0, size_ t initial _buffer_size = 0, size_t max_buffer_size = infinity);

Thismethod constructsthe parser. Thei ni ti al _buf f er _si ze andmax_buf f er _si ze arguments
control the size of the Ht t pdFi f o buffer.

If f | ags hastheHt t pdXm Par ser: : XM._OPT_ANONYMOUS CL OSE bit set then the SGML close-
tag shortcut (</ >) optimization is supported.

The host object is used to manage resources during the parse. Any objects that remain after the parse
(such as nodes and attribute lists) refer to memory allocated within this object. As such it is important to
ensure that the lifetime of host is greater than any objects that survive the parsing operation.

The object can not be used until the Cr eat e method is called first.
Create

int HttpdXm Parser::Create (void);

This method creates and initializes the parser.

174

Processing XML

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes’).

Fi ni sh
int HttpdXm Parser::Finish (void);

This method should be called after the entire document has been written to the parser. It validates that the
parse has digested all data and that all of the state machines are in their appropriate idle states.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS

Abstraction Layer Error Codes’). The returned value is obtained from the Er r or method which may be
overridden for additional error reporting.

Protected Methods

Processi ngl nstruction

vi rtual i nt Ht t pdXm Par ser: : Processi ngl nstructi on (const char
*p_instruction, const char *p_attribute, const char *p_val ue);

This method is called when a processing instruction directive is encountered. For example the following
processing directive:

<?xm version="1.0" standal one='yes' ?>

Would result in two distinct calls to this method. The first call would have the following parameters:

Parameter Value
p_i nstruction xm
p_attribute version
p_val ue 1.0

The second call would be as follows:

Parameter Value
p_instruction xm
p_attribute st andal one
p_val ue yes

The default behavior of this method isto simply return O (success).

Root Body

virtual int HttpdXm Parser:: RootBody (HttpdWitable *&p target);

This method is called when textual content is present for the root of the document. Under normal
circumstancesthisisconsidered invalid XML However to allow XML fragmentsto be parsed this method
may optionally place the address of awritable objectinp_t ar get .

175

Processing XML

The default behavior of thismethod istosetp_target toHtt pdNul | Si nk: : Nul | () andreturn 0
(success).

Cl oseRoot Body

virtual int HtpdXm Parser::d oseRoot Body (void);

Thismethod is called to complete the processing of textual content at the root of the document. Subclasses
may use it to complete any actions performed in Root Body.

The default behavior of this method is simply to return O (success).

Al | ocat eNode

vi rtual i nt Ht t pdXm Par ser: : Al | ocat eNode (const char *p_tag,
Ht t pdXm Node *&p_node);

This method is called to allocate a new node when an opening tag construct is seen. The default
implementation allocates an instance of Ht t pdXm Node. Subclasses may override this method to return
subclasses of Ht t pdXm Node with specialized behavior. This is how “event driven” parsing works.
Subclasses of Ht t pdXm Node are defined to handle each particular state. This factory method returns
the appropriate object depending on the tags seen. These subclasses then handle the parse of the entire
tag as necessary.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

| nner nost Node
Ht t pdXm Node *Htt pdXm Parser: : | nnernost Node (void);

This method returns the innermost node currently being parsed. This method may be called during
Al | ocat eNode to get additional context if needed. The return value is never NULL. Additionaly it is
invalid to call this method during Root Body and Cl oseRoot Body.

| sPat h

bool HttpdXm Parser::lsPath (const char *p_path);

This method tests if the current state of the document matches p_pat h. Just like a filesystem path the
components of the path are separated with / . The path can either be relative or absolute if it begins with
aleading/ .

Just like the | nner nbost Node method this method is intended to be called primarily from
implementations of Al | ocat eNode. Consider the following document:

<a>

<c>
<d>f oo</ d>
</c>
</ b>
</ a>

176

Processing XML

If we are constructing node d then the absolute path would be/ a/ b/ ¢. A matching relative path would
beb/ c.

If the path matches the current point of the parse true is returned. Otherwise falseis returned.

Ht t pdXm Node Reference

Introduction

TheHt t pdXn Node class represents atag, its attributes, and content. Instances of this class are created
by Ht t pdXm Par ser: : Al | ocat eNode.

Once the parser creates the node it calls various methods to process the content of the tag. The default
implementation of Ht t pdXm Node records attributes and throws away the contents of the tag. However
this behavior can be altered via subclassing.

Public Methods
Ht t pdXm Node

Ht t pdXm Node: : Ht t pdXm Node (const char *p_tag, int &c);

This constructs the node and saves a copy of p_t ag internally. Upon successr ¢ is set to 0; otherwise
r ¢ isset to asystem dependent error value (see Table 4.1, “OS Abstraction Layer Error Codes’).

Tag
const char *HttpdXm Node:: Tag (void);

This method returns a pointer to the tag name of this node.

Note
The return value can never be NULL.

Nanespace

const char *HttpdXn Node: : Nanespace (void);

This method returns a pointer to the namespace of this node. It never returns NULL.

Note
Thismethod is only available if the INC_XML_NAMESPACES feature is enabl ed.

Sel ect or
const char *Ht t pdXm Node: : Sel ector (void);

This method returns a pointer to the selector used to assign the namespace of this node. If no selector was
used this method returns NULL.

177

Processing XML

Note
This method isonly available if the INC_XML_NAMESPACES feature is enabled.

Protected Methods
BodySi nk

vi rtual i nt Ht t pdXm Node: : BodySi nk (Ht t pdXm Par ser *p_parser,
HtpdWitable *& target);

This method is called to obtain a writable object to process the body contents of this tag. If it returns
successthen p_t ar get should point to an object that can receive the tag contents.

The default behavior of thismethod isto assign Ht t pdNul | Si nk: : Nul | () top_t ar get andreturn
0 (success).

Cl oseBodySi nk
virtual int HttpdXm Node:: d oseBodySi nk (voi d);

This method is called to complete the processing of the textual content of the node. Subclasses may use
it to complete any actions performed in Body Si nk.

The default behavior of this method is simply to return O (success).

Attri but e (First Pass)

virtual int HttpdXm Node:: Attribute (HttpdXn Parser *p_parser, const
char *p_name, const char *p_val ue);

This method is called for each attribute as it is parsed. The attribute data can be processed however
is desired. However if this method returns HTTPD _ERR _SAVE ATTRI BUTE then the attribute is
converted into a Ht t pdXnl At t ri but e object and passed to the At t ri but esConpl et e method
that takes the list of saved attributes. Returning this value is possibly more efficient than constructing the
Ht t pdXm At tri but e directly in this method.

Thedefault implementation of thismethod simply returnsHTTPD_ERR _SAVE ATTRI BUTEinall cases.

If O isreturned the attributeis considered processed and no Ht t pdCgi Par anet er object isconstructed;
otherwise a system dependent error value may be returned (see Table 4.1, “OS Abstraction Layer Error
Codes").

Note

Even if the INC_ XML_NAMESPACES feature is enabled there is no namespace
information available when thismethod iscalled. If the namespace of an attributeisimportant
the default implementation of this method should be used and processing should be done in
the At t ri but esConpl et e method.

AttributesConpl ete

virtual int HtpdXm Node:: Attri butesConpl ete (HttpdXn Parser *p_parser,
Htt pdXm Attribute *p_saved attribs);

178

Processing XML

Thismethod is called after all of the attributes for thistag have been processed. After thismethodiscalled
no further callstothe At t ri but e method will be made.

The default implementation simply returns 0 (success).

Cl ose

virtual int HtpdXm Node:: C ose (HtpdXm Parser *p_parser);

This method is called after atag is entirely processed. No further calls will be made to any of the other
virtual methods of this object after this method is called. If this method returns the special status code
HTTPD_ERR DELETE_NODE the parser will automatically delete this object. If O isreturned then some
other object must eventually delete this object.

The default implementation simply returns HTTPD_ERR _DELETE_NODE since by default the nodes are
not kept after they are processed.

Ht t pdXm DonBui | der Reference

Introduction

The Htt pdXm DonBui | der class is derived from Ht t pdXm Par ser to construct a tree of
Ht t pdXm DomNode objects representative of the document. Unlike Ht t pdXm Par ser thisclassis
not intended to be subclassed; rather it provides a simple interface to consume a whole document.

The document is converted to an in-memory tree representing the content of the document. This data
structure, called a DOM or Document Object Model, is composed of a collection of one or more
Ht t pdXm DonNode objects. The tree can be manipulated and then seralized back to XML with the the
section called “Ht t pdXm DomWV i t er Reference’ class.

Public Methods
Ht t pdXm DonBui | der

Ht t pdXm DonBui | der: : Ht t pdXm DonBui | der (Htt pdXm Host &host, HttpdU nt8
flags = 0, sizet initial buffer _size = 0, size t max_buffer_size =
infinity);

Thismethod constructstheparser. Thei ni ti al _buf fer _si zeandnmax_buf f er _si ze arguments
control the size of the Ht t pdFi f o buffer.

Thef | ags argument is passed to the Ht t pdXiml Par ser constructor.

The host object is used to manage resources for the resulting DOM tree. during the parse. Assuch it is
important to ensure that the lifetime of host isgreater than the DOM tree.

The object can not be used until the Cr eat e method is called first.
Create

int HttpdXm DonBuil der:: Create (void);

This method creates and initializes the builder.

179

Processing XML

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes’).

Root
Ht t pdXm DomNode * Ht t pdXml DonBui | der: : Root (voi d);
This method returns a pointer to the root node of the document.
Lookup

const char *HttpdXm DonBui | der:: Lookup (const char *p_path);

Thismethod gets the content of the requested node. Just like afilesystem path the componentsof p_pat h
are separated with / characters. The path is always absolute to the root of the document and should not
begin with a/ unless the root node of the document is being requested.

By default the body contents of the node is returned. However an attribute value may be selected with a &
suffix. If the path does not reference anode in the tree then NULL is returned.

Consider the following document:

<a>
<b status="enabl ed">
<c id="nynode"/>
<c i d="ot hernode">Sone Dat a</c>
<d>This is node D </d>
<c>Fi nal node</c>
</ b>
</ a>

Consider the following queries:

Query Value

a/b/d This is node D
al/ b&st at us enabl ed
a/b/c&d mynode

alb/cé& d mynode

al/ b/ c>1 Sone Data

a/ b/ c>1& d ot her node

al b/ c>2 Fi nal node

If the INC_XML_NAMESPACES option is enabled then there is an additional syntax to restrict a
particular tag to a namespace. If no namespace is specified then the namespace is ignored. Consider the
following XML document with namespace designations:

<a xm ns: A="al pha:" xm ns: B="beta: ">

180

Processing XML

<A. b status="enabl ed">
<c id="nynode"/>
<B: c id="ot her node">Sone Dat a</ B: c>
<d>Thi s i s node D! </ d>
<c>Fi nal node</c>
</ A: b>
</ a>

To select the node ¢ that isinthebet a: namespace the path would bea/ (al pha:) b/ (beta:)c.

LookupNode

Set

Ht t pdXm DonNode *Ht t pdXm DonBui | der: : LookupNode (const char
*p_xm _path);

This method returns a pointer to the node specified by p_xm _pat h similar to the Lookup method.
However the & specifier for attributesis not allowed in the path string.

If the node can not be found NULL is returned.

int HttpdXm DonBuil der::Set (const char *p_xm _path, const char
*p_val ue);

This method sets the element specified by p_xm _pat h to p_val ue. Both node bodies and attributes
can be set with this method.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdXm DonmNode Reference

Introduction

Instances of Htt pdXm DomNode are created and arranged into a tree structure by the related
Ht t pdXm DonBui | der class. This class is not mean to be subclassed but rather the tree of objects
traversed as needed. This classis derived from Ht t pdXm Node and supportsits public interface.

Each node contains the tag, its attributes, the body content of the tag, and alist of child nodes. The treeis
formed because every child node can have alist of zero or more children. A special nodeis created for the
root of the tree. The root node always has no attributes and has atag name of <r oot >. The body contains
any text that is outside the root tags during the parse and the list of children contain the top-level tags.

Public Methods
Chi l dren

Ht t pdLi st &Htt pdXm DomNode: : Chi | dren (void);

This method returns areference to the list of child nodes contained within this node.

181

Processing XML

Par ent

Ht t pdXm DonNode *Htt pdXml DomNode: : Parent (void);

This method returns a pointer to the parent of this node. If this is the root node of the document then
NULL isreturned.

Attri butes

Body

Ht t pdXm Attri butes *HttpdXn DomNode: : Attri butes (void);

This method returns a pointer the list of attribute pairs for this node.

Ht t pdStri ngSi nk &Ht t pdXnl DonNode: : Body (voi d);

This method returns a reference to the string sink that is used to store the tags body content.

BodySi gni fi cant

bool HttpdXm DonNode: : BodySi gni fi cant (void);

This method returns true if the body of this node contains any non-whitespace characters. Because XML
uses nodes both as containers of dataand as structural elements oftenitisuseful to detect structural nodes.
This method can be used to help determine if the body of anode is relevant.

CopyToHead

i nt HttpdXm DomNode: : CopyToHead (HttpdXm Host &host, HttpdXm DonNode
*p_parent);

This method copies the node (and all of its children). The new subtree is inserted as the first child of
p_parent.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). This operation is atomic: either the entire tree is copied or no portion
of the copy remains.

CopyToTai l

i nt HttpdXm DomNode: : CopyToTail (HttpdXm Host &host, HttpdXm DonNode
*p_parent);

This method copies the node (and all of its children). The new subtree is inserted as the last child of
p_parent.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). This operation is atomic: either the entire tree is copied or no portion
of the copy remains.

Lookup

const char *HttpdXn DonmNode: : Lookup (const char *p_path);

This method gets the content of the requested node relative to this node. See
HttpdXmIDomBuilder::L ookup for adescription of p_pat h.

182

Processing XML

LookupNode
Ht t pdXm DomNode * Ht t pdXnl DonNode: : LookupNode (const char *p_xm _path);

This method returns a pointer to the node specified by p_xm _pat h similar to the Lookup method.
However the & specifier for attributesis not allowed in the path string.

If the node can not be found NULL is returned.

Set

i nt HttpdXn DomNode: : Set (const char *p_xml _path, const char *p_val ue);

This method sets the element specified by p_xm _pat h to p_val ue. Both node bodies and attributes
can be set with this method.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

AddAttri but e (namespace version)

int HttpdXm DonNode: : AddAttri bute (HtpdXm Host &host, const char
*p_name, const char *p_val ue, const char *p_namespace);

This method adds an attribute to the node. The host argument should be the host object used during the
parse of the document containing this node. p_nanespace must not be NULL.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

AddAttri bute

int HttpdXm DonNode: : AddAttri bute (HtpdXm Host &host, const char
*p_nanme, const char *p_val ue);

This method adds an attribute to the node. The host argument should be the host object used during the
parse of the document containing this node.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

RenoveAttri bute
bool HttpdXm DonNode: : RenoveAttribute (HitpdXm Attribute *p_attr);
This method removes the specified attribute object from the node.

If the attribute was present then true is returned. Otherwise falseis returned.

| nsertLast Chi | d

int HtpdXm DonNode: : I nsertlLast Child (HttpdXm Host &host, const char
*p_tag, HttpdXnm DomNode *&p new, const char *p_nanespace = "");

This method adds anew node asthe last child of the current node. Thehost argument should be the host
object used during the parse of the document.

183

Processing XML

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful then p_newwill point to the newly created node.

InsertFirstChild

int HttpdXm DomNode: : I nsertFirstChild (HttpdXm Host &host, const char
*p_tag, HttpdXnm DomNode *&p new, const char *p_nanmespace = "");

This method adds a new node as thefirst child of the current node. Thehost argument should be the host
object used during the parse of the document.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful then p_newwill point to the newly created node.

| nsert Before

int HtpdXm DomNode: : I nsertBefore (HtpdXm Host &host, const char
*p_tag, HttpdXm DonNode *&p_new, const char *p_nanmespace = "");

This method adds a new node as a sibling prior to the current node. The host argument should be the
host object used during the parse of the document.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful then p_newwill point to the newly created node.

| nsert After

i nt Htt pdXnl DonNode: : I nsert After (HttpdXnl Host &host, const char *p_tag,
Ht t pdXm DomNode *&p_new, const char *p_nanespace = "");

This method adds a new node as a sibling of the current node. The host argument should be the host
object used during the parse of the document.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”). If successful then p_newwill point to the newly created node.

Ht t pdXm Dom\W it er Reference

Introduction

TheHt t pdXm DomW i t er utility class can be used to write Ht t pdXm DonmNode trees out as XML.
The intent of using this class is as a temporary object to walk a tree of nodes and outputting the XML
representation to a HttpdWritable object.

When created the Ht t pdXnmi Dom i t er can be configured with a variety of options to affect the
generated XML.

Public Methods
Ht t pdXm DomWVit er

Ht t pdXm DomWiter:: H t pdXm DomWiter (HitpdWitable *p_target, unsigned
int indent = 2, unsigned int base_indent = 0, HtpdUint8 flags = 0,
unsi gned short recursion_limt = USHRT_MAX);

184

Processing XML

Thismethod constructsthewriter object to generate XML top_t ar get . Nodeswill bewritten out with an
initial indent of base_i ndent spaces. Nested nodes will be indented by an additional i ndent spaces.

Thef | ags parameter can be set to any combination of the following options:

Flag M eaning

XM__OPT_ANONYMOUS_CLGCSE A shortcut for terminating leaf nodes </ > will be
used to reduce space.

XM._OPT_TRI M_LEADI NG W5 L eading whitespace on thetext content of nodeswill
be removed during writing.

XM._OPT_TRI M TRAI LI NG W5 Trailing whitespace on the text content of nodeswill
be removed during writing.

XML_OPT_ALWAYS_WRI TE_BODY Always causes the text content of nodes to be

written out. Ordinarilly the writer attempts to
discern structura nodes from nodes containing
content. Nodes that appear to be structural are not
written out. Setting this option disables this check -
increasing the size of the written XML.

XM__OPT_NO _NEWLI NES Causes newlines normally omitted for formatting to
be omitted. This results in more compact, but less
readable output. This option is most effective when
setting thei ndent and base_i ndent toO.

XM__OPT_USE_CDATA Causes CDATA[] encoding to be used if it would
result in a smaller representation. This option is
ignored if INC_XML_DOM_WRITE_CDATA is
zero. Enabling this option consumes more CPU time
during writing.

XM._OPT_DEFAULT NS _USED Indicates that the XML being written is a fragment
within alarger document. The outer document may
have assigned the default namespace to something
besides the null default. In this case this option
should be set so that the default namespace is
assigned to null if itisneeded. Thisoptionisignored
if INC_XML_NAMESPACES is non-zero.

XML_OPT_| GNORE_SELECTORS This option causes the XML to be serialized
without attempting to use the selectors from the
source document for more readable XML. This
option is useful if the XML being written is
a fragment within a larger document and it is
important to avoid namespace selector collisions
with other content. This option is ignored if
INC_XML_NAMESPACES is non-zero.

Therecursion_limt isusedto control stack space consumption. Writing an XML document from
aDOM treeis arecursive process. This parameter limits the depth of the recursion. Attempts to write a
document that requires more recursion than this limit will fail.

Wit eMar kup
int HtpdXm DomWiter::WiteMarkup (const Ht pdXm DonNode *p_node);

This method writes p_node and its children.

185

Processing XML

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WiteChildren
int HtpdXm DomWiter::WiteChildren (const HttpdXm DomNode *p_node);

This method writes the children of p_node.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

W iteDom
int HtpdXm DomWiter::WiteDom (const HttpdXm DonBuil der *p_buil der);

This method writes the document held by p_bui | der .

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

186

Chapter 7. Processing JSON
“Streamy” Processing of JSON

Seminole includes a set of classesto assist in parsing, storing, and serializing JSON data. The parser also
operatesin a“streamy” fashion. This means that the document can be pumped piecemeal into the parser
asit arrives. Additionally isaway to efficiently “patch in” external datainto a JSON data structure. Like
Ht t pdXm Par ser, Ht t pdJsonTokeni zer is derived from HttpdFifo. This allows POST requests
to easily drive the parser with Ht t pdRecei ver or Ht t pdBoundar yReader objects.

JSON analysis is implemented in layers. The first layer, Ht t pdJsonTokeni zer is an abstract
class that calls methods as tokens are recognized. On top of this Ht t pdJsonPar ser subclasses
Ht t pdJsonTokeni zer to maintain state and validate the token stream against the JSON grammar.
Finally Ht t pdJsonBui | der subclasses Ht t pdJsonPar ser and builds a data structure as parsing
progresses representing the JSON input.

Additionally the JSON toolkit contains a number of classes that represent the datatypes present in JISON.
These objects can serialize themselvesin JSON format to an Ht t pdW i t abl e.

The JSON framework is defined in aheader filecalled sem j son. h. In order to use any of these classes
or methods, this header file must be included.

Ht t pdJsonTokeni zer Reference

Introduction

TheHt t pdJsonTokeni zer classisused for tokenizing JSON. This pure abstract classis derived from
Ht t pdFi f o and calls various methods when tokens are written to the FIFO. This classis typically not
used directly. Rather it serves as abase for the Ht t pdJsonPar ser class.

Public Methods
Ht t pdJsonTokeni zer

Ht t pdJsonTokeni zer: : Ht t pdJsonTokeni zer (size_t initial _buffer_size =0,
size t max_buffer_size = infinity);

This method constructs the tokenizer. The initial _buffer size and max_buffer_size
arguments control the size of the Ht t pdFi f o buffer.

Fi ni sh
int HttpdJsonTokeni zer::Finish (void);

This method should be called when no more data is written to the tokenizer. It validates that all of the
written data that has been digested.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). The returned value is obtained from the Er r or method which may be
overridden for additional error reporting.

187

Processing JSON

Protected Methods
Keywor d

virtual int HtpdJsonTokeni zer::Keyword (int kw);

Thismethod is called when a keyword is encountered. The kw parameter identifies the keyword and takes
on one of the following values:

o KW_FALSE for thef al se keyword.
« KW_TRUE for thet r ue keyword.
* KW_NULL forthenul | keyword.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

| dentifier

virtual int HttpdJsonTokenizer::ldentifier (const char *p_identifier);
This method is called for a non-quoted string that is not a keyword.

The buffer pointed to by p_i dentifier is only valid for the duration of the method call. If a
dynamically allocated copy is required then use Ht t pdJsonTokeni zer: : CopySt ri ng rather than
HtpdUtilities::SaveString tomakeaheap resident copy.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Quot edStri ng

Token

Error

virtual int HttpdlsonTokeni zer:: QuotedString (const char *p_string);
This method is called when a quoted string is recognized.

The buffer pointed to by p_string is only valid for the duration of the method call. If a
dynamically allocated copy is required then use Ht t pdJsonTokeni zer : : CopySt ri ng rather than
HttpdUtilities:: SaveString tomakeaheap resident copy.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

virtual int HtpdJsonTokeni zer::Token (char ch);
This pure virtual method is called for the following single character tokens: {,},:,, ,[and].

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

virtual int HtpdJsonTokenizer::Error (int error_type, .);

188

Processing JSON

This method is called for malformed input. The er r or _t ype parameter determines how many string
parameters follow.

Error Type Additional Parameters

JSON_ERR_EXPECTI NG What was expected.

JSON_ERR_UNEXPECTED The unexpected item.

JSON_ERR EARLY_EOCF None.

JSON_ERR BAD STR_ESCAPE Theinvalid escape sequence.
JSON_ERR BAD UNI CODE Theinvalid hexadecimal sequence following a\ u.

The default implementation returns Ht t pdOpSys: : ERR_BADPARAM and ignores the additional
parameters. The protected data member nmLi neNunber isthe current line number within the document
where the error occured.

Ht t pdJsonPar ser Reference

Introduction

The Htt pdJsonParser class is used for processing JSON documents. It is subclassed (via
Ht t pdJsonTokeni zer) from Ht t pdFi f o and shares the same public interface for receiving data.
Only the additional methods are documented here.

Public Methods
Ht t pdJsonPar ser

Ht t pdJsonPar ser: : Ht t pdJsonPar ser (HtpdUint8 flags = O, si ze_t
initial _buffer_size = 0, size_ t max_buffer_size = infinity);

Thismethod constructsthe parser. Thei ni ti al _buf f er _si ze andmax_buf f er _si ze arguments
control the size of the Ht t pdFi f o buffer.

If f1 ags hasthe Ht t pdJsonPar ser: : FLAG QUOTED KEYS_ ONLY hit set then object keys must
be quoted strings and not identifiers; as required by the JSON specification.

The object can not be used until the Cr eat e method is called first.

Create
int HttpdlsonParser::Create (void);
This method creates and initializes the parser.

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes’).

Fi ni sh
int HttpdJsonParser::Finish (void);

This method should be called after the entire document has been written to the parser. It validates that all
of the JSON has been digested and that all of the state machines are in their appropriate idle states.

189

Processing JSON

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). The returned value is obtained from the Er r or method which may be
overridden for additional error reporting.

Protected Methods

TrueVal ue

virtual int HtpdJsonParser:: TrueVal ue (void);

This method is called when a primitive value of t r ue is parsed.

Fal seVal ue

virtual int HtpdJsonParser:: Fal seVal ue (void);

This method is called when a primitive value of f al se is parsed.

Nul | Val ue

virtual int HtpdJsonParser::NullValue (void);

This method is called when a primitive value of nul | is parsed.

StringVval ue

virtual int HttpdJsonParser::StringVal ue (const char *p_string);

This method is called when a string vaue is parsed. If a heap resident copy of
p_string is desired then the Ht t pdJsonTokeni zer: : CopySt ri ng method rather than the
HtpdUtilities::SaveString should beused.

Numer i cVal ue

virtual int HtpdJsonParser:: NunericValue (const char *p_num;

This method is called when a numeric value is parsed.

Push

virtual int HtpdJsonParser::Push (int building);

Thismethod iscalled when acomplex object isentered to push the current state on astack to concentrate on
the newly discovered container object. The bui | di ng parameter can be either JSON_BUI LD_ARRAY
or JSON_BUI LD_OBJECT depending on what is being built.

The mpCont ext member variable may be used to hold the current context to track the complex object
being assembled. If this member is used to store a pointer to dynamically alocated storage then the
overridden Pop method must free this storage before calling Pop in this (the base) class.

Pop

virtual int HtpdJsonParser::Pop (void);

This method is called when a complex object is completed to pop the previous build state from the stack.

190

Processing JSON

Ht t pdJsonBui | der Reference

Introduction

The Ht t pdJsonBui | der class is used for building data structures from JSON documents. It is
subclassed (viaHt t pdJsonPar ser andthenHt t pdJsonTokeni zer) fromHt t pdFi f o and shares
the same public interface for receiving data. Only the additional methods are documented here.

Public Methods
Ht t pdJsonBui | der

Ht t pdJsonBui | der:: H t pdJsonBui l der (HttpdUint8 flags = 0, size_t
initial _buffer_size = 0, size_t max_buffer_size = infinity);

This method constructs the builder. The initial buffer_size and max_buffer_size
arguments control the size of the Ht t pdFi f o buffer.

Thef | ags argument supports all of the optionsin Ht t pdJsonPar ser .

The object can not be used until the Cr eat e method is called first.

Create
int HtpdJsonBuilder::Create (void);
This method creates and initializes the builder.

Upon success, 0 is returned; otherwise an error value is returned (see Table 4.1, “OS Abstraction Layer
Error Codes’).

Fi ni sh
int HttpdJsonBuil der::Finish (void);

This method should be called after the entire document has been written to the builder. The data structure
built should not be accessed until this method is called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS

Abstraction Layer Error Codes”). The returned value is obtained from the Er r or method which may be
overridden for additional error reporting.

Dat um
Ht t pdJsonDat um *Ht t pdJsonBui | der: : Dat um (voi d); const

This method returns a pointer the datum representing the parsed JSON. The datum is owned by the builder
and it will be destroyed when the builder is destroyed.

TakeDat um

Ht t pdJsonDat um *Ht t pdJsonBui | der: : TakeDat um (voi d) ;

191

Processing JSON

This method takes ownership of the datum representing the parsed JSON. The datum must be destroyed
by the caller when it is no longer needed.

@ Note
This method may only be called once and only after Fi ni sh() hasbeen called.

Ht t pdJsonDat umReference

Introduction

The Ht t pdJsonDat umclassis the abstract base class that represents JISON data elements.

Note

This class should not be subclassed outside the JSON toolkit. For efficiency the base class
must know about its derived types. Therefore the primary use of thistypeis as a pointer to
JSON data.

Public Methods
WiteQuotedString

static int HtpdJsonDatum:WiteQuotedString (HtpdWitable *p_target,
const char *p_string);

This static method writes p_string to p_t arget surrounded with double quotes escaping any
characters that the JSON standard requires.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Destr oy

Type

static int HttpdJsonDatum: Destroy (const HttpdJsonDatum *p_datunj;

For efficiency some subclasses of Htt pdJsonDat um are allocated using specialized mechanisms.
Instancesof Ht t pdJsonDat umshould only be destroyed with this static method. Thedel et e operator
should never be applied to this class or its subclasses.

virtual int HtpdJsonDatum : Type (void);

This method returns an identifier of the type of this datum.

Constant Actual Class Description

TYPE_UNDERHNEPdJsonUndef i ned |Unlikenul | the undefined object type represents a value
that is not possibly encoded in JSON. This type is often
returned from methods to indicate that no such value exists.

TYPE_NULL [Ht t pdJsonNul | Thisvauerepresentsanul | in JSON.

192

Processing JSON

Constant Actual Class Description

TYPE_STRI N&t t pdJsonStri ng This value represents a string value.

TYPE_TRUE |Ht t pdJsonTr ue Thisvaluerepresentsthevaluet r ue.

TYPE_FALSEHt t pdJsonFal se Thisvauerepresentsthe valuef al se.

TYPE_LONG |Ht t pdJsonLong This value represents a non-fractional number within the
range of the long type.

TYPE_DOUBLEt t pdJsonDoubl e This value represents a number within the range of the
double type.

TYPE_ARRAYHt t pdJsonArr ay This value represents an array of values.

TYPE_OBJECHt t pdJsonObj ect This value represents amap of string to values.

TYPE_ABSTRACHTpdAbst ract Json This value represents an artificially inserted JSON body.

Serialize
virtual int HtpdJsonDatum: Serialize (HtpdWitable *p_target);
This method serializes this object in JSON notationto p_t ar get .

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Get (by key)
virtual HttpdJsonDatum *Htt pdJsonDatum : Get (const char *p_key);

Thismethod returnsthe object associated withp_key. If novaueispresent or thisvalueisnot acontainer
then a pointer to the undefined object is returned.

Get (by index)
virtual HttpdJsonDatum *Htt pdJsonDatum : Get (size_t index);

Thismethod returnsthevalueati ndex. If no valueispresent or thisvalueisnot a container then a pointer
to the undefined object is returned.

Copy
Ht t pdJsonDat um *Ht t pdJsonDat um : Copy (voi d);

This method returns copies this value (and any values it contains, recursively) and returns the copy. If
there isinsufficient memory then NULL is returned. Upon success the returned value should be destroyed
(viaDest r oy()) whenitisno longer needed.

| sUndef i ned

bool HttpdJsonDatum :|sUndefined (void); const

This method returnst r ue if this value is undefined.

| sNul |

bool HttpdJsonDatum :IsNull (void); const

193

Processing JSON

Thismethod returnst r ue if thisvalueis JSON nul | .

| sTrue
bool HttpdJsonDatum :|1sTrue (void); const
Thismethod returnst r ue if thisvalueisJSON t r ue.

| sFal se
bool HttpdJsonDatum :|sFal se (void); const
Thismethod returnst r ue if thisvalueisJSON f al se.

I sString
bool HttpdJsonDatum :1sString (void); const
This method returnst r ue if thisvaueisastring.

| SsArray

bool Ht tpdJsonDatum :|lsArray (void); const

Thismethod returnst r ue if thisvalueisan array.

| sChj ect

bool HttpdJsonDatum :1sCbject (void); const

This method returnst r ue if thisvalue is a JSON object.
| sDoubl e

bool HttpdJsonDatum :1sDouble (void); const

This method returnst r ue if this value is a double value and floating point JSON support is enabled.
I sLong

bool HttpdJsonDatum :1sLong (void); const

Thismethod returnst r ue if thisvalueisalong value.

| sNumber

bool HttpdJsonDatum :1sNunber (void); const

Thismethod returnst r ue if this value is a number value of either long or double type.

Cet Long

bool HttpdJsonDatum : GetLong (long &); const

194

Processing JSON

If the value can be stored in a long then this method stores the value in | and returnst r ue. Otherwise
f al se isreturned.

Get Doubl e

bool HttpdJsonDat um : Get Doubl e (doubl e &d); const

If the value can be stored in a double then this method stores the valuein d and returnst r ue. Otherwise
f al se isreturned.

Note
Thismethod is only available if INC_JSON_FLOATING_POINT is enabled.

Get String

const char *HttpdJsonDatum : GetString (void); const

If the value is a string then the string value is returned. Otherwise NULL is returned.

Ht t pdJsonUndef i ned Reference

Introduction

Rather than returning NULL to represent amissing value the Ht t pdJsonUndef i ned helps avoid lots
of checks for NULL because queries into the undefined object always result in a pointer to the undefined
object.

For example to get the " nane" of the first object in the array named " peopl e" in a JSON object the
following code may be used:

Ht t pdJsonDat um *p_nane = p_obj - >CGet (" peopl e") - >Get (0) - >Get (" nane");
i f (p_nane->lsUndefined())

.. Il On error.
el se

.../ On success.

Because the Get methods never return NULL and the Ht t pdJsonUndef i ned object always returns
undefined for any queries no extraneous error checking is necessary until the final step.

Note
This value will never be the result of parsing JSON using Ht t pdJsonBui | der .

Public Methods
Undef i ned

static Ht pdJsonDatum *Ht t pdJsonUndefi ned: : Undefined (void);

This method returns a pointer to the undefined object. It never returns NULL.

195

Processing JSON

Ht t pdJsonNul | Reference

Introduction

A singleton instance of this class representsall nul I JSON values.

Public Methods
Nul |

static Ht pdisonDatum *Htt pdJsonNul [:: Null (void);

This method returns a pointer to the nul | object. It never returns NULL.

Ht t pdJsonTr ue Reference

Introduction

A singleton instance of this class representsall t r ue JSON values.

Public Methods

True

static Ht pdJsonDatum *Htt pdJsonTrue:: True (void);

This method returns a pointer to thet r ue object. It never returns NULL.

Ht t pdJsonFal se Reference

Introduction

A singleton instance of this class represents all f al se JSON values.

Public Methods

Fal se

static H t pdJsonDatum *H t pdJsonFal se: : Fal se (void);

This method returns a pointer to the f al se object. It never returns NULL.

Ht t pdJsonSt ri ng Reference

Introduction

This object represents a JSON string.

196

Processing JSON

Public Methods

Create

static HtpdJsonString *Htt pdJsonString:: Create (const char *p_string);
This method creates an object containing the specified string value. Upon success a pointer to the object
is returned. When no longer needed the object should be destroyed via the Dest r oy() method. Upon
failure NULL is returned.

Aninternal copy of p_stri ng ismade.

static H tpdJsonString *HttpdJsonString:: Wap (char *p_string);

This method creates an object pointing to p_st ri ng. Therefore p_st ri ng must be allocated on the
heap. Additionally this method takes ownership of the string. It will be freed when the datum is destroyed.

Upon success a pointer to the object is returned. When no longer needed the object should be destroyed
viathe Dest r oy() method. Upon failure NULL is returned.

Note
If this method fails and returns NULL then p_st r i ng isautomatically freed.

String
const char *HttpdJsonString::String (void);

This method returns the string value of this datum. This method never returns NULL.

Set

int HtpdJsonString::Set (const char *p_string);
This method sets the value of this string objecttop_st ri ng.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdJsonLong Reference

Introduction

This object represents a number that can fit into a C++ long.

Public Methods

Create

static H tpdJsonLong *HttpdJsonLong:: Create (|l ong val ue);

197

Processing JSON

This method creates an object containing the specified value. Upon success a pointer to the object is
returned. When no longer needed the object should be destroyed via the Dest r oy() method. Upon
failure NULL is returned.

Long
| ong HttpdJsonLong:: Long (void);
This method returns the value of this datum.

Set

voi d HttpdJsonLong:: Set (long val ue);

This method sets the value of this string object to val ue.

Ht t pdJsonDoubl e Reference

Introduction

This object represents a number that can fit into a C++ double. This class is only for parsing JSON if
INC_JSON_FLOATING_POINT isenabled.

Public Methods

Create

static Ht pdiJsonDoubl e *Htt pdJsonDoubl e: : Create (doubl e val ue);

This method creates an object containing the specified value. Upon success a pointer to the object is
returned. When no longer needed the object should be destroyed via the Dest r oy() method. Upon
failure NULL is returned.

Doubl e

doubl e Htt pdJsonDoubl e: : Doubl e (void);

This method returns the value of this datum.

Set

voi d Htt pdJsonDoubl e: : Set (doubl e val ue);

This method sets the value of this string object to val ue.

Ht t pdJsonArr ay Reference

Introduction

This object represents an array of JSON values.

198

Processing JSON

Public Methods

Create

static HtpdJlsonArray *H t pdJsonArray:: Create (void);

Thismethod creates an empty array (of length 0). Upon successapointer to the object isreturned. When no
longer needed the object should be destroyed viathe Dest r oy () method. Upon failure NULL isreturned.

Set
int HtpdJsonArray:: Set (size_t pos, HtpdJsonDatum *p_obj);
This method sets the value of array position pos to p_obj . If pos is beyond the end of the array then
the intermedia array positions are filled with Ht t pdJsonUndef i ned. These entries will not not be
seridized.
This method always takes onwership of p_obj . Inthe event of an error p_obj isdestroyed. Any object
previously in the slot is destroyed.
Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Count
size_t HtpdJsonArray:: Count (void);
This method returns the number of elements (including undefined slots) in the array.

Contents

Ht t pdJsonDat um **Ht t pdJsonArray: : Contents (void);

This method returns a pointer to the array of contained values. The returned pointer isonly valid until the
array ismodified or destroyed. Thereturned array should be considered to only contain Count () pointers.

This method can be used to efficiently iterate over the contents of the array (as opposed to calling Get ()
for each element). Additionally this array may be modified provided this is done with regards to proper
object ownership and lifetime.

Ht t pdJsonObj ect Reference

Introduction

This object represents a container of JSON values indexed by string. Internally the mapping is maintained
in HttpdJsonObject:: Tuple which has the following structure:

Members of HttpdJsonObject:: Tuple

Type: char *
Name: npKey
Description: The name of the value.

199

Processing JSON

Type: Ht t pdJsonDat um*
Name: npVal ue
Description: The value associated with this name.

Public Methods

Create

static HtpdlsonObject *Httpdlsonhject::Create (void);

Thismethod creates an object with no members. Upon success a pointer to the object isreturned. When no
longer needed the object should be destroyed viathe Dest r oy () method. Upon failure NULL isreturned.

Set

int HtpdJsonObject::Set (const char *p_key, HtpdJsonDatum *p_obj);

This method stores p_obj under the name p_key. If there is a previous value stored under that key it
is destroyed.

This method always takes onwership of p_obj . In the event of an error p_obj isdestroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

| nsert
int HtpdJsonObject::Set (char *p_key, HttpdJsonDatum *p_obj);

Thismethod storesp_obj under thenamep_key. Thismethodisnot validif avaluealready existsunder
that name. However this method is more efficient than Set () which does handle this case.

This method always takes onwership of both p_obj and p_key. In the event of an error they are
destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Count
size t HtpdJlsonObject:: Count (void);
This method returns the number of elementsin the object.
Renove

Ht t pdJsonDat um *H t pdJsonCbj ect : : Remove (const char *p_key);

This method removes the value from the object. If the value is found then a pointer to the removed value
(which must be freed if not used elsewhere) isreturned. If the valueis not found then NULL is returned.

Get Tupl e

Ht t pdJsonCbj ect:: Tupl e *H t pdJsonCbj ect:: Get Tupl e (size_t index);

200

Processing JSON

This method returns the containing object for the specified position. Typically this method is used to
enumerate the contents of the object by iterating the index from O to one less than the return value of
Count ().

Ht t pdAbst ract Json Reference

Introduction

There may be certain circumstances where a large amount of data needs to be serialized in JSON format
in certain positions in a data structure. However the wrapping of scalar values as Ht t pdJsonDat um
objects can consume a large amount of memory. Instances of subclasses of the Ht t pdAbst ract Json
abstract base class can be inserted into a JSON data structure and generate serialized data on the fly.

Use of this classis a performance optimization that should be avoided unless necessary.

Public Methods
Copy

virtual HttpdJsonDatum *HttpdAbstractJson:: Copy (void);

This method should return a copy of this object in whatever manner the subclass deems necessary. In the
event of failure NULL should be returned.

Del et eAf t er Dest r oy

virtual bool HttpdAbstractJson::Del eteAfterDestroy (void);

This method is called when this object is passed to Ht t pdJsonDat um : Dest r oy. If it returnst r ue
then this object is deleted. Otherwise it is assumed that no further action must be taken.

201

Chapter 8. WebDAV Extensions
WebDAV

TheHt t pdFi | eHandl er implementsthe HEAD and GET methodsontop of anHt t pdFi | eSyst em
TheHt t pdWebDAVHandl er classextendsHt t pdFi | eHandl er with WebDAV support.

WebDAYV stands for “Web-based Distributed Authoring and Versioning.” It is a set of extensions to the
HTTP protocol which allows usersto collaboratively edit and manage filesviaHTTP.

Ht t pdWebDAVHandl er isonly available if Seminole is compiled with the prerequisite features:

INC_XML_NAMESPACES
INC_MODIFIABLE_FILESYSTEMS

The WebDAV API isavailableinthe sem webdav. h header file.

Most general purpose operating systems provide a way to mount a WebDAV-compliant HTTP server as
anetworked file system. This allows easy manipulation of content exposed viathe Ht t pdFi | eSyst em
interface.

Ht t pdWWebDAVHandl er Reference

Introduction

The Ht t pdWebDAVHandl er class extends the Ht t pdFi | eHandl er class with the WebDAYV
protocol.

Public Methods
Ht t pdWebDAVHandlI er

Ht t pdWebDAVHandl er : : Ht t pdWebDAVHandl er (const Htt pdWebDAVConfi gurati on
*p_config, Ht t pdFil eSystem *p fil esys, const char *p_root =
HttpdUtilities::mRoot, const char *p_prefix = HtpdUilities::nmRoot,
Ht tpdUint8 flags = 0);

This method constructs the handler. With the exception of p_confi g the other parameters behave
identically to their Ht t pdFi | eHandl er counterparts. The WebDAV components are configured
with the HttpdWebDAV Configuration structure. At least one instance of that structure must exist and
p_conf i g must point to it.

The HttpdWebDAV Configuration structure must have a lifetime equal to or greater than the
Ht t pdWebDAVHandl er .

Create

i nt HttpdWebDAVHandl er:: Create (void);

This method initializes the handler and must be called before requests may be applied to it. An error code
from Table 4.1, “OS Abstraction Layer Error Codes’ is returned. If the return is unsuccessful then the
handler may not be used.

202

WebDAV Extensions

LockSessi ons
Ht t pdSessi onManager &Htt pdWebDAVHandl er : : LockSessi ons (void);

WebDAYV locksaremanaged internally by aninstanceof Ht t pdSessi onManager . Thismethod allows
access to the session manager. If extra security is desired then reference returned by this method may be
used to set scrubbing parameters before Cr eat e iscalled.

This method isonly available if the INC_WEBDAV_LOCKING featureis enabled.

Protected Methods
CGet LockCredenti al s

bool Ht t pdWebDAVHandl er: : Get LockCredentials (RequestState &state,
Ht t pdDAVLockCr edenti al s &creds) ;

This method called when a WebDAYV lock is placed on a resource. It alows authorization data to be
extracted from the request in st at e and encoded in a form that can be validated later. The cr eds
argument can be used to hold this encoded data.

If true is returned then the credentials were successful encoded (and implicitly permission was granted
to take the lock). If false is returned then the Ht t pdWebDAVHandl er object will not perform the lock
request or respond to the client. Therefore, if false is returned then a proper response must be sent to the
client.

The HttpdDAV LockCredentias is an alias for HttpdParameter and can be used to store a scalar of most
types.

This method is only available if the INC_WEBDAV_LOCKING feature is enabled. The default
implementation of this method simply returns true.

DestroyLockCredenti al s

voi d Ht t pdWebDAVHandl er: : DestroyLockCredenti al s
(Ht t pdDAVLockCr edenti al s &creds);

Thismethod is called each time Get LockCr edent i al s returnstrue. This gives subclasses a chance to
clean up any memory or resources that may have been allocated and stored incr eds.

This method is only available if the INC WEBDAV_LOCKING feature is enabled. The default
implementation of this method simply returns.

LockActi onAl | owed

int HtpdWebDAVHandl er:: LockActi onAl l oned (const RequestState &state,
int action, LockRecord *p_Il ock);

This method is called when a WebDAV lock is referenced by a client. It can be overridden
to perform custom authorization checks on the credentials gathered at lock creation time by
Get LockCr edenti al s.

When called act i on isone of the following constants indicating the desired action:

LOCK_ACT_UNLOCK: Remove (destroy) alock

203

WebDAV Extensions

LOCK_ACT_USE: Reference the lock when modifying alocked object.
LOCK_ACT_REFRESH: Refresh alock timer so that it does not expire.

Thep_| ock parameter is a pointer to the lock object. This object has a data member, nCr edent i al s
that is the HttpdDAV LockCredentials that was set by Get LockCr edent i al s. Subclasses can check
this member and determineif act i on isalowed.

If the action is allowed then HTTPD_RESP_OK should be returned. If access is not allowed then the
returned HT TP status code is sent to the requestor.

This method is only available if the INC WEBDAV_LOCKING feature is enabled. The default
implementation of this method simply returns HTTPD_RESP_OK.

Ht t pdWebDAVConf i gur at i on Reference

Introduction

The HtpdWebDAVConfiguration struct is wused to configure instances of
Ht t pdWebDAVHandl er . Because this configuration structure is a passive entity there are no methods.
Instead the members are accessed directly as needed.

Public Data
nCapabi lities

...mCapabilities;

This member controls the capabilities clients have when accessing the WebDAV resource. It is a
combination of the following bit flags:

HTTPD_WEBDAV_CAN_CREATE: Create new resources

HTTPD_WEBDAV_CAN_DELETE: Delete existing resources

HTTPD_WEBDAV_CAN_MKCOL: Create collection (directory) resources
HTTPD_WEBDAV_CAN_CHANGE: Change existing file resources
HTTPD_WEBDAV_ALLOW_INFINITE_LOCK: Allow locks to be taken with an infinite timeout
HTTPD_WEBDAV_READ _WRITE is shorthand for: HTTPD_WEBDAV_CAN_CREATE,
HTTPD_WEBDAV_CAN_DELETE, HTTPD_WEBDAV_CAN_MKCOL,
HTTPD_WEBDAV_CAN_CHANGE

mvax| nfi ni teDepth

unsi gned int nivaxl nfiniteDepth;

The WebDAV protocol alows clients to specify the how recursive filesystem hierarchies are operated
upon. The depth is specified in the protocol as either 0, 1, or i nfi ni t y. Because these file operations
are carried out by recursive routines a depth of infinity is impractical — especially on systems with little
stack space.

This member is the maximum depth that the Ht t pdWebDAVHandl er is willing to recurse when the
client specifiesadepthof i nfinity.

204

WebDAV Extensions

mPut Ti meout

unsi gned int nPut Ti meout ;

This parameter controls the timeout, in seconds, for reading the entity body during a PUT request.

mvaxLocks

si ze_t mvaxLocks;

This parameter controls the maximum number of lock objects that may be taken for this handler. This
member isonly present if INC_WEBDAV_LOCKING is enabled.

mvaxLockLi feti ne

| ong nmivaxLockLi feti ne;

This parameter controls the maximum duration a lock may exist in seconds. If mCapabilities
containsHTTPD_WEBDAV_ALLOW_INFINITE_LOCK then thisvalue a so governs the duration used
for infinite lock timeouts as well. This member isonly present if INC_WEBDAV_L OCKING is enabled.

205

Chapter 9. Error Logging and
Reporting

Introduction

Many embedded devices are distant from the people that administrate them. This makes serial consoles
as the only method of error reporting impractical.

Seminole providesan optional component for logging messages and then displaying thoselogged messages
on demand. The Ht t pdConsol eLog (and the associated Ht t pdConsol eHandl er class) provide a
virtual serial consolethat is accessible viaHTTP.

All of the definitions for the console mechanism are in the sem consol e. h. This file automatically
includesseni nol e. h if it has not been included already.

The Ht t pdConsol eHandl er class is optional, if desired, a more complex mechanism involving
templates can also be constructed.

Ht t pdConsol eLog Reference

Introduction

Theinterface of the Ht t pdConsol eLog classis generic enough to also allow the display of the console
data through other mechanisms (such as a serial port). It uses the HttpdWritable interface as a destination
for the console data.

The console datais kept in a circular, fixed-size buffer. This means that even in the face of total memory
exhaustion the console can still be used to record events that can be accessed later when memory pressure
is reduced.

Thread Safety

This class provides athread-safe API. Multiple threads may call methods on a single instance of this class

without issue.
Public Methods
Create

int HttpdConsol eLog::Create (size t sz);

Initialize the console log. Before Log or Dunp can be called, the object must be initialized with this
method. The parameter sz isthe number of bytes that this console should use.

On success a 0 should be returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes’).

Log

voi d Htt pdConsol eLog: : Log (const char *p_str);

206

Error Logging and Reporting

Dunp

Addanentry tothelog. Thestringp_st r isadded with no additional formatting to thelog. Older messages
are deleted as necessary.

int HttpdConsol eLog::Dunp (HttpdWitable *p_target, DunpMdde node =
DUMP_ALL) ;

This method dumps the contents of the log to the stream pointedto by p_t ar get .

Because the Ht t pdConsol eLog is acircular buffer of variably-sized messages it is possible that the
oldest message may be partialy overwritten by the tail end of the newest message. The node parameter
selectsif the partial message should be omitted. If node is DUMP_ALL then even partially overwritten
messages will be displayed. Otherwise, if rode isDUMP_CLEAN only full messages will get written.

On success a 0 should be returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes’).

Public Data

Ht t pdConsol eLog contains no publically accessible data members.

Ht t pdConsol eHandl er Reference

Introduction

TheHt t pdConsol eHandl er classisderived from the generic handler (Ht t pdHandl er) which can
beinserted into an Ht t pd object.

This handler simply sends out the contents of the console with a MIME type of t ext / pl ai n. Thereis
avirtual method, Aut hor i zed that can be overridden for access contral.

Public Methods
Ht t pdConsol eHandl er

Ht t pdConsol eHandl er: : Ht t pdConsol eHandl er (const char *p_prefix,
Ht t pdConsol eLog *p_l og, Ht pdConsol eLog: : DumpMode node = DUMP_ALL);

The constructor associates the handler with a URL prefix of p_prefi x. The p_| og parameter must
pointtoaHt t pdConsol eLog object that isinitialized before the handler object isinserted in the server.

The optional node parameter controls if partial log entries should be shown (DUMP_ALL) or not
(DUMP_CLEAN).

Protected Methods
Aut hori zed

bool HttpdConsol eHandl er: : Aut hori zed (HttpdRequest *p_request);

This method determines if the request should be processed. The default implementation of this method
simply returns true. But subclasses may wish to override this method to provide authentication.

207

Error Logging and Reporting

If this method returns fal se then no further action is performed by Ht t pdConsol eHandl er .

Public Data

Ht t pdConsol eLog contains no publically accessible data members.

208

Chapter 10. The Application
Framework

Introduction

Seminole provides a powerful framework that handles most of the grunt work of producing intuitive web
interfaces. This framework is based on the Model-View-Controller (MVC) paradigm. The framework is
highly customizable and relies upon almost all of the core Seminole API's.

Overview

Developing applicationsusing HTML and CGl isacomplex task. The HTTP protocol is statel ess; browsers
require regeneration of an entire page on each form submission; form input objects support only the most
rudimentary datatypes. All of these problems require careful management of state and very complex event
flow. The Seminole application framework handles all of the complex machinery for a fully-functional
web application.

The application framework is similar in some ways to traditional graphical interfaces: a tree of widgets
(displayable objects) receives events from a dispatching mechanism and uses a rendering mechanism to
updatetheir visible state. In atraditional graphical interface, thewidget tree and event handlers (and rel ated
“invisible” objects) are contained in a desktop. Some GUI's allow more than one desktop to exist at the
same time; all isolated from one another.

In the application framework model the desktop is called a“session”. Depending on the method of state
tracking used there can be one single shared session or multiple independent ones. Each session contains
atree of widgets that represent portions of an HTML document. Some of the widgets can be merely for
structuring purposes; others can be input controls or data displays. The most important characteristic of
widgetsis that they maintain their state on the server side. This allows what the browser is showing to be
redisplayed easily without passing large amounts of state between the browser and the server.

Rendering of widgets is done using the template engine. Starting with the root object, each widget is
responsible for displaying itself aswell asany children it may contain. Most often each widget isrendered
using a template dedicated to that particular widget. Rather than there being a single large template for
a page, content generated by the application framework is generated using the output of many small
templates sewn together.

Web applications are event driven. The browser must send a request to the server before state updates
can be seen; although the state of widgets can be updated at any time. When a request comes in from a
browser the request is analyzed. The parameters on the incoming request are analyzed to find the event
that triggered the transaction. Once the event is found, it is sent through the dispatcher. After the event is
processed the root widget is painted to send updated content back to the browser.

The dispatcher acts as aregistry for objects that are interested in events. Handlers register for the event
stream of a session using a priority number. When a session is first created, the dispatcher has a handler
installed that finds the widget that the event is targeted for and delivers the event to that widget. Other
handlers can be registered as needed.

For example, dialogs listen on the event stream for any HTML field values that may be sent back from
the client. This allows a partially edited dialog to update its fields with any changes the user made even
if the event was not related to the dialog box. This behavior keeps the widgets as up-to-date as possible.
Other handlers can register for events at an even lower priority to perform cleanup duties after the event
has been dispatched to its target.

209

The Application Framework

Widgets are identified by two different names. A short and simple string name (called a“local identifier”)
isfor widgetsto beidentified by their relatives. The most common use of thelocal identifier isfor templates
to reference the painting of child widgets. Widgets also possess aglobal identifier that is anumber. While
the local identifier only has to be unique with respect to siblings, the global identifier is unique amongst
all of the widgetsin a particular session.

The global identifier is designed to be compact aswell as efficiently mapped to a particular widget handle.
The global identifier is used in generated HTML to attach events to their target widgets. Unlike the
local identifier, the global identifier is generated automatically by the widget manager when awidget is
constructed.

Application devel opers can writetheir own widgetsaswell as utilizing alibrary of pre-defined widgetsfor
developing interfaces. Often times an entire application can be built by writing a small amount of “glue
code” on top of the widgets included with Seminole. Usually even the glue code for applications can be
generated from a small specification file using the specgen tool.

Ht t pdSt ri ngProvi der Reference

Introduction

To support interfaces with different languages it is important that user-visible strings are not scattered
throughout application code. The Ht t pdSt ri ngProvi der provides an interface to a catalog of
“localized” strings. The strings are indexed by a numeric identifier. The origins of the identifier are
dependent on the particular mechanism used to catalog the strings.

The type HttpdStringld is the scalar type to be used for identifying strings in a catalog. Implementations
of the Ht t pdSt ri ngProvi der interface should ensure that all valid values of this particular type
(unsigned int) are handled.

Public Methods

Read (static buffer version)

int HtpdStringProvider::Read (HtpdStringld id, char *p_buf, size_t
bufl en);

This method reads the string identified by i d into the buffer provided pointed to by p_buf . If the string
islonger than buf | en an error of Ht t pdQpSys: : ERR_LI M TRCHD isreturned.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes’).

Read (dynamic buffer version)

int HtpdStringProvider::Read (HtpdStringld id, const char *&p_buf);

This method reads the string identified by i d into the buffer that is managed by the implementation of the
string provider. The address of the string is placed into the p_buf parameter.

When the string is no longer needed the address in the p_buf should be passed to the
Ht t pdSt ri ngProvi der: : Fr ee method.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes’) and the value of p_buf isundefined.

210

The Application Framework

Note
Theaddressplacedintop_buf upon successisn't necessarily adynamically allocated buffer.
The contents of the buffer should never be modified.

Free

void HttpdStringProvider::Free (const char *p_buf);

This method releases any memory associated with a string read using the dynamic version of
Ht t pdSt ri ngProvi der : : Read (the one which takes only two parameters).

Ht t pdSt ri ngBundl e Reference

Introduction

The class Ht t pdSt ri ngBundl e implements the string provider interface storing strings in a catalog
file generated by the msgemp tool.

Note
Only additional methods are described here. This class implements the abstract methods in
theH t pdSt ri ngProvi der class.

Public Methods
Open

int HtpdStringBundle::Open (HtpdFile *p file);
This method associates the file pointedto by p_f i | e with the string bundle.

On success a 0 should be returned; otherwise a system dependent error value should be returned (see
Table 4.1, “OS Abstraction Layer Error Codes").

Note
This function must be called and succeed before any of the Ht t pdSt ri ngPr ovi der
methods are called.

Ht t pdSt ri ngTabl e Reference

Introduction

TheHt t pdSt ri ngTabl e classimplementsthestring provider interface with alower code-sizefootprint
than the Ht t pdSt ri ngBundl e class. Rather than use external files, the strings are dispensed from a
statically initialized array.

For systems where code is executed directly from flash memory and there is free flash memory this
implementation of Ht t pdSt ri ngPr ovi der isalso much faster. Unlike Ht t pdSt ri ngBundl e itis
also harder to trandate the strings or localize particular builds because a recompile is necessary (rather
than just replacing afile).

211

The Application Framework

Note
Only additional methods are described here. This class implements the abstract methods in
theHt t pdStri ngProvi der.

Public Methods
Htt pdStri ngTabl e

int HtpdStringTable::HtpdStringTable (const char **pp table, size_t
count);

This method initializes the string table object. The pp_t abl e parameter pointsto an array of pointersto
the strings. The size of the tableis limited to count strings.

When fetching strings the identifier is the index into the array. It is up to the programmer to maintain
appropriate symbolic constants for each string.

Ht t pdW dget Conf i g Reference

Introduction

The Ht t pdW dget Conf i g acts as an interface to a collection of objects that are used to visualy
represent a web application. This provides a single mechanism to change the entire look and feel of an
application.

Resources are most often templates but can be any data stored in files. Resources are identified by string
names (which may or may not map to file names). Implementors of the Ht t pdW dget Conf i g interface
can be chained so that the newest addition to the chain has the first chance of resolving the resource
identifier to avalid file.

This nesting allows some widgets to be given a different look and feel easily. The interface specified by
theHt t pdW dget Confi g dwaysreturnsloaded Ht t pdFi | el nf o objects. To increase performance
some implementations of the Htt pdW dget Confi g can cache these objects to save expensive
filesystem searches.

Public Methods

Resour ce

Ht t pdFil el nfo * Ht t pdW dget Confi g: : Resour ce (const char
*p_resource_nane, HtpdWdget Config *&p_config);

Thismethod findstheresourceidentified by thenamep_r esour ce_nane. Theobject that thismethodis
appliedtoissearchedfirst, if theresourceisnot there, each parent inthe chain of Ht t pdW dget Conf i g
objectsis searched until aresource is found.

If no resource can be found by that name, NULL isreturned. If aresourceisfound, p_confi g issetto
point to the configuration object that found the resource.

Rel ease

voi d Htt pdwW dget Config:: Rel ease (HttpdFilelnfo *p_resource);

212

The Application Framework

Once aresource is found using the Resour ce method, it should be released by calling this method on
the object that found the resource (which is available from the p_conf i g parameter of the Resour ce
method).

The default implementation of this method simply returns. Implementations of the
Ht t pdW dget Conf i g interface can overridethismethod if cleanup onthereturned Ht t pdFi | el nf o
object isrequired.

Note
This method should only be called for objects returned in the p_conf i g parameter of the
Ht t pdW dget Confi g: : Resour ce method.

Strings

i nt Ht t pdW dget Confi g:: Strings (const char *p_resource,
Ht t pdStri ngBundl e &bundl e) ;

This method initializes the string bundle bundl e from the file identified by the resource name
p_resour ce. If successful, the file object associated with the string bundle must be closed explicitly
before the string bundle object is destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Protected Methods
Ht t pdW dget Confi g

Ht t pdW dget Confi g: : Ht t pdW dget Confi g (Htt pdW dget Config *p_parent);

This constructor initializes the base class and sets the parent widget configurationto p_par ent . If there
isho parent to this configuration, then p_par ent should be set to NULL.

Fi ndResour ce

Ht t pdFil el nfo * Ht t pdW dget Confi g: : Fi ndResour ce (const char
*p_resource_nane);

This pure virtual method must be implemented by subclasses. When invoked, the current object should
search for a resource p_r esour ce_nane in the objects list of resources. If the resource is found, a
pointer to the Ht t pdFi | el nf o object should be returned.

If the named resource could not be found, this method should return NULL. By returning NULL the
Ht t pdW dget Confi g: : Resour ce method will continue searching in other objects.

Ht t pdResour ceMap Reference

Introduction

Ht t pdResour ceMap implementsthe Ht t pdW dget Conf i g interface using a sorted table that maps
resource identifiers to file names. This class also caches all of the Ht t pdFi | el nf o objects upon
initialization, making access to resources (when using some filesystems) much faster.

213

The Application Framework

Public Types

struct ResourceMap

{

const char *npResourceNane;
const char *npFil eNaneg;

};

Public Methods
Ht t pdResour ceMap

Load

Ht t pdResour ceMap: : Ht t pdResour ceMap (Htt pdW dget Config *p_parent);

This method initializes the Ht t pdResour ceMap object and assigns p_par ent as the objects parent.
The object can not be used for resolving resources until the Ht t pdResour ceMap: : Load method is
called and completes successfully.

int HttpdResourceMap::Load (const ResourceMap *p_map, Size_t sz,
Ht t pdFi | eSystem *p_fsys);

This method prepares the resources in the table specified by p_map. The sz parameter specifies the
number of entries in the p_rap table. All of the pathnames in the p_rap table should reside in the
filesystem specified by p_f sys.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’).

Ht t pdAppTenpl at eEnvi r onment Reference

Introduction

Ht t pdAppTenpl at eEnvi ronnent is the top-level symbol table used when painting widgets. It
serves two fundamental purposes. First it provides a standard set of directives that widget templates can
use. Second, it serves as an anchor for other symbol tables to find the widget and Ht t pdAppPai nt er
objects.

The Ht t pdAppTenpl at eEnvi r onnent is created by instances of
Ht t pdAppTenpl at ePr ocessor . During painting the symbol table objects of widgets can obtain a
pointer to the Ht t pdAppTenpl at eEnvi r onnment from the top symbol table pointer:

Ht t pdAppTenpl at eEnvi ronnent *p_env =
(Ht t pdAppTenpl at eEnvi ronnment *) p_comand- >Pr ocessor () - >Top() ;

Template Directives

TheHt t pdAppTenpl at eEnvi r onnment class provides many symbols for widget templates.

214

The Application Framework

Table 10.1. Evaluation Directives

t ag This evaluates to a unique identifier for this widget
that can be used for CGI parameters.
event This evaluates to a unique identifier for this widget

that when sent from the browser resultsin an event
being dispatched to this widget. Generaly this is
used to name submit buttons.

url Thisisthe URL of the current application.
| ocalid This evaluates to the local identifier of the widget.
sessi on/ nane This calls the session objects At t r i but e method

with a parameter of nane. This mechanism acts as
an escape for the session object to be used for any
widget template if so desired.

Table 10.2. Conditional Directives

i s-hi dden This evaluates to true if the
HTTPD W DGET_HI DDEN flag is set for this
widget.

i s-di sabl ed This evaluates to true if the
HTTPD W DGET_DI SABLED flag is set for this
widget.

Public Methods
W dget

Ht t pdW dget * Htt pdAppTenpl at eEnvi ronment : : W dget (void);

This method returns a pointer to the widget currently being painted. The return value can never be NULL.
Pai nt er

Ht t pdAppPai nter & Htt pdAppTenpl at eEnvi ronnent: : Painter (void);

This method returns areference to the current painter object. The painter object isresponsible for painting
all widgets during a particular request from the browser.

Ht t pdAppTenpl at ePr ocessor Reference

Introduction

Ht t pdAppTenpl at ePr ocessor is a subclass of Ht t pdTenpl at ePr ocessor that is used for
painting widgets. Each widget gets its own instance of Ht t pdAppTenpl at ePr ocessor during the
particular paint cycle. Thisis true assuming the widget has not overridden Ht t pdW dget : : Pai nt to
paint the widget using an alternative mechanism.

This class aso has severa static helper methods for painting operations. These methods
should only be called when template commands are being processed by an instance of

215

The Application Framework

Ht t pdAppTenpl at ePr ocessor . Although, it is not necessary to pass the pointer to the template
processor around, it can be obtained easily from any of the command objects.

Unlike its base class, a Ht t pdAppTenpl at ePr ocessor automatically installs an instance of
Ht t pdAppTenpl at eEnvi r onnent asthefirst entry in the template symbol table.

Public Methods

Ht t pdAppTenpl at ePr ocessor

Ht t pdAppTenpl at eProcessor: : H t pdAppTenpl at eProcessor (Ht t pdAppPai nt er
&pai nter);

The constructor takes a reference to the current painting object and initializes the processor for the
current painting cycle. Once constructed, the St ar t Pr ocessi ng method should be called to initiate
the painting cycle.

Start Processi ng

i nt HttpdAppTenpl at eProcessor:: Start Processi ng (const char *p_resource,
Ht t pdW dget *p_wi dget);

Process a template specified by the resource name p_r esour ce for the widget p_wi dget . Symbols
should be associated with the template processor before this method is called.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

WiteResourceString

i nt Ht t pdAppTenpl at eProcessor:: WiteResourceString
(Htt pdTenpl at eCommand *p_command, HttpdStringld string);

This static method writes the localized string identified by st ri ng to the output associated with
p_comand.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Get Pai nt er

Ht t pdAppPai nt er * Ht t pdAppTenpl at eProcessor: : Get Pai nt er
(Ht t pdTenpl at eCommand *p_command) ;

This static method returns a pointer to the painter object that is managing the current paint cycle.

Get Pai nt er should not be called if the current template command is not associated with a
Ht t pdAppTenpl at ePr ocessor object. This method will never return NULL.

Get W dget

Ht t pdW dget * Ht t pdAppTenpl at ePr ocessor : : Get W dget
(Htt pdTenpl at eCommand *p_commmand) ;

216

The Application Framework

This static method returns a pointer to the widget that isbeing painted. Get W dget should not becalled if
the current template command is not associated with aHt t pdAppTenpl at ePr ocessor object. This
method will never return NULL.

Ht t pdAppSt ri ngConst ant s Reference

Introduction

The Ht t pdAppSt ri ngConst ant s structure represents a table of strings (which may or may not be
localized) indexed by name.

A common use for this classisto handle HTTPD_DLG_TEMPLATE_EVAL events in dialog widgets.
This allows widgets to substitute different strings depending on their runtime state.

Although the tables to describe the strings can be built manually, using specgen to generate the tables is
the preferred method.

Public Methods
Wit eConst ant

i nt Ht t pdAppSt ri ngConst ants: : Wi t eConst ant (H t pdTenpl at eConmand
*p_command, const char *p_label);

This method writes the string identified by p_I abel in place of the template command identified by
p_command.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). If thestring identified by p_| abel isnotinthetable, ERR _NOTFOUND
isreturned.

Public Data
npl ndex

This is a pointer to an array of Stringlndex records. This array maps the symbolic string names to the
correct string identifier or constant string offset.

@ Note
The table must be sorted so that the labels are in ascending order; a binary search is used
to find the target record.

nmCount
Thisisthe number of records pointed to by npl ndex.

nppSt ri ngs

This is a table of non-localized strings. The first byte of each label string in npl ndex is byte that
determines if the associated HttpdStringld is a localized string identifier or a non-localized string. If the

217

The Application Framework

byte is zero, then a non-localized string is assumed. In that case the string identifier is an index into this
table.

Ht t pdW dget Reference

Introduction

Ht t pdW dget is the base class for al widgets in the application framework. Although the
Ht t pdW dget isnot abstract it is designed to be sub-classed. Widgets are arranged in a hierarchy and,
with the exception of the root widget, all widgets have a parent widget. Widgets are always stored on
the heap and should only be stored in memory alocated via HttpdOpSys::Malloc. To keep the widget
tree consistent widgets should never be destroyed using del et e; instead call the Dest r oy method to
destroy awidget.

By default an instance of Ht t pdW dget can not respond to a painting request correctly. Subclasses
must either override Ht t pdW dget : : Pai nti ngResour ce or Ht t pdW dget : : Pai nt to handle
painting requests. If Pai nt i ngResour ce is overridden then the widget will handle painting requests
using the template mechanism. Otherwise, the Pai nt method can be overridden to handle painting using
any method the implementor desires.

Public Methods
Ht t pdW dget

Ht t pdW dget : : Ht t pdW dget (const char *p_local id, HtpdW dget Contai ner
*p_parent, int &c);

Construct awidget object. Thep_| ocal _i d parameter can be NULL if this widget should not have a
local identifier. To create atop-level widget p_par ent should be set to the address of the root widget,
obtained by calling Ht t pdAppSessi on: : Root .

If widget construction fails this constructor sets r ¢ to an error value (see Table 4.1, “OS Abstraction
Layer Error Codes’). Subclasses should check for success (r ¢ equals zero) to avoid further construction.
In addition, constructors of subclasses can return their own error codesinr c.

Note

It is important that subclasses handle failed construction gracefully. Code that creates a
widget should check if the value in r ¢ is non-zero. If so, the Dest r oy method should
be invoked on the partially constructed widget. Therefore, if construction fails the widgets
destructor is still invoked and should handle the partial construction case.

Destr oy
void Htt pdWdget:: Destroy (void);

This method handles graceful destruction of awidget. Widgets should never be destroyed any other way.
This ensures that a widget can properly clean-up after its self before its virtual destructor gets invoked.
Once a widgets virtual destructor is invoked, no more virtual methods can be called on the widget. The
Dest r oy method handles cleaning up the widget and eventually releasing its memory.

Subclasses of Ht t pdW dget should override Dest r oy to handle cleanup. Overridden versions should
always call the Dest r oy method of the superclass asthe very last operation.

218

The Application Framework

Local I d

const char * HtpdWdget::Localld (void);

Returns a pointer to the local identifier of the widget. If the widget does not have alocal identifier then
NULL isreturned.

Conf i g (Getter)

Ht t pdW dget Config * HttpdwWdget:: Config (void);

This method returns a pointer to the resource manager associated with the widget. The resource manager
isresponsible for setting the look-and-feel policy for the widget. By default, the Ht t pdW dget Confi g
pointer isinherited from the parent widget.

This method can never return NULL.

Confi g (Setter)

Fl ags

voi d Htt pdWdget:: Config (H tpdConfig *p_config);

This method sets the current resource manager of thewidgettop_conf i g. Itisuptothecaller to ensure
that the lifetime of the resource manager specified by p_conf i g exceeds the lifetime of the widget.

(Getter)
Ht t pdW dget Fl ags Htt pdW dget: : Fl ags (void);
Each widget hasasmall scalar valuethat keepsavariety of flag bits. The meaning of some bitsare common

to all widgets. Others are free for subclasses to use. This method returns the current value of the flags
for the widget.

Table 10.3. Widget Flags

Flag Name Description

HTTPD_W DGET_CONTAI NER This flag is set if the widget is the subclass
Ht t pdW dget Cont ai ner. Only container
widgets should set this flag.

HTTPD_W DGET_HI DDEN If this flag is set the widget should not output any
content during a painting cycle.

HTTPD_W DGET_DI SABLED A widget in the disabled state should not respond to
external events.

HTTPD W DGET_STATI C_STATE This flag only applies to child widgets of a

Ht t pdW dget Di al og widget. If set, controls
will not receive updates during the manipulation of
the dialog.

HTTPD_W DGET_DEFUNCT This flag can be set to have the event dispatcher
automatically destroy a widget when the current
event dispatching cycleisover. Thisis useful when
awidget may still need to exist further on during the
event handling chain but must be cleaned up before
the painting cycle.

219

The Application Framework

Flag Name Description

HTTPD_W DGET_USER FLAG This flag (and all of the remaining space) are
available for subclasses to use freely.

Fl ags (Setter)
void HttpdWdget:: Flags (Ht pdWdget Fl ags fl ags);

This sets the widget flags to the value of f | ags. The previous state of al flagsis erased and replaced
withtheflagssetinf | ags.

G obal Id

Ht t pdW dgetld Ht pdWdget::d obal ld (void);

This method obtains the global identifier assigned to the widget during construction.
Par ent

Ht t pdW dget Cont ai ner * Htt pdW dget:: Parent (void);

This method returns a pointer to the parent widget of this widget.
Sessi on

Ht t pdAppSessi on * Htt pdW dget:: Session (void);

This method returns a pointer to the session that owns this widget.

Event

int HtpdWdget:: Event (HtpdAppEvent &event);

Process an event for this widget. Events dispatched to this widget are handled by this virtual method.
Subclasses should override this method if they are expecting to handle events.

Implementations of this method should return O upon success or an error value (see Table 4.1, “OS
Abstraction Layer Error Codes”).

ActionVa
int HtpdWdget::ActionVa (unsigned int req, va_list va);

This virtual method functions as a “catch-all” point for various miscellaneous services a widget can
provide. Rather than defining additional virtual methods and type-casting Ht t pdW dget pointers,
the operation can be posted to Act i onVa (or by using the Ht t pdW dget : : Acti on wrapper) and
send to the widget. If the requested action, specified by r eq can not be performed by this widget,
Ht t pdOpSys: : ERR_ WRONGTYPE is returned. Other operations should return an appropriate status
code.

Subclasses of Ht t pdW dget can override this method and handle specific requests. Requests that are
not understood should be passed to the Act i onVa method of the superclass.

220

The Application Framework

Acti on

Pai nt

Key

Key

int HttpdWdget::Action (unsigned int req, .);

Thismethod isawrapper for invoking the Act i onVa method of Ht t pdW dget . Thevariable argument
list is packaged into ava list before Act i onVa iscalled and cleaned up after it returns.

int HtpdWdget::Paint (HtpdAppPainter &paint);

The default implementation of this method is to paint the widget using templates. If a different approach
to painting awidget is to be employed subclasses can override this method.

void HttpdWdget:: Key (char *p_key, const char prefix ="'t");

This method computes a unique prefix for this particular widget. The prefix is based upon the global
identifier and as such is unique across all widgetsin a particular session. This prefix is useful for naming
CGlI parameters that are specific to this particular widget.

The p_key parameter must point to a buffer of at least HTTPD W DGET_KEY_LEN characters. The
pr ef i x character determines the type of prefix generated. Certain characters have special meaning. The
character e identifies the string as an event. The default character, t is commonly used to identify data
parameters such as field values.

If awidget needs multiple prefixes an additional identifier should be concatenated to theresultinp_key
rather than atering pr ef i x.

void HtpdWdget:: Key (char *p_key, const char *p_suffix, const char
prefix ="'t");

This method generates a unique identifier for the particular widget. The two-parameter version of Key is
used to create a prefix which is then prepended to p_suf f i x. Theresult is placed in the buffer pointed
to by p_key which must be HTTPD_W DGET_KEY_LEN characters longer than the length of the string
pointed to by p_suf fi x.

Protected Methods

Pai nti ngResour ce

const char * Htt pdW dget: : Pai nti ngResource (void);

If subclasses do not override the Ht t pdW dget : : Pai nt method they should override this method to
return the resource name of the template file that should be used when painting this widget.

Implementations of this method should never return NULL from this method. Only a pointer to the name
of avalid file resource should be returned.

Execut eTenpl ate

int HttpdWdget:: ExecuteTenpl ate (Htt pdAppTenpl at eProcessor &proc);

221

The Application Framework

Subclasses that use template-based painting can override this method to add additional template symbols
to the template processor. This method should declare any additional symbol tables and link them to the
template processor using instances of Ht t pdTenpl at eScope.

After al the appropriate symbols are bound to proc the Execut eTenpl ate should cal
Execut eTenpl at e initssuper class.

The return value from the call to the superclass Execut eTenpl at e should be returned to the caler. If
painting is successful, O is returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes’).

Ht t pdW dget Cont ai ner Reference

Introduction

TheHt t pdW dget Cont ai ner isasubclassof Ht t pdW dget and behaves as awidget that can also
contain child widgets. Aninstanceof Ht t pdW dget Cont ai ner canalso contain children derived from
Ht t pdW dget Cont ai ner resulting in atree of widgets.

All of the protected and public methods described in the documentation for Ht t pdW dget can be
overridden in subclasses of Ht t pdW dget Cont ai ner aswell with the expected behavior. The only
catchistoensurethat when Ht t pdW dget Cont ai ner isused asthe classnamewhen calling superclass
methods such as Dest r oy or Execut eTenpl at e.

Template Directives

Templatesfor Ht t pdW dget Cont ai ner and its subclasses can use additional directivesfor managing
child widgets.

Table 10.4. Evaluation Directives

chi | d/ xxxx This paints athe child widget identified by the local
identifier XxXxx.

child When inside a chi | dr en loop, this is directive
paints the currently iterated child.

Table 10.5. Conditional Directives

has-chi | dren Thisevauatestotrueif the widget has any children.

Table 10.6. L oop Directives

children Thisiterates the body for each of the child widgets.
Thechi | d evaluation directive paintsthe currently
iterated child.

Public Methods
Ht t pdW dget Cont ai ner

Ht t pdW dget Cont ai ner: : Ht t pdW dget Cont ai ner (const char *p_local _id,
Ht t pdW dget Cont ai ner *p_parent, int &rc);

222

The Application Framework

Construct a the container widget. The parameters are identical to the parameters of the Ht t pdW dget
constructor.

DestroyAl | Chi |l dren

voi d Htt pdW dget Cont ai ner: : DestroyAl | Children (void);

Thismethod destroysall of the child widgets. The parent widget isnot destroyed. Thismethod isimplicitly
called when the parent is destroyed.

Fi ndByLocal I d
Htt pdW dget * Htt pdW dget:: Fi ndByLocal Id (const char *p_id);

Find the child widget identified by the local identifier p_i d. If the child widget is found then a pointer to
it isreturned. If the child widget could not be found then NULL is returned.

Chi l dren

Ht t pdLi st & Htt pdW dget Cont ai ner:: Children (void);
This method returns a reference to the Ht t pdLi st that holds references to the child widgets. The list

can be iterated using an instance of Ht t pdLi st |t er at or where the owner pointer is a direct pointer
to the widget.

Protected Methods

Renmovi ngChi | d
voi d Htt pdW dget Cont ai ner: : Renovi ngChild (Htt pdW dget *p_wi dget);
This virtual method is called when a child widget of this widget is destroyed. This can be either because
the container widget itself is being destroyed or any one of its children are being destroyed. In the former

case Renmovi ngChi | d iscalled for each widget being removed.

Subclasses of Ht t pdW dget Cont ai ner can override this method to perform additional processing
when achild is destroyed.

Ht t pdAppEvent Reference

Introduction

The Ht t pdAppEvent structure wraps up an event that is dispatched to Ht t pdW dget : : Event
methods. There are no public methodsin this structure. It functionsasawrapper for the current state during
event dispatching to avoid passing around lots of parameters.

Public Data Members

npPat h

223

The Application Framework

const char *npPath

ThenpPat h member istheresult from the dispatcher calling Ht t pdHandl er : : | sMyPat h. Itisnever
NULL but can be the empty string.

npEvent
const char *mpEvent

The mpEvent member is the event name from the dispatched event. The event names come from key
values generated by the Ht t pdW dget : : Key methods. Like npPat h this member can not be NULL.

npRequest

Ht t pdRequest *nmpRequest

npEvent isapointer to the current HTTP request object. This member variable can never be NULL.

npTar get
Ht t pdW dget *npTar get

Thisis the target widget for this event. It is possible for this member to be NULL if the widget that was
sent the event was deleted on the server side before the request from the client side was processed.

npHandl er
Ht t pdHandl er *npHandl er

This is a pointer to the handler object processing the request. The npHandl er member can never be
NULL or else events couldn't even be processed.

npSessi on

Ht t pdAppSessi on *npSessi on

This is the session object associated with this event. Events are never processed unless a valid session
exists for them; therefore this member can never be NULL.

mPar anet er s

224

The Application Framework

Ht t pdCgi Hash nPar aneters

Thisisacollection of all of the parameters provided as part of the request. This includes both parameters
that are part of the URI query string as well as any data associated with the POST method.

@ Note
As ageneral rule widgets should only access or generate parameters with names that were
created using one of the Ht t pdW dget : : Key methods. This provides each widget with
its own name space and prevents widgets from interfering with one another.

nmPer f or nPai nt

bool mPerf or nPai nt

This datamember isinitialized to t r ue by the handler beforeiit is dispatched. It should be settof al se
if awidget determines that a paint cycle should not be requested after event processing.

In general setting thisflagtof al se should only be used for extreme failures or for cases where awidget
is performing very specialized painting. “Normal” applicationsin general should not modify this member.

Ht t pdAppPai nt er Reference

Introduction

The Ht t pdAppPai nt er structure is created during a painting cycle to hold information that is shared
by all widgetsduring apainting cycle. A referenceto thisstructureispassedto Ht t pdW dget : : Pai nt
methods.

Public Data Members

npEvent
Ht t pdAppEvent *npEvent

ThenpEvent member points to the current event that initiated a painting cycle.

npQut put
Ht t pdDynanmi cQut put *npQut put

Thisisan instance of Ht t pdDynani cQut put that is used to send content out to the client. By thetime
the Ht t pdW dget : : Pai nt method is called the header phase is complete and only the Body method
should be called on npCQut put .

225

The Application Framework

Ht t pdAppEvent Handl er Reference

Introduction

When an request becomes an event inside Ht t pdAppHandl er it is dispatched through a set of
handlers that are all given a chance to handle the message. Each of these handlers is a subclass of
Ht t pdAppEvent Handl er . A per-session instance of Ht t pdAppDi spat cher maintains a list of
Ht t pdAppEvent Handl er objects.

Public Methods
Ht t pdAppEvent Handl er

Ht t pdAppEvent Handl er: : Ht t pdAppEvent Handl er (Ht t pdAppDi spatchPriority
pri);

The constructor initializes the event handler object and sets its priority to pri. The type
HttpdAppDispatchPriority is a scalar value that is used to define a priority value relative to other event
handlers.

Absolute values should never be specified for pri . Instead, offsets relative to aknown priority should be
used. Event dispatching to widgetsfunctionsat HTTPD _APP_DEFAULT_PRI priority. Thefina cleanup
of events is handled at HTTPD _APP_CLEANUP_PRI . Normal event handlers should be positioned
anywhere from HTTPD_APP_DI ALOG PRI tojust below HTTPD_APP_CLEANUP_PRI .

The numerically higher the priority number the lower the priority of the event handler. The lower the
priority of the event handler the later (in time) the handler getsits turn to handle the event.

@ Note
Ht t pdAppEvent Handl er objects should aways be stored in storage
obtained from HttpdOpSys::Malloc. Storage for the object is released by the
Ht t pdAppEvent Di spat cher object when the handler is no longer needed. Calling the
Rel ease method queues an event handler for destruction when it is no longer in use.

Handl er Node

Ht t pdLi st Node * Htt pdAppEvent Handl er: : Handl er Node (voi d);

Instances of Ht t pdAppEvent Handl er aretracked in a Ht t pdLi st object. This method returns a
pointer to the internal Ht t pdLi st Node that links this event handler into the list. The owner pointer of
the node should always point to the Ht t pdAppEvent Handl er object.

Rel ease

voi d Htt pdAppEvent Handl er: : Rel ease (void);

To ensurethe event handler is never removed beforeit may be needed the del et e operator should not be
used to destroy the object. TheHt t pdAppEvent Di spat cher handlesdestruction of the event handler
object when it is safe.

Calling this method marks the event handler for pending deletion.

226

The Application Framework

Handl eEvent

int HttpdAppEvent Handl er: : Handl eEvent (Htt pdAppEvent &event, bool
&cont) ;

This pure virtual method must be overridden by subclasses to perform the specialized action during an
event. The event is passed in asthe parameter event . If no further event processing should be performed
thecont shouldbesettof al se.

Unless this is the lowest priority (highest numerically) event handler or the cont parameter is set to
f al se thereturn value of this method isignored.

If thisinstance is the lowest priority handler or if cont issettof al se then thereturn valueisreturned
fromthe Ht t pdAppDi spat cher : : Handl eEvent method.

Ht t pdAppEvent Di spat cher Reference

Introduction

The Ht t pdAppEvent Di spat cher class contains a list of Htt pdAppEvent Handl er objects.
When an event comes in from a browser, the HttpdAppEvent is given to each
Ht t pdAppEvent Handl er object for processing.

By default the Ht t pdAppEvent Di spat cher object has an internal handler that dispatches an event
to the Ht t pdW dget : : Event method (called the “default event handler”). Other handlers can be
installed to hook the event stream. The most important use of this feature is the mechanism that
Ht t pdW dget Di al og usesto keep its control widgets in sync with the updates from the browser.

TheHt t pdAppEvent Di spat cher object also contains alow-priority “cleanup event handler” which
executes after the default event handler to perform housekeeping tasks for the event dispatcher itself.

Public Methods

Ht t pdLi st & Htt pdAppEvent Di spatcher:: List (void);

Instances of Ht t pdAppEvent Handl er aretracked in a Ht t pdLi st object. This method returns a
pointer to theinternal Ht t pdLi st that tracks the event handlers.

voi d Ht t pdAppEvent Di spatcher::1nsert (Ht pdAppEvent Handl er *p_handl er);

I nsert insertsthe event handler identified by p_handl er into the dispatcher.

Note
Event handlers should be inserted using this method and not by inserting directly into the
list returned by the Li st method.

Def aul t

Ht t pdAppEvent Handl er * Htt pdAppEvent Di spatcher:: Default (void);

227

The Application Framework

This method returns a pointer to the default event handler.

Handl eEvent

int HttpdAppEvent Handl er: : Handl eEvent (HttpdAppEvent &event);

This method dispatches event through the handlers. The return value is the return value of the
Handl eEvent method of thelast Ht t pdAppEvent Handl er object that processed the event.

Ht t pdAppSessi on Reference

Introduction

A session object represents al of the dataidentifying the state of a particular user interface. An application
consists of one or more session objects. In turn, each session object contains a unique tree of widgets and
event dispatcher. Each user of aweb application getstheir own uniqueinstance of Ht t pdAppSessi on.

Application session objects are not related to Ht t pdSessi onCObj ect objects. Application session
objects exist without reguard to their attachment to a particular client browser. This policy is set by
subclasses of the application handler object Ht t pdAppHandl er .

However, Ht t pdSessi onObj ect objects can be used to manage multiple Ht t pdAppSessi on
objects if desired. For simple devices where only one user will be accessing the device at atime asingle
session can be used to reduce code size.

Public Methods
Ht t pdAppSessi on

Root

Ht t pdAppSessi on: : Ht t pdAppSessi on (Htt pdW dget Confi g *p_config,
Ht t pdStri ngProvider *p_strings);

Thep_conf i g parameter pointsto aninstance of the HttpdwWidgetConfig class. Thisisthe default widget
configuration that isinherited for all widgets contained in this session.

The session object also holds apointer to astring provider passedinasp_st ri ngs. Thisstring provider
is consulted by the widget painting code to obtain replaceable strings when needed.

Both the configuration object and the string provider work together to ensure application code does not
contain any user-visiblestrings. Thisbehavior makesit easy to allow multiple sessionsfor usersof different
languages to coexist simultaneoudly.

Note
The constructor does not perform a complete initialization. The Cr eat e method should be
called after object construction to perform additional initialization.

Ht t pdW dget Root * Htt pdAppSessi on: : Root (void);

This method returns a pointer to the root widget of the session. The root widget is an instance of a class
called Ht t pdW dget Root andisasubclassof Ht t pdW dget Cont ai ner . Thereturned pointer can
never be NULL.

228

The Application Framework

Di spat cher
Ht t pdAppDi spat cher & Htt pdAppSessi on: : Di spat cher (void);

Each session has a unique instance of Ht t pdAppDi spat cher to route events through interested
handlers. This method returns a reference to the dispatcher object.

Mut ex
H t pdMut ex & Htt pdAppSessi on: : Mutex (void);

Event processing for a session is synchronized using a mutex object. In normal operation the
Ht t pdAppHandl er object will lock the mutex during the time an event isbeing dispatched to a session.
This prevents simultaneous requests from arriving (possibly on different worker threads) and causing data
structure corruption within the session or widget tree.

@ Note
Application code that is not running under the context of an incoming request for this session
should lock this mutex while performing any operations with the session or its associated

widgets.

Strings
Ht t pdStri ngProvider * HttpdAppSession::Strings (void);

This method returns the pointer to the string provider object that was passed in at object construction time.
Unlike the widget configuration only the session manager maintains a pointer to the string provider.

When needed by widget painting code the string provider should obtained using this method.

Create
int HttpdAppSession::Create (void);

This method performs further initialization on the session object. After construction this method should
be called before the session is allowed to process an event. If this method returns failure the object should
be destroyed and the request should be failed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Attri bute

int HtpdAppSession::Attribute (HtpdWitable *p_out, const char
*p_attr, HttpdTenpl ateConmand *p_conmand) ;

This virtual method is called when the template tag sessi on/ xxxx is evaluated. The string after the
forward slash is placed in p_at t r and the command being executed is placed in p_comrand and this
method is called.

Subclasses of that wish to provide global datato widget templates should override this method and write
output top_out . If thestringin p_at t r isnot an attribute the subclass is interested in control should
be passed tothe At t ri but e method of the super-class.

229

The Application Framework

Upon success, this method should return O; otherwise a system dependent error value should be returned
(see Table 4.1, “OS Abstraction Layer Error Codes’).

Ht t pdAppHandl er Reference

Introduction

TheHt t pdAppHandl er classisasubclassof Ht t pdHandl er that manages the dispatching of events
to sessions. Ht t pdAppHandl er is an abstract class and requires that subclasses provide a session
management policy.

Protected Methods
Get Sessi on

Ht t pdAppSessi on * Htt pdAppHandl er: : Get Sessi on (H t pdAppEvent &ev);

This abstract method should be implemented by subclasses. For the incoming event, ev the associated
session object should be found and returned.

If NULL isreturned then the handler assumesthat Get Sessi on detected an error condition and sent an
appropriate response. It isimportant that in the event of returning NULL the Get Sessi on alwaysissues
acall to Respond on the npRequest member of ev.

Rel easeSessi on

voi d Htt pdAppHandl er: : Rel easeSessi on (Htt pdAppSessi on *p_session);

Thisabstract method is called after the handler has dispatched an eventtop_sessi on. Subclasses should
perform any cleanup work on the session during this method.

Ht t pdAppHandl er will never call this method with ap_sessi on value of NULL.

Cont ent Type

voi d Htt pdAppHandl er:: Cont ent Type (Htt pdAppPai nter &painter);

Thismethod iscalled to generatethe Cont ent - Type MIME header for anormal painting cycleresponse.
Subclasses can override this method to send out additional headers or send out a different Cont ent -
Type header.

This method is called during the header phase of the response. Headers should be submitted using the
Header method of the npQut put member of pai nt er.

Ht t pdSi ngl eSessi onAppl i cati on Reference

Introduction

Ht t pdSi ngl eSessi onAppl i cation is a subclass of Ht t pdAppHandl| er that implements a
simple policy for session management. Every request for the application sharesasingle session. Thisclass
ismost appropriate for very low-end hardware with little memory and is only administrated by one person
at atime.

230

The Application Framework

Because of its simplicity this application handler also presents the simplest interface to the programmer.
The session object is created or statically declared in the application-specific code and a given to the
Ht t pdSi ngl eSessi onAppl i cat i on object during its construction.

Public Methods
Ht t pdSi ngl eSessi onApplication

Ht t pdSi ngl eSessi onAppl i cation:: Htt pdSi ngl eSessi onAppl i cation (const
char *p_prefix, HtpdAppSession *p_session);

Construct asingle session application handler. The handler assigned p_pr ef i x asthe URL prefix of the
application. The memory pointed to by p_pr ef i x should have a lifetime greater than or equal to the
lifetime of the Ht t pdSi ngl eSessi onAppl i cati on object.

Writing Single-Session Application Specifications
When using the specgen tool the app package can be used to automatically generate the initialization

machinery of an application. This machinery is in the form of a generated function that initializes the
application handler object.

For example, assuming the following specification fragment:

application nyApp : single

{
nmenu mmuMai n; (1]
prefix "[app";
resources resEnglish; (2]
string resource "US-en";

b

00 |t isassumed these objects are defined el sewhere.

the application can be instantiated with the following code fragment in the startup of the system:

Ht t pd *p_webserver
Ht t pdFi | eSystem *p fs
Ht t pdAppHandl er *p_handl er;

int rc = myApp(p_handler, p fs); @

if (rc !1=0)

{
printf("Error starting application: %\n", rc);
return;

}

p_webserver->Install (p_handler);

© ThenyApp routineisgenerated asaresult of the ny App specification. The generated routine always
takes two arguments. Thefirst is areference to the pointer that is to receive the handler address and
the second isthe Ht t pdFi | eSyst emthat isused to initialize the resources.

231

The Application Framework

Note
The generated function should only be called once during the startup of the system.

Thenenu statement is optional and if not specified then no desktop widget will be created in the session.
The st ri ng statement can also take a different form to specify an instance of Ht t pdSt ri ngTabl e
that is declared with the st r i ngt abl e specification:

string provider strProvider;

Ht t pdSessi onAppl i cati on Reference

Introduction

A Htt pdSessi onApplicati on uses the Ht t pdSessi onManager to support multi-session
applications. Inthisconfiguration multiple users can use an application at the sametimewithout interfering
with one another. Multi-session applications are also localizable; meaning that different sessions can use
different resources and string providers simultaneously.

Ht t pdSessi onAppl i cati on is an abstract class and does not institute a policy for how session
identification is passed. Seminole provides two subclasses that implement a passing policy. The
Ht t pdFor nSessi onAppl i cati on class uses hidden form variables to pass the session identifier
whilethe Ht t pdCooki eSessi onAppl i cati on class uses cookies.

Each approach has its advantages and disadvantages. Passing the session identifier in hidden form values
does not require cookies (which some users find distasteful) although the session can be easily lost if the
user navigates outside the application. Cookies are more robust and are the preferred method of keeping
state with HTTP. Although using cookies means that user can only log in once to a particular application
with a particular browser.

Session objects in multi-session applications must be an instance of
Ht t pdSessi onAppl i cation:: Sessi on or one of its subclasses. This class combines the
Ht t pdAppSessi on withthe Ht t pdSessi on(hj ect class.

Because of the added complexity of sesson construction and deletion,
Ht t pdSessi onAppl i cati on objects are configured using an instance of a stand-alone structure,
Ht t pdSessi onAppl i cati on::Config. The Config structure includes a pointer to a “logon
procedure.” Thisfunction pointer is called when anew session isto be created. This allows the application
program to perform security checks or other operations at login time.

Thankfully this complexity is normally hidden when using the app package with the specgen tool.

Using Ht t pdSessi onAppl i cat i on handlers requires that several static HTML pages for handling
user logon. The URI's for these pages are stored in the Config structure.

Public Methods
Ht t pdSessi onApplication

Ht t pdSessi onAppli cation:: Htt pdSessi onApplication (const Config
*p_config);

232

The Application Framework

This constructs a Htt pdSessi onAppli cation object. The p_config parameter points
to a configuration structure which must have an equal or greater lifetime than the
Ht t pdSessi onAppl i cati on object.

Note
This method only peforms a partia initigization. In addition the

Ht t pdSessi onAppl i cati on: : Cr eat e method must be called before the object can
be used as a handler.

Create

int HttpdSessionApplication::Create (size_ t nax_sessions);

This method completes the initialization of the Htt pdSessi onApplication object. The
nMax_sessi ons parameter determines the maximum number of session objects that can be tracked by
the application.

On failure an error code from Table 4.1, “OS Abstraction Layer Error Codes’ is returned; otherwise 0
isreturned.

| nsert

int HttpdSessionApplication::Insert (HttpdAppEvent &event, Session
*p_sessi on);

Thisstatic method insertsthe session object identified by p_sessi on intheapplication. Onceinserted the
session object is managed by the application automatically. Theevent parameter isthe event object that
resulted in the sessions creation. This method is typically called from alogon procedure after successful
creation of the session.

On failure an error code from Table 4.1, “OS Abstraction Layer Error Codes’ is returned; otherwise 0
isreturned.

The Config Structure

The configuration structure is the set of parameters that initialize multi-session applications. The
declaration is as follows:

struct Config

{
const char *npLogonPagelr | ;
const char *npLogof f PageUr | ;
const char *npLogonFai | edUr | ;
const char *npLogonExpi redUr | ;
Sessi on *(*npLogonProc) (Ht t pdAppEvent &event, bool &redirect);
#i f defi ned(HTTPD_I NC_BACKGROUND_SESSI ON_PURGE)
i nt nmvaxSessi onAge;
si ze_t nScr ubbi ngBat chSi ze;
unsi gned | ong nCycl eTi ne;
#endi f

b

233

The Application Framework

Configuration Fields

npLogonPageUr | This is the URL or absolute path of the HTML document that should be
presented to a user who is not logged in.

npLogof f PageUr | The user is redirected to this URL or absolute path when they request to
log out of an application.

npLogof f PageUr | The user is redirected to this URL or absolute path when they request to
log out of an application.

npLogonFai | edUr | The user is redirected to this URL or absolute path when the request to
login is denied by the logon procedure.

npLogonFai | edUr | The user is redirected to this URL or absolute path when the request to
login is denied by the logon procedure.

npLogonExpi redUr | The user is redirected to this URL or absolute path when the user was
logged in but their session had since expired.

npLogonPr oc Thisisthe address of the logon procedure for the application.

nmvaxSessi onAge If background session scrubbing is enabled then thisis parameter isused as
theargument whentheHt t pdSessi onManager : : MaxSessi onAge
method is called.

nScr ubbi ngBat chSi ze If background session scrubbing is enabled then this
is parameter is used as the argument when the
Ht t pdSessi onManager : : Scr ubbi ngBat chSi ze method is

called.

nCycl eTi ne If background session scrubbing is enabled then this is parameter is used
as the argument when the Ht t pdSessi onManager : : Cycl eTi ne
method is called.

If desired al of the variouslogon URI's members can be pointed to the same HTML document if no details
feedback about logon should be given.

The Logon Procedure

Thelogon procedureisresponsiblefor examining any parametersthat may have been submitted with from
the various logon forms (pointed to by the Config structure). If the parameters, such as user-name and
password, are correct then a session object and its corresponding desktop widget should be created.

Once created the logon procedure should call Ht t pdSessi onAppl i cation: : | nsert toinsertthe
newly created session into the applications' session manager. If successful a pointer to the newly created
session object should be returned.

If any kind of fatal error is encountered then the r edi r ect should be set to f al se, afatal response
should be sent, and NULL should be returned:

if (fatal _error)

{
redirect = fal se;
event . npRequest - >Respond(HTTPD_RESP_SRV_ERROR) ;
return (NULL);

}

234

The Application Framework

For the case of an incorrect logon (which is not a fatal error) the r edi r ect should be left aone
and NULL should be returned. In this scenario no response should be sent by the logon procedure.
The logic in Ht t pdSessi onAppl i cati on will redirect the user in this case to the URI in the
npLogonFai | edUr | field of the Config structure.

Writing Multi-Session Application Specifications

The specgen tool with the app packageisthe preferred way to develop amulti-session application. There
are two basic approaches to defining a multi-session application. The first approach, non-localized relies
on asingle resource map and a single string provider. The second and more complicated approach allows
multiple resource maps and string providers to be used with a set being chosen at logon time.

The non-localized approach is as follows:

application nyApp : session
{
nmenu muMai n;
prefix "/ app";
resour ces Engl i shResour ces;
string resource "US-en";
type cookie; ©
max_users 256;
new_sessi on Cr eat eAppSessi on; ©
| ogon <-
{
Ht t pdCgi Par amet er *p_param = event . nPar anet er s. Fi nd(" user nanme") ;
if (p_param == NULL)
return (NULL);

const char *p_usernane = p_param >nPai r. npVal ue;

p_param = event. nPar anet ers. Fi nd(" password") ;
if (p_param == NULL)
return (NULL);
const char *p_password = p_param >nPai r. npVal ue;

f ((strcnp(p_password, "password") != 0)
| (strcnp(p_usernanme, "user") = 0))
return (NULL);

return (CreateAppSession(event, redirect)); ©

b

| ogon_url "/login/login htm";

| ogof f _url "/login/login htm";

| ogon_failed_url "/login/login_failed.htm";
| ogon_expired_url "/login/login_expired. htm";

scrubbing ©

{
max_age 86400; # Seconds

235

The Application Framework

bat ch_si ze 8; # Sessions
cycle_time 720; # Seconds
b
b

© Thisstatement determinesthe way in which the session identifier is passed. It can becooki e to use
cookies or f or mto use hidden form fields.

@ If specified, the new_sessi on directive requests that a function be created to creste the session.
This is strictly a convenience as this could be done manually. Its main purpose is to simplify the
logon code fragment in the | ogon directive.

© Tocreate and insert the session object the logon code can simply call the helper routine created with
new_sessi on.

O Thisoptional statement setsthe scrubbing parameters of the session. If not specified the values shown
here are used as defaults.

Note
The string, nenu, and resources directives behave like their single-session
counterparts.

Aswith single-session applicationsthis resultsin afunction called my App that performstheinitialization
of the application. The codefor starting the application using thisfunction isidentical to the single-session
version.

The localized version shares most of the directives of the non-localized version except the st ri ng and
resour ces directives are replaced with alist of the various local es the application supports:

Replace 'string' and 'resources' for multiple |ocales:

| ocal es

{

Locale Resour ces String bundl e resource nane
"US-english" : Engl i shResources, "US-en";
"GB-english" : Engl i shResources, "GB-en"; ©
" CGer man" : Ger manResour ces, "DE-de";

|

© Resources do not have to be distinct (and neither do string bundles). Here we can see both British
and US locales share Engl i shResour ces but use different string bundles.

Whenthel ocal es keyword isused the function generated by thenew_sessi on directivewill look at
the CGI parametersintheevent for avaluenamed| ocal e. Theloca ewiththe selected namewill be used.

Menus

Introduction

A menu is a collection of buttons that invoke an event to a particular widget. Menus are managed
with three different objects. An Ht t pdMenul t emdescribes a particular menu choice. An Ht t pdMenu
instance is usually owned by a widget that wishes to present a menu. When painting, an instance of
Ht t pdMenuSynbol s isused to add template symbols for the particular menu.

236

The Application Framework

Menu definitions can be build automatically using the specgen tool and the menus package. They can
also be constructed by hand if necessary.

Ht t pdMenu Reference

Public

Methods

Ht t pdMenu

Create

Ht t pdMenu: : Htt pdMenu (const Htt pdMenultem *p_itens, size_ t count);

The constructor initializes a menu object to contain a the items described by p_i t ems. The count
parameter specifies how many Ht t pdMenul t emelementsp_i t ens pointsto.

Note
After construction the Ht t pdMenu object must be initialized further with the Cr eat e
method. The call to Cr eat e is often done in the owning widgets constructor.

int HtpdMenu:: Create (void);

This method performs final initialization of the menu object. By default al of the options are marked as
enabled.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Di spatch

int HtpdMenu:: Di spatch (HttpdAppEvent &event);

Widgets that own menus should pass their eventsto this method. If the event isthe result of amenu action
this method will call the appropriate call-back for the menu item selected.

If event isamenu event the return value is the return value from the menu action call-back. Thisis
typically 0 on success or system dependent error value (see Table 4.1, “OS Abstraction Layer Error
Codes’). If the event is not for the widgets menu then HTTPD_TEMPLATE_NOT_HANDLED is returned.

Note

Unlike widgets, menus have no unique identifier. Instead menus depend on the unique
identifiers of the containing widget to be uniquely identified on the client. Therefore only
one menu can be managed by awidget at atime without extralogic.

Enabl ed

Count

Htt pdBi t Set & Htt pdMenu: : Enabl ed (void);

Menu items can be enabled or disabled by manipulating the elementsin the returned Ht t pdBi t Set . If
the index is present in the set then the item is considered enabled. By default all menu items are enabled.

unsi gned int HttpdMenu:: Count (void);

237

The Application Framework

This method returns the number of items in the menu.

Fi ndl tem
unsigned int HtpdMenu::Findltem (HitpdStringld item;

This method finds a menu item based upon label. If found the zero-based index of the item is returned. If
the item could not be found then the return value is equal to the return value of the Count method.

Ht t pdMenul t emReference

Public Data Members

mtem
HtpdStringld mtem

Thisfield isthe string identifier used to paint the label for this entry.

npActi on

int (*nmpAction)
(
size_t index,
Ht t pdAppEvent &event

)

If this field is not NULL then the function it points to is called when the menu item is invoked. The
event parameter isthe event record for the menu selection. The i ndex parameter is the index of the
Ht t pdMenul t emrecord in the array that defines the menu.

If thisfieldisNULL then this entry is considered a spacer or category for organizing selections.

Ht t pdMenuSynbol s Reference

Ht t pdMenuSynbol s is provided to paint a menu during template-based widget painting. Menus can
be painted in a variety of ways. Frequently button bars (such as the buttons at the bottom of the standard
dialog) are menusin disguise.

Template Directives

The Ht t pdMenuSynbol s symbol table adds a single looping directive for painting a menu, menu-
i t ens. Within thisloop severa additional directives are available pertaining to the current menu item.

Table 10.7. Directivesavailableduring nenu-i t ens

Directive Type Description

enabl ed Conditiond Thisconditionistrueif the current
menu item has not been marked as
disabled.

238

The Application Framework

Directive Type Description

headi ng Conditional This condition identifies the
current menu item as being a
heading entry with no associated
action (mpAct i on isNULL).

| abel Evauation This directive evaluates to the
string label assigned to the current
entry.

Iink Evaluation This directive evauates to the tag

that invokes this particular menu
event. This tag should be present
as a CGl parameter during the
submission of the request to the
server.

Public Methods
Ht t pdMenuSynbol s

Ht t pdMenuSynbol s: : Ht t pdMenuSynbol s (Htt pdMenu *p_nenu) ;

The symbol table is associated with the menu definition of p_menu as well as implicitly with
the current widget being painted. This symbol table should not be used unless an instance of
Ht t pdAppTenpl at ePr ocessor isperforming the template execution.

After constructionthe Ht t pdMenuSynbol s object should beinstalled in the current symbol scope with
aninstance of Ht t pdTenpl at eScope.

Writing Menu Specifications

Although the table of Ht t pdMenul t emcan be built by hand the menus package for the specgen tool
processes a el egant syntax for defining a menu.

Thenenus packageaddsanew directive called menu for defining amenu. Therrenu directiveisfollowed
by anidentifier that gives a symbolic name for the menu definition. This symbolic name is used to declare
the array of Ht t pdMenul t emstructures and can be used to initialize Ht t pdMenu objects.

For example, assuming a menu definition with a symbolic name of mai n_nenu a menu object called
menu_obj ect can be declared asfollows:

Ht t pdMenu nenu_obj ect (mai n_menu, HTTPD_NUMELEM mai n_nenu)) ;

@ Note
Notice that the HTTPD_NUMELEM macro is used to determine the number of itemsin the
mai n_nenu array. This is guaranteed to work because specgen always declares the array
with the number of elements (even in ext er n declarations).

In addition to declaring an array of structures, the symbolic name of the menu may be useful to other
specgen packages.

239

The Application Framework

Following the symbolic name is the actual message definition block. There are two directives. The
opt i on directive defines a selectable option complete with associated code. The headi ng directive
defines amenu item with no associated call-back (npAct i on isNULL).

For example, assuming the following definition for amenu named mai n_nmenu:

menu mai n_menu
{
headi ng M5SG_SYSTEM
option MSG REBOOT <- reboot();
option MSG _SAVECONFI G SaveConfi guration;

headi ng MSG_STATUS;
option M5G CPULOAD <- do_cpu_l oad(event);
opti on MSG ADDRESSI NG Di spl ayAddr essi ng;

The MBG_SAVECONFI G and MSG_ADDRESSI NG options are referencing external routines that are
prototyped to match the type of the npActi on member of Ht t pdMenul t em The MSG_REBOOT
and MSG_CPULOAD options are wrapped in anonymous functions prototyped with i ndex and event
parameters.

It is also possible to attach a menu option directly to a dialog box (either modal or non-modal). This till
requires a code fragment because a dialog box needs an object to manipulate although the code fragment
ismuch simpler.

menu mai n_menu
{
headi ng M5G_CONFI GURATI ON,
option MSG T1BOARD dial og(dl gT1Board, data) <-
{ data = &T1Paraneters; };
option MSG _LANBOARD di al og(dl gT1Board, ethdata) <-
{
et hdata = Get LANPar aneters();
if (ethdata == NULL)
return (Ht pdQpSys: : ERR_OUTOFMEM) ;

The di al og statement associates a particular dialog box with the named variable. The attached code
should assign avalid pointer for the dialog structure to the named variable or return an error code.

Alternatively, the di al og keyword can be replaced with the nodal _di al og keyword to invoke a
modal dialog box.

Ht t pdW dget Deskt op Reference

Introduction

The Ht t pdW dget Deskt op widget is used to manage a typical application view. Although it is not
a requirement that a desktop widget is used to manage the application some widget types do require it

240

The Application Framework

to be present. Under normal circumstances a desktop widget should always be created. Only under rare
circumstances (such as extreme code size limitations) should the desktop be avoided.

The desktop widget is a container widget and is always a child of the root widget. The most prominent
features of the desktop widget are the menu bar and the status area. The menu bar is an instance of
Ht t pdMenu and is used to provide a havigational menu for the overall structure of the application. The
status area is a used to display informational messages; often as an indication of success or failure when
performing an action.

An additional feature of the desktop widget is that it works in conjunction with the Ht t pdAppMbdal
classto force the user to perform a particular action.

Template Directives

Table 10.8. Evaluation Dir ectives

top This directive paints the current or “top” widget.
This directive should not be invoked unless the
has- t op conditional istrue.

st at us Displays the current status message. This directive
should not be invoked unless the has- st at us
conditional istrue.

cl ear-status Clears the status message if it is set.

Table 10.9. Conditional Directives

nmenu- hi dden This conditional determines if the menu should be
hidden.

has-top This conditional istrueif thereisacurrent or “top”
widget.

has- st at us This conditional is true if a status message is
pending.

Public Methods
Ht t pdW dget Deskt op

Ht t pdW dget Deskt op: : Ht t pdW dget Deskt op (const char *p_local _id,
Ht t pdW dget Cont ai ner *p_parent, const HtpdMenultem *p_itens, size_t
count, int &rc);

Construct a desktop widget. Thep_| ocal _i d, p_par ent, and r ¢ arguments function identically to
the corresponding argumentsin the Ht t pdW dget constructor.

Thep_i t ens and count argument define the desktop menu.

MenuHi dden

unsi gned int & HttpdW dget Deskt op: : MenuHi dden (void);

This method returns a reference to an internal counter that determines if the application menu is hidden.
The returned reference should never be directly assigned to. Instead the returned reference should be

241

The Application Framework

either incremented and decremented. It isimportant that the number of increments match the number of
decrements.

The manipulation of the menu hidden counter is automatically handled by the Ht t pdAppMbdal class.

Menu
Ht t pdMenu & Htt pdW dget Deskt op: : Menu (voi d);

This method returns a reference to the menu object of the desktop widget. The most common use of this
isto enable or disable specific itemsin the desktop menu depending on system state.

Top
Ht t pdW dget *& Htt pdW dget Deskt op: : Top (void);

The default behavior of the desktop is to consider one widget as the current widget the user isinteracting
with. This method returns a reference to the variable that identifies the current widget.

If the current widget is set to NULL then no widget is considered current.

St at us
voi d Htt pdW dget Desktop: : Status (HtpdStringld nessage);

Set a status message to be displayed on the desktop on the next painting cycle. If a previous message was
set to be displayed it is replaced with message.

Deskt op

Ht t pdW dget Deskt op * Ht t pdW dget Deskt op: : Deskt op (Htt pdW dget
*p_wi dget);

This static method hel pslocate the desktop widget by given any valid widget (p_wi dget). If the desktop
can not be found, NULL is returned. This method should only be called when employing the desktop
widget.

Cr eat eDeskt op

int HttpdW dget Desktop:: CreateDesktop (HttpdAppSession *p_session,
const HttpdMenultem *p_menu, size_t menu_count);

This static method creates a standard desktop widget in the session specified by p_sessi on. The
p_nmenu and nenu_count arguments define the application menu. The current widget is set to NULL.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Ht t pdAppModal Reference

Introduction

When using the Ht t pdW dget Deskt op widget it is often desirable to temporarily suspend the normal
desktop navigation until a certain condition is met. Most commonly the suspension of desktop navigation
is needed for the lifetime of a particular widget.

242

The Application Framework

The Ht t pdAppModal object can be embedded in awidget to ensure that navigation is disabled for the
life of that widget. This class provides no methods beyond a constructor and destructor. Simply initializing
it in the constructor of awidget is sufficient to make awidget modal.

Public Methods
Ht t pdAppModal

Ht t pdAppModal : : Ht t pdAppModal (Htt pdW dget *p_wi dget, int &rc);

This constructor can be called in the initializer list of a widget with t hi s passed in as the value for
p_wi dget andr c being the samer c reference passed to the constructor of awidget.

Dialogs

Introduction

A dialog is a container widget that holds a collection of “controls.” Controls are widgets that allow the
user to manipulate information. A dialog is defined by a set of data structures called a dialog template.
The dialog template is rather complex but the specgen tool builds the template structure automatically
from a specification.

The information that a dialog box represents is defined by an associated structure where each control
widget manipulates a particular field. Dialog widgets automatically manage the transfer of data between
the structure and the control widgets.

In order for the dial og widget to managethe control widgetsit relieson acall-back routine called amanager.
Each field definition has a pointer to a manager procedure. The manager procedure is used to construct the
widget and transfer values from the structure and validation. The manager procedure is flexible; taking a
opcode value that identifies the requested action and a parameter list asava list.

Although any widget can be managed inside a dialog box most control widgets are subclasses of
Ht t pdW dget Fi el d. The Ht t pdW dget Fi el d widget maintains an error state and provides a
manager procedure that handles afew basic events.

A dialog template is defined by an instance of the Ht t pdDi al ogTenpl at e structure. This structure
points to an array of Htt pdDi al ogFi el d that defines each field. Each Ht t pdDi al ogFi el d
structure can point to a“ configuration structure” that is specific to the widget or manager of the field.

Data Types

Ht t pdDi al ogTenpl at e Public Data Members

mpNane

const char *npNane

Thisfield identifies the local identifier of the dialog widget.

npLayout

243

The Application Framework

const char *npLayout

Thisfield identifies the resource used as atemplate to paint the dialog box.

npFi el ds

const HttpdDi al ogFi el d *npFi el ds

Thisfield pointsto an array of field descriptors that describe the parameters of the dialog.

nFi el dCount

size_t nFi el dCount

Thisfield defines the number of elementsin the npFi el ds array.

npMenul t ens

const HttpdMenultem *nmpMenult ens

Each dialog box has an associated menu. Thisfield is a pointer to the menu item table.

mvenuCount

size_t mvenuCount

Thisfield isthe number of elementsin the npMenul t ens array.

npl ni t

int (*nmplnit)
(

Ht t pdW dget Di al og *p_di al og
)

This call-back is called when the dial og box hasfinished itsbasic initialization and created all of itscontrol
widgets. Returning a non-zero value from this callback will prevent the dialog from being constructed
with a successful return code.

npVal i dat e

int (*npVal i date)

(
Ht t pdW dget Di al og *p_di al og

244

The Application Framework

This call-back is a final validation function for the dialog box. Although each field can be validated
independently the job of this validator routine is to ensure that al of the field values make sense as a
whole. This routine should return HTTPD_TEMPLATE_FALSE CASE if the validation constraints are
not met. Otherwise 0 should be returned. If no overall validation is required this field can be set to

Ht t pdW dget Di al og: : Nul | Proc.
npOnConpl et e
int (*rmpOnConpl et e)
(

)

Ht t pdW dget Di al og *p_di al og

If this field isnot NULL the function it pointsto is called after the dialog structure is updated during the
Ht t pdW dget Di al og: : Conpl et e method.

npOnCancel
int (*mpOnCancel)
(

Ht t pdW dget Di al og *p_di al og
)

If thisfieldisnot NULL thefunctionit pointstoiscalled during the Ht t pdW dget Di al og: : Cancel

method.

nConpl et edMsg
Ht t pdStringl d mConpl et edMsg
If the HTTPD DLG SET_ COVPLETI ON MSGflag isset in the nFl ags field this message is set in the
status field of the desktop widget when the Ht t pdW dget Di al og: : Conpl et e method is called.
nCancel | edMsg
Ht t pdStringl d nmCancel | edMsg
If the HTTPD DLG SET_CANCELLED MSGflagis set inthe nfl ags field this message is set in the
status field of the desktop widget when the Ht t pdW dget Di al og: : Cancel method iscalled.

nFl ags

unsi gned char nFl ags

245

The Application Framework

Thisfield contains a set of flags that effect the behavior of dialog box event processing. Several options
can be set in thisfield.

Table 10.10. Dialog Template Flags

HTTPD _DLG _SET_COVPLETI ON_MSG The string identified by nConpl et edMsg should
be set in the desktop status on dialog compl etion.
HTTPD_DLG SET_CANCELLED MSG The string identified by mCancel | edMsg should

be set in the desktop status on dialog cancellation.

HTTPD_DLG NO CONSTRAINT_I F_ERROR |Do not cal the function pointed to by
npVal i dat e if any of the fields did not pass
validation. Normally the validation function is
caled even if somefields are not valid.

Ht t pdDi al ogFi el d Public Data Members
npName

const char *npNane

This data member identifies the name of the field widget.

npTenpl at e
const char *npTenpl at e

This data member identifies the resource name used for painting the widget.

nof f set
size_t nOff set

This data member is the offset in the dialog structure of where the field data resides.

npManager
Ht t pdFi el dManager npManager

This data member points to a call-back routine to manage basic operation of the field. Rather than rely on
subclassing for each specialized field which is tedious and error prone (as well as a bloaty approach) the
manager procedure acts as a simple adaptor to an underlying instance of awidget.

The typedef HttpdFieldManager is defined as a pointer to the manager with the following prototype:

typedef int (*HttpdFi el dvanager)

(
const HttpdDi al ogField *p_field,

246

The Application Framework

Ht t pdW dget *p_wi dget,
int action,
va_list va

);

The manager procedure handles many different chores with the acti on identifying the request.
Arguments are encapsulated in the va argument list.

Table 10.11. Field Manager Procedure Events

HTTPD DLG CREATE W DGET This event is sent when the control widget is to
be created. The va list contains two additional
parameters. Thefirstisapointer to the dialog widget
and has a type of HttpdWidgetContainer *. The
second parameter is a pointer that holds the address
of the newly created widget and has a type of
HttpdWidget **.

If success is returned the second parameter must
be set to point to the newly created widget. In
addition, the newly created widget must have the
dialog container widget as its parent.

HTTPD DLG | NI T_W DGET Thiseventissent when after al control widgetshave
been settotheir initial valuesbut beforethetemplate
npl ni t routineiscalled.

HTTPD DLG SET W DGET This event instructs the control widget to update its
state from the field stored in the dialog structure.
Theva list contains a single void * parameter that
isthe address of the field in the dialog structure.

HTTPD DLG GET_W DGET This event instructs the control widget to update the
field in the dial og structure with the controls current
value. Theva list containsasinglevoid* parameter
that isthe address of the field in the dial og structure.

HTTPD_DLG VALI DATE This event is sent during an update cycle of the
dialog. If thecontrol widget isperforming validation
it should use this event as an indication to examine
itscurrent value for invalid data. If the dataisfound
not to be valid the state of the widget should be
updated appropriately.

HTTPD DLG | S_VALI D Thisevent is sent by the dialog widget to determine
if the current data of the control is valid during the
last HTTPD_DLG_VALI| DATE operation.

If the data is valid then
HTTPD TEMPLATE TRUE CASE should be
returned. Otherwise if the last

validation found erroneous data then
HTTPD TEMPLATE FALSE CASE should be
returned.

HTTPD _DLG CLEAR ERROR This event should clear any error determined by
the previous HTTPD_DLG_VALI DATE operation.

247

The Application Framework

Subsequent HTTPD DLG | S VALI D requests
should HTTPD TEMPLATE TRUE CASE until
the next validation.

HTTPD _DLG TEMPLATE EVAL This operation is caled when the template of a
Ht t pdW dget Fi el d (or one of its subclasses)
encounters a nanager/ directive. The va
argument list contains two additional parameters.
Thefirgt, of type const char * isthe string following
the slash in the directive. The second parameter isa
pointer to the Ht t pdEval Conmand object.

HTTPD_DLG USER This constant can be used as the base identifier
for application-specific manager requests. The
application framework never sends requests
with this identifier or any values larger than
HTTPD_DLG USER

nmLabel
Ht t pdStringl d nmLabel

This data member identifies the string label assigned to the field.

nmpConfig
const void * nmpConfig

This data member is a pointer to a field-specific configuration structure. It is available for use by the
manager procedure or the control widget. If no configuration structure is needed then this field should be
set to NULL.

Ht t pdW dget Di al og Reference

Ht t pdW dget Di al og isasubclassof Ht t pdW dget Cont ai ner and manages field widgets using
the dialog template. A dialog widget has amenu and possesses the template directives for painting menus.

Public Methods
Ht t pdW dget Di al og

Ht t pdW dget Di al og: : Ht t pdW dget Di al og (Htt pdW dget Cont ai ner *p_parent,
const HttpdDi al ogTenpl ate *p_tenplate, void *p_data, int &c);

The constructor initializes adialog widget. p_par ent isthe parent of the dialog widget; thisistypically
the desktop widget. The address of the dialog template must be passed in p_t enpl at e. Thep_dat a
argument must be a pointer to an instance of the dialog structure. The lifetime of the dial og structure must
be at least as long as the lifetime of the dialog widget. Failures during widget (or control widget) creation
areidentified in ther ¢ argument.

Tenpl at e
const HttpdDi al ogTenpl ate * Htt pdW dget Di al og: : Tenpl ate (void);

248

The Application Framework

Thismethod returns a pointer to the template structure that defines this dialog widget. The returned pointer
isnever NULL.

Dat a

void *& Htt pdWdgetDi al og: : Data (void);

This method returns a reference to the pointer to the dialog structure.
Modi fi ed

bool HttpdW dget Di al og: : Modified (void);

This method queries the control widgets and determines if they contain modified values. Control widgets
that can not report their modified status are ignored when tabulating the results.

The dialog template conditiona any- nodi f i ed evaluates to the same value as this method.

Cont r ol Count
size_t Ht pdW dget Di al og: : Control Count (void);
This method returns the number of controlsin the dialog.
Contr ol
Ht t pdW dget * Htt pdW dget Di al og: : Control (size t index);
This method returns a pointer to the widget that implements the control for thefield identified by i ndex.
Field
const HttpdDi al ogField * HtpdWdgetDi al og::Field (size_t index);
This method returns a pointer to the field descriptor for the field identified by i ndex.
Val i dat eFi el ds
int HtpdWdgetD al og:: ValidateFields (void);

This method calls the field-specific validators for al fields. The npVal i dat e call-back in the dialog
template is not called. If an error is encountered during the validation no further processing is done and
the error code is returned. Upon success a value of 0 is returned.

AreFieldsvalid
int HtpdWdgetDi al og:: AreFieldsValid (bool &valid);

This method queries the manager procedure of each field to determine if any fields have a pending error.
Uponsuccess, val i d issetto reflect the state of thefieldsand O isreturned; otherwise a system dependent
error value isreturned (see Table 4.1, “OS Abstraction Layer Error Codes”).

Val i dat eAl |
int HttpdWdgetDi al og:: ValidateAll (bool &valid);

This method first applies the per-field validators to ensure that each field is acceptable. Afterwards, the
template validator function is called to ensure that the relationships between the fields are not violating

249

The Application Framework

any constraints. Upon success, theval i dissettot r ue if all dataisvalid or f al se if some constraints
have been violated. Otherwise a system dependent error value isreturned (see Table 4.1, “ OS Abstraction
Layer Error Codes”).

MoveVal ues

Cancel

int HttpdWdgetD al og:: MoveVal ues (int action, void *p_data);

This method moves values between the dialog structure pointed to by p_dat a and the dialog controls. If
theact i on argumentisHTTPD _DLG GET_W DGET then the valuesfrom the dialog controlsare copied
to the dialog structure. If theact i on argument isHTTPD _DLG _SET_EVENT then the values from the
diaog structure are propagated to the controls.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

int HttpdWdget D al og:: Cancel (void);

This method cancels any pending changes in the dialog and marks the dialog widget as defunct: after
processing the current event the dialog widget is destroyed. No changes are made to the dialog structure.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Conpl et e

int HttpdWdgetD al og:: Conplete (void);

This method attempts to apply any pending changes in the dialog to the dialog structure if the data passes
the validation constraints. If the datais valid then the widget is marked as defunct and the dialog structure
isupdated. If the datais not valid then the dialog remains active.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

ManageFi el d

int HttpdwWdgetD al og:: ManageFi eld (const HttpdDi al ogField *p_field,
Ht t pdW dget *p_wi dget, int action, .);

This static method calls the manager procedure for the field specified by p_fi el d. The p_wi dget
argument should be a pointer to the control widget.

ManageFi el d

Create

int HtpdWdgetDi al og:: ManageFi el d (HttpdFi el dManager p_manager, const
Ht t pdDi al ogField *p field, HtpdWdget *p widget, int action, .);

This static method calls the specified manager procedure with the provided arguments. This method is
normally used to call a different manager method from a manager that only hanldes afew specific events.

i nt Ht t pdW dget Di al og: : Create (Ht t pdAppEvent &event , const
Ht t pdDi al ogTenpl ate *p_tenplate, void *p_data);

250

The Application Framework

This static method is a convenience routine for creating dial og boxesin responseto events. Typically these
events are menu events although any valid event structure will do.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

I nitOptional Field

void HttpdWdgetDial og::1nitOptional Field (HtpdWdget *p_w dget, bool
present);

This static method should be used when a field is optional and should only be displayed
when certain conditions are met. A field manager routine should call this method during the
HTTPD DLG | NI T_W DGET event. The pr esent should be true if the field is required during the
initial display of the dialog.

ShowOpt i onal Fi el d

bool HttpdW dget Di al og: : ShowOpt i onal Fi el d (Htt pdWdget *p_wi dget, bool
present, int &rc);

This static method should be used when a field is optional and should only be displayed when certain
conditions are met. A field manager routine should call this method during the HTTPD _DLG VALI DATE
event. The pr esent should betrueif the field isrequired for the current state of the dialog.

If this method returns true then the event handler should not proceed with any further validation and the
valueinr ¢ should be returned from the field manager. If the return value is false then validation should
proceed as normal .

Ht t pdW dget Fi el d Reference
The Ht t pdW dget Fi el d class is the base class for control widgets that support the concept of
“validation.” Validation means that when a particular field takes on an unacceptable value the dialog box
will not update the dialog structure.

Template Directives

Table10.12. Ht t pdW dget Fi el d Template Directives

Directive Type Description

data-tag Evaluation This directive evauates to a
unique tag name for the datavalue
of thisfield.

error Evaluation This directive evaluates to the
current error message if any is
present.

| abel Evaluation Each field has an associated

label string, defined in the dialog
template, to identify it. This
directive evaluates to that label
string.

manager / Xxxx Evaluation This directive cals the fields
manager procedure with a

251

The Application Framework

Directive Type Description
HTTPD DLG TEMPLATE EVAL
request.

has-error Conditiond If the field isin an error state this
conditional directive evaluates to
true.

is-nodified Conditiona If the field has been modified
since its creation then this
directive evaluates to true.

Public Methods
Htt pdW dget Fi el d

Htt pdWdgetField:: HtpdWdgetField (HtpdWdgetContainer *p_parent,
const HttpdDi al ogField *p_field, int &c);

This constructor initializes the field widget. The p_par ent parameter is a pointer to the dialog widget.
A pointer to the field descriptor should be passed inasp_fi el d. Ther ¢ isthe error code and has the
same semantics asther ¢ argument in Ht t pdW dget 's constructor.

Set Error (string version)
void HttpdWdgetField::SetError (char *p_error);

This method places the field widget into an “error state” with an error message of p_error. The
p_error parameter must point to a string in storage obtained from HttpdOpSys::Malloc. Once given to
this method the string is owned by the widget and should not be freed by the calling code.

Set Err or (localized version)
void HtpdWdgetField::SetError (HtpdStringld error_nessage);

This method places the field widget into an “error state” with an error message of er r or _nessage.

Cl earError
void HttpdWdgetField::CearError (void);

This method removes the widget from an error state.

HasErr or
bool HttpdW dgetField::HasError (void);

This method returnstrueif thiswidget isin an error state. Otherwise, false is returned.

Manager

i nt Ht t pdW dget Fi el d: : Manager (const Htt pdDi al ogField *p field,
Ht t pdW dget *p_widget, int action, va_ list va);

This static method is a basic implementation of a field manager procedure. It handles
the HTTPD_DLG _TEMPLATE_EVAL, HTTPD DLG | S_VALI D, and HTTPD_DLG_CLEAR_ERRCR

252

The Application Framework

requests. Subclasses of Ht t pdW dget Fi el d should cal this static method as the default case in any
manager procedures they define.

Ht t pdW dget Scal ar Reference

A Ht t pdW dget Scal ar isacontrol widget that can take on astring value. The definition of string value
in this context is purposefully broad. Numeric values are also considered strings and can be handled by
aHt t pdW dget Scal ar. TheHt t pdW dget Scal ar classisasubclass of Ht t pdW dget Fi el d
and therefore can be validated.

Template Directives

Templates for Ht t pdW dget Scal ar can also take advantage of the directives provided by its base
class, Ht t pdW dget Fi el d.

Table10.13. Ht t pdW dget Scal ar Template Directives

Directive Type Description

val ue Evauation This directive evaluates to the
current value of the widget. The
value is HTML-escaped.

have- dat a Conditional Thisdirectiveistrueif the widget
has avalue.

Public Methods

Ht t pdW dget Scal ar

Ht t pdW dget Scal ar: : Ht t pdW dget Scal ar (Htt pdW dget Cont ai ner *p_parent,
const HttpdDi al ogField *p field, int &c);

This constructor initializes the scalar widget. The p_par ent parameter is a pointer to the dialog widget.
A pointer to the field descriptor should be passed inasp_fi el d. Ther c isthe error code and has the
same semantics asther ¢ argument in Ht t pdW dget 's constructor.

GetValue
const char * Htt pdW dget Scal ar: : Get Val ue (void);

This method returns a pointer to the value of the widget. If the widget has no value then NULL isreturned.

SetValue
int HttpdWdget Scal ar:: Set Val ue (const char *p_val ue);

This method sets the current value of the widget to p_val ue. NULL can be passed in for p_val ue to
indicate that the widget has no value.

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’).

Manager

i nt Ht t pdW dget Scal ar: : Manager (const Ht t pdDi al ogField *p_field,
Ht t pdWdget *p_wi dget, int action, va_list va);

253

The Application Framework

This static method is a skeletal manager procedure for scalar fields. It handles the
HTTPD DLG CREATE W DGET request in addition to al of the requests handled by the
Ht t pdW dget Fi el d: : Manager procedure.

Ht t pdW dget Opt i on Reference

A H t pdW dget Opt i on isacontrol widget that selects between afinite set of options. Thiswidget is
typically renderedin HTML asapulldown menu or aseriesof radio buttons. TheHt t pdW dget Opt i on
classisasubclassof Ht t pdW dget Fi el d and therefore can be validated.

Thiswidget requires aconfiguration structure pointed to by thenpConf i g member of thefield descriptor.
The configuration structure, Ht t pdW dget Opti on: : Opti ons isdefined asfollows:

struct Options

{
const HttpdStringld *nmplLabel s;

size_t mCount ;
b

The npLabel s data member of the configuration structure should point to an array of string identifiers
enumerating each of the possible choices for the option. The mCount data member is the number of
elementsinthe npLabel s array.

Template Directives

Templates for Ht t pdW dget Opt i on can also take advantage of the directives provided by its base
class, Ht t pdW dget Fi el d.

Table10.14. Ht t pdW dget Opt i on Template Directives

Directive Type Description

option/nnn Evaluation This directive evaluates to the
label of aparticular identifier. The
component following the slash
(nnn) is an integral constant that
identifies the options index.

option-id Evaluation This directive evaluates to the
current option index when looping
over dal of the options. This
directive should only be evaluated
when inside an opt i ons loop.

option-1 abel Evaluation This directive evaluates to the
current option label when looping
over all of the options. This
directive should only be evaluated
when inside an opt i ons loop.

i s-current-sel ection Conditional This directive is true if the
current option is the selected
item when looping over al of
the options. This directive should

254

The Application Framework

Directive Type Description

only be evaluated when inside an
opt i ons loop.

have- current - sel ecti on |Conditiona Thisdirectiveistrueif the widget
has a currently selected object.
options Loop Thisdirectiveloopsover al of the

possible options.

Public Methods
Ht t pdW dget Opti on

Ht t pdW dget Opti on: : Ht t pdW dget Opti on (HttpdW dget Cont ai ner *p_parent,
const HttpdDialogField *p_field, const Option *p_options, int &c);

This constructor initializesthe option widget. Thep_par ent parameter isapointer to the dialog widget.
A pointer to the field descriptor should be passed in as p_f i el d. The options list (which is normally
stored in the field descriptor) is passed in viap_opt i ons. Ther c isthe error code and has the same
semantics asther ¢ argument in Ht t pdW dget 's constructor.
GetCurSelection
int HtpdWdget Option:: Get CurSel ection (void);
Thismethod returnsatheindex of the current selection. If thevalueiscurrently selected then -1 isreturned.
SetCurSelection
voi d Htt pdW dget Opti on:: Set Cur Sel ection (int index);

This method sets the current selection of the widget to the option identified by the i ndex parameter. If
i ndex issetto- 1 noitemisconsidered selected.

Manager

i nt Ht t pdW dget Opti on: : Manager (const Htt pdDi al ogField *p _field,
Ht t pdW dget *p_widget, int action, va_ list va);

This static method is a skeletal manager procedure for option selection fields. It handles

the HTTPD DLG CREATE W DGET request in addition to al of the requests handled by the
Ht t pdW dget Fi el d: : Manager procedure.

Ht t pdW dget Bool ean Reference
A Ht t pdW dget Bool ean isacontrol widget that is either on or off. Thiswidget is typically rendered

in HTML as a checkbox. The Ht t pdW dget Bool ean classis a subclass of Ht t pdW dget Fi el d
and therefore can be validated.

Template Directives

Templates for Ht t pdW dget Bool ean can also take advantage of the directives provided by its base
class, Ht t pdW dget Fi el d.

255

The Application Framework

Table 10.15. Ht t pdW dget Bool ean Template Directives

Directive Type Description

presence- key Evaluation This directive evauates to a
widget tag for identifying if this
widget value was even present in
the returned set of CGI values.
The need for this extra field
is due to the fact that when a
checkbox HTML object is no
selected (but present) no value
is returned. Templates should
includeahi dden input field with
a non-empty string using this key
name.

i s-sel ected Conditiond Thisdirectiveistrueif the state of
the widget is true.

Public Methods
Ht t pdW dget Bool ean

Ht t pdW dget Bool ean: : Ht t pdW dget Bool ean (Ht t pdW dget Cont ai ner
*p_parent, const HttpdDialogField *p field, int &rc);

Thisconstructor initializesthe boolean widget. Thep _par ent parameter isapointer to thedialog widget.
A pointer to the field descriptor should be passed inasp_fi el d. Ther c isthe error code and has the
same semantics asther ¢ argument in Ht t pdW dget 's constructor.

GetCurState
bool HttpdW dget Bool ean: : Get Cur State (void);

This method returns a the current state of the widget.

SetCurState
voi d Htt pdW dget Bool ean: : Set Cur St ate (bool state);

This method sets the current state of the widget to the st at e.

Manager

int HttpdWdget Bool ean:: Manager (const HttpdDi alogField *p_field,
Ht t pdW dget *p_wi dget, int action, va_list va);

This static method is a skeletal manager procedure for boolean fields. It handles the
HTTPD DLG CREATE W DGET request in addition to al of the requests handled by the
Ht t pdW dget Fi el d: : Manager procedure.

Ht t pdW dget Mul ti Reference

A Htt pdW dget Mul ti is similar to a Ht t pdW dget Scal ar widget but is designed for multi-
part strings. An example of a multi-part string is an IPv4 address in dotted decimal notation. The
Ht t pdW dget Mul ti widget consists of one or more named scalar values. Typically these widgets are

256

The Application Framework

used with specialized templates to setup arigid layout for thefield. The Ht t pdW dget Scal ar classis
asubclass of Ht t pdW dget Fi el d and therefore can be validated.

Thiswidget requiresaconfiguration structure pointed to by thenpConf i g member of thefield descriptor.
The configuration structure, Ht t pdW dget Mul ti : : Opt i ons isdefined asfollows:

struct Options

{

const char *const *npFi el ds;
size_t mCount ;

b

The npFi el ds data member of the configuration structure should point to an array of strings naming
each of the components of the multi-field. The mCount data member is the number of elementsin the
npFi el ds array.

Template Directives

Templatesfor Ht t pdW dget Mul t i can also take advantage of the directives provided by its base class,
Ht t pdW dget Fi el d.

Table10.16. Ht t pdW dget Mul ti Template Directives

Directive Type Description

val ue/ i ndex Evaluation This directive evaluates to the
value of a particular field of the
widget. The i ndex string can
either be a field index preceded
by an at sign (@ or the name
of a field. The value is HTML-
escaped.

field-tag/index Evaluation This directive evaluates to a
unique name for this field that
should be used for naming the
form elements. As with the
val ue directive, the i ndex
string can either be a field index
preceded by an at sign (@ or the
name of afield.

have-val ue/ i ndex Conditional Thisdirective evaluates true if the
field has avaue.
val ue- equal s/ i ndex Conditional This directive determines if the

value of the specified field is
equal to the attribute of the
val ue attribute. Alternatively,
the value to compare against can
be specified as a URI-escaped
string in the attribute escaped.

have-fi el d/ i ndex Conditiona This directive determines if the
specified field isvalid.

257

The Application Framework

Public Methods

Ht t pdW dget Mul ti

Ht t pdW dget Mul ti:: Htt pdW dget Mul ti (Htt pdW dget Cont ai ner *p_parent,
const HttpdDi al ogField *p_field, const Options *p_options, int &c);

This constructor initializes the multi widget. The p_par ent parameter is a pointer to the dialog widget.
A pointer to the field descriptor should be passed in as p_fi el d. The options, normally stored in the
field descriptor, should be passedinasp_opt i ons. Ther c isthe error code and has the same semantics
asther c argument in Ht t pdW dget 's constructor.

Index
bool HttpdWdgetMulti::Index (const char *p_|abel, size t & ndex);
This method obtains the index of the field identified by the label p_| abel . If such afield exists then
i ndex is set to the index of that field and true is returned. If the field specified by p_| abel isnot a
member of the multi widget then falseis returned.

GetValue
const char * HttpdWdget Multi:: GetValue (size_t index);
This method returns a pointer to the value of the widget field specified by i ndex. If the widget has no
value then NULL is returned.

SetValue
int HtpdWdgetMulti::SetValue (size_t index, const char *p_val ue);
This method sets the current value of the field identified by i ndex to p_val ue. NULL can be passed
infor p_val ue to indicate that the field has no value.
Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Manager

i nt Ht t pdW dget Mul ti :: Manager (const Htt pdDi al ogField *p field,
Ht t pdW dget *p_widget, int action, va list va);

This static method is a skeletal manager procedure for multi fields. It handles the
HTTPD DLG CREATE W DGET request in addition to al of the requests handled by the
Ht t pdW dget Fi el d: : Manager procedure.

Ht t pdFi el dManager s Reference

The Ht t pdFi el dManager s structure contains static methods and other definitions that provide
standard behavior for various dialog input fields when using standard data types.

Public Methods

St or eUnsi gned

voi d Htt pdFi el dManagers: : St or eUnsi gned (I nt eger Type type, void *p_dest,
unsi gned | ong val ue);

258

The Application Framework

This static method is used to update an unsigned integral value pointed to by p_dest withval ue. The
t ype argument determines the type of the object pointed to by p_dest . The IntegerType type is an
enumeration defined in the scope of Ht t pdFi el dManager s. It can take on the values of Char Type,
Shor t Type, | nt Type, or LongType.

St or eSi gned

voi d HttpdFi el dvanagers:: StoreSigned (IntegerType type, void *p_dest,
| ong val ue);

This static method issimilar to St or eUnsi gned except that the target values are assumed to be signed.
Fet chUnsi gned

unsi gned long HtpdFiel dvanagers:: FetchUnsigned (IntegerType type,
const void *p_source);

This static method performs the reverse operation of St or eUnsi gned. The unsigned integral value
pointed to by p_sour ce that isof typet ype isreturned.

Fet chSi gned

| ong HttpdFi el dvanagers:: FetchSigned (IntegerType type, const void
*p_source);

This static method performs the reverse operation of St or eSi gned. The signed integral value pointed
toby p_sour ce that isof typet ype isreturned.

EnumMvanager

int HtpdFi el dvanagers:: Enunivanager (const HtpdDi al ogField *p_field,
Ht t pdWdget *p_wi dget, int action, va_list va);

This static method is a field manager procedure for enumerations that are explicitly of type int and
enumerated started at O and increasing monotonically.

I mportant
Only widgets that are instances of Htt pdW dget Opti on should use this manager
procedure.

Bool Manager

int HtpdFi el dvanagers:: Bool Manager (const HtpdDi al ogField *p_field,
Ht t pdW dget *p_wi dget, int action, va_list va);

This static method is a field manager procedure for values that are explicitly of type bool.

I mpor tant
Only widgets that are instances of Htt pdW dget Bool ean should use this manager
procedure.

Public Structures

Unsignedinteger

The Unsi gnedl nt eger structure provides a static method, Manager that can be used to manage
unsigned integral input fields based on the Ht t pdW dget Scal ar input widget.

259

The Application Framework

When using this manager procedure the npConf i g member of the field descriptor should point to an
instance of the Unsi gnedlI nt eger class.

Data member M ni num

unsi gned | ong mM ni mum

This member defines the minimum value this field can take on.

Data member mvaxi num

unsi gned | ong mvaxi mum

This member defines the maximum value this field can take on.

Data member nBel owM ni num

Ht t pdStringld nBel owM ni mum

If the value of the field is below the minimum value the string identified by mBel owM ni numis used
to indicate the error.

Data member mAboveMaxi num
Ht t pdStringl d mAboveMaxi mum
If the value of the field is above the maximum value the string identified by mAboveMaxi mumis used
to indicate the error.
Data member m nval i d

Ht t pdStringld mnvalid,;

If the value of the field is not a valid number then the string identified by m nval i d is used to indicate
theerror.

Data member niType
I nt eger Type nilype;
Thismember definesthe size of the field. It can take on the values Char Type, Shor t Type, | nt Type,

or LongType.

Data member nBase

260

The Application Framework

enum { Hex, Dec } nBase;

This member defines the base used for the string representation of the value.
Signedinteger

LikeUnsi gnedl nt eger ,theSi gnedl nt eger structure providesastatic method, Manager that can
be used to manage signed integral input fields based on the Ht t pdW dget Scal ar input widget.

When using this manager procedure the npConf i g member of the field descriptor should point to an
instance of the Si gnedI nt eger class.

Data member mM ni mum

[ong mM ni mum

This member defines the minimum value this field can take on.

Data member mvaxi mum

| ong nivaxi num

This member defines the maximum value this field can take on.

Data member nBel owM ni mum
Ht t pdStringld nmBel owM ni mum
If the value of the field is below the minimum value the string identified by mBel owM ni mumis used

to indicate the error.

Data member mAboveMaxi mum
Ht t pdStringl d mAboveMaxi mum
If the value of the field is above the maximum value the string identified by mAboveMaxi mumis used
to indicate the error.
Data member m nval i d
Htt pdStringld mnvalid;
If the value of the field is not a valid number then the string identified by m nval i d is used to indicate

the error.

Data member niType

261

The Application Framework

I nt eger Type nilype;

This member definesthe size of the field. It can take on the values Char Type, Shor t Type, | nt Type,
or LongType.

StaticStringBuffer

The St ati cStri ngBuf f er structure provides a static method, Manager that can be used to manage
fixed-size zero-terminated string input fields based on the Ht t pdW dget Scal ar input widget.

When using this manager procedure the npConf i g member of the field descriptor should point to an
instance of the St at i ¢St ri ngBuf f er class.

Data member nBuf f er Si ze

size_t nBufferSize;

This member defines the size of the buffer that holds the data, including the zero-terminator byte.

Data member nTooLong

Htt pdStringl d mfooLong;

If the string value entered by the user can not fit in the buffer this localized string is used to indicate the
error.

TimeDateStamp

The Ti neDat eSt anp structure provides a static method, Manager that can be used to manage input
fields based for the Ht t pdTi meSt anp class.

When using this manager procedure the npConf i g member of the field descriptor should point to an
instance of the Ti meDat eSt anp class.

Data member m nval i d

Htt pdStringld mnvalid;

This member defines the string that should be displayed when the field isin an error state.

Data member mJseAnmrPm

bool mJseAnPm

If true then an extra selection for AM or PM is provided for the time component.

Ipv4Address

Thel pv4Addr ess structure provides astatic method, Manager that can be used to manageinput fields
that are string-based | Pv4 addresses.

262

The Application Framework

When using this manager procedure the npConf i g member of the field descriptor should point to an
instance of the | pv4Addr ess class.

Data member m nval i d
Htt pdStringld mnvalid;

This member defines the string that should be displayed when the field isin an error state.

Data member npVal i dat e
bool (*npValidate)(const HttpdU nt8 *p_octets);

A pointer to aroutine that validates the four octets of the address. Two built-in validator routines, Host
and Net mask can be used to validate host addresses and netmasks, respectively.

Dialog Specifications

The specgen tool can be used to generate the Ht t pdDi al ogTenpl at e structure and associated field
descriptors. The di al ogs package defines a single directive, di al og that defines a dialog template.
Withinthe di al og directive other directives define the structure of the dialog:

Table 10.17. Componentsof adi al og body

struct If specified this names the dialog structure
associated with this dialog. If this directive
is omitted then the struct takes on the name
Di al ogData, where Di al og is the name of the
dialog.

tenpl ate This assigns the template resource to the dial og.

menu Associates a menu with a dialog.

fields Defines the set of fieldsin the dialog.

conpl ete Defines acompletion handler for the dialog.

cancel Defines a cancellation handler for the dialog.

val i dat or Defines avalidator procedure for the dialog.

val i dat e Define the behavior of the validation phase for the
diaog.

st at us Define desktop status messages displayed during
dialog completion or cancellation.

Using the vague description above lets dive right into a basic example of a dialog to control a motor:

di al og notor_control

{
Values are stored in a structure call ed MtorParaneters.
struct WMot orParaneters;

263

The Application Framework

Use the std_dial og resource for painting.
tenmpl ate "std_dial og"”;

Use a nenu defined earlier, called notor_menu for the dial ogs
menu bar.
menu not or _nenu;

Upon conpl eti on, execute this code.
conpl ete <-
{
i f (UpdateMtorController())
Commi t () ;
b

Upon cancel | ation, call the Mdtor::Lockout Changes routi ne.
cancel Mdtor:: Lockout Changes;

Di spl ay these nessages when cancel | ed/ conpl et ed.
st at us
{

conpl eti on MSG_STATUS CHANGES SET;

cancel [ati on MSG_STATUS_OPERATI ON_DI SABLED;

b

Val i dati on.
val i dator <-
{
DoVal i dationSt uff();
return Ot herValidationStuff();

b

Only execute the validator if none of the fields are in an
an error state, as opposed to 'al ways'.
validate if_no_error;

The fields.
fields
{
speed : unsigned
{
| abel MSG_TEMPERATURE; Label for this field.
type short; The data type is short.
m ni mum 16 : M5SG_TOO SLOW too slow, display this nmessage.

maxi mum 1200 : MSG _TOO FAST;
invalid MSG_ | NVALI D_NUVBER;
tenmpl ate "scal ar”;

b

too fast, display this one.
invalid, display this.
Use this tenpl ate.

HHHHH R

spin : bool ean

| abel MSG_MOTOR_ON,; # Label for this field.
tenmpl ate "bool ean”; # Use this tenplate.

b

264

The Application Framework

s
s

Collections

Introduction

Collection widgets present lists of information and can alow manipulation of those lists. Collection
widgets do not directly contain items or any kind of list; that is up to the application. Instead, collection
widgets make use of an “adaptor” class which provides an abstract interface to the list. Data adaptors are
subclasses of Ht t pdCol | ect i onDat a which implement its abstract methods.

TheHt t pdCol | ect i onDat a interfacerepresent list itemswith ageneric pointer. To physically present
those objects to the user an additional abstract interface is provided to perform the rendering task.
Rendering implementations are subclasses of Ht t pdCol | ecti onObj ect Render er and implement
template directives.

Seminole includes some pre-built adaptor classes for various data structures. In addition, a manager
procedure is provided so that a collection widget can be amember of a dialog box.

Like dialog boxes, collection widgets have menus that can be used to perform associated actions. The

collection widget provides methods for determining if an object is selected and if so, which object to menu
handlers that take action on a particular object.

Ht t pdCol | ect i onDat a Reference
Public Methods

Current
void * HttpdColl ectionData:: Current (void);

This method returns the currently indexed item of the collection. Ht t pdCol | ect i onDat a objects
maintain a cursor that points to a particular element. This method can return NULL to identify that no
item is currently selected.

First
int HttpdCollectionData::First (void);
This method positions the cursor to thefirst element of the collection. If an error is encountered during the
moving of the cursor then an error value should be returned (see Table 4.1, “OS Abstraction Layer Error
Codes"). For success (even if there are no items in the collection) 0 should be returned.

Next

int HtpdCol |l ectionData::Next (unsigned int count);

This method positions the cursor to the element in the collection count items following the current
element. If an error is encountered during the moving of the cursor then an error value should be returned
(see Table 4.1, “OS Abstraction Layer Error Codes”). For success (even if there are no more itemsin the
collection) 0 should be returned.

265

The Application Framework

Prev
int HtpdCollectionData::Prev (unsigned int count);
This method positions the cursor to the element in the collection count items preceding the current
element. If an error is encountered during the moving of the cursor then an error value should be returned
(see Table 4.1, “OS Abstraction Layer Error Codes’). For success (even if there are no more previous in
the collection) 0 should be returned.

| sFirst
bool HttpdColl ectionData::IsFirst (void);
This method should return true is the currently selected element is the first element of the collection. If
any other element is selected by the cursor, false should be returned.

Event

int HtpdCollectionData::Event (HtpdAppEvent &ev);

This method is called when an event from the user (via a button that is part of the collection widget) is
destined for aparticular item of the collection. The cursor of the collection datais positioned to the sel ected
item before this method is called.

Thismethod should return an error code (see Table4.1, “OS Abstraction Layer Error Codes’) or atemplate
return code.

Unlike all of the other methodsin this class, Event is not abstract and does not have to be implemented
by subclasses. The default behavior isto ignore the event.

Ht t pdCol | ecti onQbj ect Render er Reference

The Ht t pdCol | ect i onCbj ect Render er classis a subclass of Ht t pdSynbol Tabl e that also
defines an additional abstract method to specify a particular collection object.

During the rendering of a collection widget each item in the data adaptor isiterated for the current view.
The pointer to the current object (obtained from Ht t pdCol | ect i onDat a: : Current)isgiventothe
Set Obj ect method of thisclass.

Templates can then contain directives for displaying a collection item that are delivered to subclasses of
Ht t pdCol | ecti onObj ect Renderer.

Public Methods

Set bj ect
int HttpdCollecti onhjectRenderer:: SetCbject (void *p_object);
This method is called to prepare the renderer to render the object identified by p_obj ect . The object
should remain in effect until the next call to Set Obj ect . It is guaranteed that p_obj ect will never
be NULL.

This method should return an error code (see Table 4.1, “OS Abstraction Layer Error Codes’) on failure
or O on success.

266

The Application Framework

Ht t pdCol | ecti onW dget Reference

Template Directives

TheHt t pdCol | ecti onW dget paintsitself using templates. The templates can make use of directives
provided by Ht t pdCol | ecti onW dget as well as additional directives provided by the renderer
object. The standard menu template directives also apply.

Collection Widget Template Evaluation Directives

cur-list-idx Thisdirective evaluates to the zero-based offset of the currently painted item in the
widget. It should only be used inside ar ecor ds loop directive.

dat a- key This directive evaluates to the data key for the widget.

Collection Widget Template Conditional Directives

nor e- ahead Thisdirectiveistrueif thereisan additional page of itemsto be viewed. Typically this
should result in a“Next” button being presented to the user.

nor e- behi nd This directive is true if there are additional items before the items displayed on the
current page. Typically thisshould result in a“Prev” button being presented to the user.

is-first This directive is true if currently displayed item is the first in the collection. This
directive should only be used insidear ecor ds loop.

i s-odd-row Thisdirective is true if the current row is odd; the first row is considered even. This
directive is useful to alternate the colors of each record to assist in readability.

The collection widget also provides alooping directive, r ecor ds that isused to display the current view
of items. Ther ecor ds should only be eval uated once per collection widget during asingle painting cycle.

Public Methods
Ht t pdCol | ect i onW dget

Ht t pdCol | ecti onW dget : : Ht t pdCol | ecti onW dget (const char *p_local _id,
Ht t pdW dget Cont ai ner *p_parent, const char *p_tenplate, void *p_data,
const Options *p_options, int &rc);

Construct acollectionwidget. Thep_| ocal _i d, p_par ent , andr ¢ argumentsfunction identicaly to
the corresponding argumentsin the Ht t pdW dget constructor.

The p_t enpl at e parameter is the resource identifier of the template that should be used to paint this
widget. The remaining parameters are passed as a pointer to an Options structure. The most important
field of this structure is the setup function (mpSet up). Thisroutineis called to fabricate the renderer and
collection objects backing the widget. The setup method is passed the p_dat a argument of the widget
constructor. This pointer istypically used to identify the data that is being displayed.

The Options structure is defined as follows:

struct Options
{
i nt (*npSet up) (void *p_dat a,
Ht t pdCol | ecti onObj ect Renderer *&p_render,

267

The Application Framework

Ht t pdCol | ecti onDat a *&p_adapt or) ;
unsi gned i nt nPageSi ze;
const HttpdMenultem *npMenultens;
size_t mvenuCount ;
Ht t pdW dget Fl ags nFl ags;
unsi gned short nRef reshl nterval ;

All members of the structure should be initialized before being passed to the
Ht t pdCol | ecti onW dget constructor. The nPageSi ze member determines the number of items
that should be displayed on the widget at any given time. The npMenul t ens and mvenuCount
members define the associated menu. The nl ags member contains additional widget flags. The
Ht t pdCol | ecti onW dget widget has two additional flags:

» FREE_RENDERER - The renderer object was alocated dynamically and should be deleted when the
widget is destroyed.

» FREE_DATA - The data object was allocated dynamically and should be deleted when the widget is
destroyed.

The nRef r eshl nt er val member, if greater than zero, forces the client to repaint the widgets for the
specified number of seconds. Changesin the datawill be displayed during arepaint.

Menu
Ht t pdMenu & Htt pdCol | ecti onW dget:: Menu (void);
Returns areferene to the menu object associated with the widget.
HaveSel ecti on
bool HttpdCol |l ecti onW dget:: HaveSel ection (void);

Thisfunction returnst r ue if an object is selected. Only code executing as part of an event handler (such
as menu handlers) should call this routine.

Dat a
Ht t pdCol | ecti onData * HttpdCol |l ecti onWdget:: Data (void);
This function returns a pointer to the data abstraction backing the collection widget.
Render er
Ht t pdCol | ecti onObj ect Renderer * Htt pdCol | ecti onW dget : : Renderer (void);
This function returns a pointer to the rendering object backing the collection widget.
Manager

int HttpdCollecti onWdget:: Manager (const HttpdDi alogField *p_field,
Ht t pdW dget *p_widget, int action, va_list va);

This static method provides basic manager functions to embed a collection widget in a dialog box. The
configuration structure is expected to be a HttpdCollectionWidget::Options structure; the same structure
that is passed tothe Ht t pdCol | ecti onW dget constructor.

268

The Application Framework

Ht t pdCol | ecti onLi st Adapt or Reference

The Ht t pdCol | ect i onLi st Adapt or class adapts a list represented by the Ht t pdLi st class to
providethe Ht t pdCol | ect i onDat a interface.

Public Methods

Ht t pdCol | ecti onLi st Adapt or

Ht t pdCol | ecti onLi st Adaptor:: Htt pdCol | ecti onLi st Adapt or (Htt pdLi st
&list);

Associatesthe adaptor with thelist specified by | i st . Theowner pointer of theHt t pdLi st Node object
is used as the object pointer that is passed to the rendering object.

Ht t pdCol | ecti onArrayAdapt or Reference

TheHt t pdCol | ecti onArrayAdapt or classadaptsalist represented asanormal array (either static
or dynamic) to providethe Ht t pdCol | ect i onDat a interface.

Public Methods

Ht t pdCol | ecti onArr ayAdapt or

Ht t pdCol | ecti onArrayAdaptor:: H t pdCol | ecti onArrayAdapt or (void
*p_array, size_t count, size_ t slotsz);

Associates the adaptor with the array pointedtoby p_ar r ay. Thecount parameter specifies how many
elementsarein the array while sl ot sz specifies the size of each element.

Ht t pdW dget BackBl ocker Reference

Introduction

TheHt t pdW dget BackBIl ocker widget is a subtle widget that can be used to prevent the use of the
“Back” button in many browsers (interfering with the state of the user interface). Thiswidget is normally
transparent and can be made a child of the desktop where it can be painted with the chi | d/ directive
anywhere inside the content area.

When the back button is used the client is sent aredirect to aspecific URL. A sensible option isto redirect

the user to the URL for the application handler. Thiswill result in an update for the current user-interface
State.

Public Methods
Ht t pdW dget BackBIl ocker

Ht t pdW dget BackBl ocker: : Ht t pdW dget BackBl ocker (const char *p_| ocal _id,
Ht t pdW dget Cont ai ner *p_parent, int status, const char *p_redirect _to,
int &c);

269

The Application Framework

Construct a back-blocking widget. The p_| ocal _id, p_parent, and rc arguments function
identically to the corresponding argumentsin the Ht t pdW dget constructor.

If the “Back” button constraint is violated a redirect is sent as the response using
the status and p_redirect to arguments. Under norma circumstances a status of
HTTPD_RESP_MOVED TEMP should be used in conjunction with ap_redi rect _t o obtained from
caling Ht t pdAppHandl er: : Prefi x.

270

Chapter 11. Imaging Library
What is the Imaging Library?

Introduction

Seminole handlersare not restricted to generating HTML or textual data; any binary data can be generated.
The Seminole imaging library takes advantage of this feature to display data graphically rather than
textually.

When using the imaging library, application code can use graphics primitives to draw on a canvas object.
The canvas object can then generate a graphics file on demand in response to a request.

The current implementation supports generation of GIF87a graphics files. Custom formats can be
implemented by subclassing the abstract Ht t pdCanvas class.

Using the Imaging Library

In order to use the imaging library application code must include the sem i mage. h header file. There
are two ways to use the imaging library. The first approach is to create the canvas, paint the image, and
render the canvas in the context of a handlers Handl e method.

An alternative approach is to draw the image at the applications convenience and only perform the
rendering step in the handler. If this approach is used then the access to the canvas object should be
synchronized with amutex (Ht t pdMut ex).

Setting up arequest handler to draw dynamic imagesis easy. A subclassof Ht t pdHandl er isinstalled
in the server object. The handler then performs the drawing and rendering steps if the request is for this
handler:

bool MyHandl er:: Handl e(Ht t pdRequest *p_request)
{
if (IsMyPat h(p_request))
{
Ht t pdG f 87aRender er canvas;
Ht t pdCol or red, green bl ue;

/1 Create a 425x125 pixel canvas with 8-bit depth.
if (canvas. Create(425, 125, 8) !'=0)
goto failure;

/1 Allocate colors.

if (canvas.Color (255, 0, 0, 0, red) !=0)
goto failure;

if (canvas. Color (0, 255, 0, 0, green) != 0)
goto failure;

if (canvas.Color(0, 0, 255, 0, blue) !'=0)
goto failure;

/1 Draw on the canvas.

271

Imaging Library

/1 Render the output.
canvas. Render (p_r equest);
return (true);

el se // Not interested.
return (false);

failure:
p_request - >Respond(HTTPD_RESP_SRV_ERROR) ;
return (true); // Handled, but not well.

}

The HttpdColor and HttpdCoord) types are abstract typesdefined by sem i mage. h for specifying colors
and coordinates to the generic drawing routines. Thereis nothing GIF specific about these types until they
areused by theHt t pdG f 87aRender er canvas.

Ht t pdRect Reference

Introduction

The Ht t pdRect struct represents a rectangular area on the canvas using four points: top, left, bottom,
and right. The struct also provides methods for performing various operations with rectangles.

Because rectangles are such afundamental concept thereis little need for accessor methods for each data
member. Instead the members can be accessed directly as needed.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Data

Ht t pdCoord niTop;

Thetop (lowest y coordinate) of the rectangle; inclusive.

Ht t pdCoord mlieft;

The left (lowest x coordinate) of the rectangle; inclusive.

272

Imaging Library

nmBott om

Ht t pdCoord nBottom

The bottom (highest y coordinate) of the rectangle; inclusive.

nRi ght
Ht t pdCoord nRi ght;

Theright (highest x coordinate) of the rectangle; inclusive.

Public Methods

W dt h
Ht t pdCoord Htt pdRect:: Wdth (void);
This method returns the width of the rectangle.

Hei ght
Ht t pdCoord Htt pdRect: : Hei ght (void);
This method returns the height of the rectangle.

I nt ersection

void HtpdRect::Intersection (const HttpdRect &r);

This method intersects the rectangle object with the rectangle defined by r . The result of the intersection
is the new dimension of the rectangle object.

Uni on

voi d HttpdRect:: Union (const HttpdRect &r);

This method adjusts the rectangle object so that it encompases both the original area and the area defined
byr.

Encl oses

bool HttpdRect::Encl oses (const HtpdRect &r);

This method tests if the rectangle defined by r is completely enclosed by the rectangle object.
Overl aps

bool HttpdRect::Overlaps (const HtpdRect &r);

273

Imaging Library

This method tests if the rectangle defined by r overlaps the area covered by the rectangle object.

O f set
void HttpdRect:: O fset (HttpdCoord x_nove, HtpdCoord y nove);

This method moves the origin of the rectangle by the specified offsets.

I nfl ate

void HtpdRect::Inflate (HtpdCoord x_grow, HttpdCoord y grow;

Therectangleisgrown on all four sides. Therefore the total expansion on the X-axisistwicex_gr owand
the total expansion ontheY-axisistwicey_gr ow

Defl at e
void HtpdRect::Deflate (HttpdCoord x_shrink, H tpdCoord y_shrink);

The rectangle is shrunk on al four sides. Therefore the total reduction on the X-axisistwicex_shri nk
and the total reduction on the Y-axisistwicey_shri nk

Subt r act

unsigned int HtpdRect::Subtract (const HttpdRect &, HtpdRect
*p_subrects);

Compute the list of rectangles covering the area of this rectangle without the rectangle r. The
p_subrect s parameter must point to an array of at least HTTPD_RECT _MAX_AREA FRAGVENTS
elements. This method returns the number of rectanglesused inthe p_subr ect s array.

Ht t pdCanvas Reference

Introduction

Ht t pdCanvas represents an abstract drawing surface. Subclasses of Ht t pdCanvas implement its
interface for a particular type of drawing surface.

There are two kinds of drawing routines a canvas provides. Pixel-oriented routines are fast but work only
with pixels. Brush-oriented routines are generally more powerful (although slower) and draw using an
abstract drawing tool, called a brush.

Brushes can provided by subclasses of Htt pdCanvas or as stand-alone enhancements to canvas-

provided brushes. At any point in time the canvas has an active brush which is used by all brush-based
drawing operations.

Public Methods
Col or

i nt HttpdCanvas:: Col or (unsigned char red, unsigned char green, unsigned
char bl ue, unsigned char thresh, HttpdCol or &color);

274

Imaging Library

Br ush

Pen

Si ze

Thismethod obtains aHttpdColor valuefor the specified valuesof r ed, gr een, and bl ue. Thet hr esh
value determines the how accurate the resulting color must be. The higher the threshold value the less
exact the match is.

If the color could be allocated the col or argument is set to the appropriate color value and O is returned.
Otherwise an error code from Table 4.1, “OS Abstraction Layer Error Codes’ is returned.

The purpose of the threshold value isto allow a canvas with limited color resources to share color entries
with previously used colors. If O is specified for the threshold then an exact match is requested.

Ht t pdBrush * HttpdCanvas::Brush (HttpdBrush *p_brush);

This method sets the current brush of the canvas to the brush pointed to by p_br ush. A pointer to the
previously active brush is returned.

Ht t pdCol or Htt pdCanvas:: Pen (H tpdCol or pen);

This method sets the current pen color of the canvasto the color specified by pen. The previous pen color
isreturned.

The pen color isused by default brush (see Def aul t Br ush) for drawing basic pixels.

voi d HttpdCanvas::Size (HttpdRect &r);

Thismethod setsr to the rectangle that defines the drawing area.

Def aul t Brush

H t pdBrush * Htt pdCanvas: : Def aul t Brush (void);

This method returns a pointer to the “default brush.” This brush paints single pixels (the smallest drawing
unit possible) using the current pen color.

Note
This function never returns NUL L as the default brush should always exist for the life of the
canvas and be created during the construction of the canvas.

Box
voi d Htt pdCanvas: : Box (const HttpdRect &r);
This method draws a one-pixel border around the perimeter of the rectangle specified by r in the current
pen color.

Fi | | edRect

voi d HttpdCanvas: : Fill edRect (const HttpdRect &r);

This method fills the pixelsin the rectangle specified by r with the current pen color.

275

Imaging Library

HPiI xel Li ne

void HttpdCanvas::HPi xel Line (HtpdCoord v, Ht t pdCoord start_x,
Ht t pdCoord stop_x);

This method draws a 1-pixel tall horizontal linefrom st art _x tost op_x (inclusive) at y pixelsfrom
the origin. Thelineis drawn in the current pen color.

VPi xel Li ne

void HttpdCanvas::VPi xel Line (HtpdCoord x, Ht t pdCoord start_y,
Ht t pdCoord stop_y);

This method draws a 1-pixel wide vertical linefromstart _y tost op_y (inclusive) at x pixels from
the origin. Thelineis drawn in the current pen color.

Li ne
voi d HttpdCanvas::Line (const HtpdRect &rect);
This method draws a line from the top left corner of the rectangle r to the bottom right using the current
brush.
Crcle
void HttpdCanvas::Circle (HttpdCoord x_center, HtpdCoord y_center,
Ht t pdCoord radi us);
This method draws a circle with the specified center and radius using the current brush.
RoundRect
voi d Ht t pdCanvas: : RoundRect (const HttpdRect & ect, HttpdCoord roundness
This method draws a rectangle of coordinatesr ect with rounded corners. The r oundness parameter
specifies how many pixles the diagonal lines on each corner take up. Keep in mind that if r oundness
istoo large the rounded corners will no longer look round.
Gid
void HtpdCanvas::Gid (const HtpdRect &, HtpdCoord x_spaces,
Ht t pdCoord y_spaces);
This method draws a 1-pixel wide grid using the current pen color covering the specified rectangle. The
X_spaces andy_spaces parameters determine the number of graduations for each axis.
Li neG aph

voi d HttpdCanvas::Li neGaph (const HtpdRect &, const [ong *p_val ues,
size_t count, long mnval, |ong nmaxval, size_t offset = 0);

This method graphs the data pointed to by p_val ues in the rectangle defined by r. The data must
be signed long integers. The count parameter specifies how many elements p_val ues points to and
m nval and maxval specify the miniumum and maximum ranges to be graphed.

276

Imaging Library

The of f set parameter specifies the where the graph should start within the p_val ues array.
Reguardless of the value of this parameter, count data points are always plotted. If of f set isnon-zero
then the graph simply wraps around to the beginnig of the array until count values are plotted.

The of f set parameter makes it easy to draw a graph on awindow of constantly changing data.

Ht t pdSquar eBr ush Reference

Introduction

TheHt t pdSquar eBr ush classimplementsthe abstract Ht t pdBr ush interface. It applies an existing
brush in asquare (or rectangular) pattern for each drawing operation. Thisbrush is generally used to make

shapes appear “thicker.”
Public Methods
Ht t pdSquar eBr ush

Ht t pdSquar eBr ush: : Ht t pdSquar eBrush (H t pdBrush *p_brush, HttpdCoord

X_cnt, HtpdCoord y cnt);

The square brush object is configured to draw using p_br ush for x_cnt repetitions aong the x-axis

andy_cnt repetitions on the y-axis.

Ht t pdFont Reference

Introduction

TheHt t pdFont classisused for drawing text on acanvas. Each font object has configurable spacing and
scaling. Once created a Ht t pdFont object is read-only and thread safe and may be used from multiple

threads (requests) without synchronization.

Public Methods
Ht t pdFont

Ht t pdFont: : Ht t pdFont (HttpdCoord scale = 1, HttpdCoord spaci ng

This method constructs of font of the specified scale with the specified character spacing.
Char Wdth

Ht t pdCoord Htt pdFont:: CharWdth (char ch); const

This method computes the width of the specified character (in pixels).
StringWdth

Ht t pdCoord Htt pdFont:: StringWdth (const char *p_string); const

This method computes the width of the string p_st ri ng (in pixels).

1);

277

Imaging Library

Dr aw

Ht t pdCoord HttpdFont::Draw (HttpdCanvas *p_canvas, HtpdCoord X,
Ht t pdCoord y, const char *p_string); const

This method draws the string p_st ri ng at the coordinates x, y of the canvas p_canvas using the
current pen color of the canvas.

Thetotal horizontal width of the drawn string (in pixels) is returned.

Ht t pd@ f 87aRender er Reference

Introduction

The Ht t pdG f 87aRender er class implements the Ht t pdCanvas interface. The contents of this
canvas can be rendered as a GIF87a graphics filesin response to an HTTP request.

Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

Thread Safety

Thisclassiscompletely reentrant. Multiple threads may share this class provided each instance is accessed
only by one thread at a time. If instances of this class are to be used by multiple threads then the caller
must provide mutual exclusion.

Public Methods

Create

int HtpdG f87aRenderer::Create (HtpdCoord width, HttpdCoord height,
unsi gned int depth = 8);

Before the object can be used the Cr eat e method must be called. This method prepares the canvas for
drawing with the specified dimentions and color-depth (in bits).

This method may be called on an already-initialized Ht t pdG f 87aRender er object to re-create the
object with anew size and/or depth. Keep in mind that re-creating an already existing canvaswill obliterate
the image on the previous canvas.

Upon success, 0 is returned. Upon error, a code from Table 4.1, “OS Abstraction Layer Error Codes” is
returned.

Render
voi d Htt pdG f 87aRenderer:: Render (HttpdRequest *p_request);
Given arequest object, p_r equest , the contents of the canvas are sent back as the response.

No MIME header generation or any other response processing should be performed upon p_r equest
before this method is called.

278

Imaging Library

After this method returns no further actions of any kind should be performed on the request object.

279

Chapter 12. Web Sockets

Introduction

The WebSocket protocol is an extension to HTTP that provides a bidirectional communications path
between an HTTP client and Seminole. WebSockets avoid the overhead of repeated socket connections
and allow for long-term data transfer that HT TP does not.

Animportant thing to keep in mind isthat many browser implementations of WebSockets do not implement
HTTP authentication even though the WebSockets protocol supportsit. Therefore it may be necessary to
implement authentication using WebSockets messages or via HttpdSessionManager.

Each WebSocket connection also consumes a worker thread. It may also be necessary for applications
to ration the number of socket connections open at any one time to prevent other HTTP requests from

starvation. In fact the number of WebSocket connections can be artificially restricted by the session limit
of Ht t pdSessi onManager .

Ht t pdWebSocket Reference

Introduction

TheHt t pdWebSocket classimplementsan active WebSockets (RFC 6455) connection. In addition this
class provides static methods for the detection and establishment of WebSocket connections.

Messages are represented with the following structure;

struct Message

{
Ht t pdUi nt 8 mvessage;
voi d *npBuf f er;
size_t nSi ze;

1

Themvessage isthetype associated with the frame. The WebSockets protocol definestwo frame types:

HTTPD_WS TEXT_FRAME (UTF-8)
HTTPD_WS BINARY_FRAME

Public Methods

| sRequest
bool HttpdWebSocket: :|1sRequest (HtpdRequest *p_request);

This method may be called in the Handl e method of an Ht t pdHandl er subclass to determine if
p_request isareguest to establish aweb socket connection.

If aweb socket connection should be established then true is returned. Otherwise false is returned.

280

Web Sockets

Connect

Set up

Cl ose

bool HttpdWebSocket:: Connect (HttpdRequest *p_request, HttpdWebSocket
&socket);

If p_request isaweb socket request (I sRequest returned true) this method attemptsto connect to the
far end. If successful socket may then be used to perform 1/O. If unsuccessful then no further processing
should bedoneon p_r equest and true should be returned from Handl e.

This method returns true upon success or false upon failure.

bool HttpdWebSocket:: Setup (HttpdRequest *p_request, HttpdWebSocket
&socket);

If p_request isaweb socket request and the connection can be established then true is returned and
socket must eventually be closed.

In the event of failure false is returned and the Ht t pdHandl er : : Handl e method must perform no
further processing and return true.

voi d Htt pdWebSocket :: C ose (void);

This method closes a websocket connection.

Set MaxRxSi ze

voi d Htt pdWebSocket : : Set MaxRxSi ze (size_t nmax_mnsg_si ze);

To prevent clients from consuming excessive amounts of memory the maximum message size received
by a socket may be set using this method. If a message is received that is larger than the maximum size
then the connection is severed.

The default maximum message size isthe largest value that size t can represent.

Send
int HttpdWebSocket:: Send (const Message &nsg);
This method sends the message to the peer.
Upon success, 0O is returned; otherwise a system dependent eror vaue is
returned (see Table 4.1, “OS Abstraction Layer Error Codes’). Additionaly
Ht t pdWebSocket ::HTTPD_WS CONNECTION_CLOSED is returned if the socket is closed for
whatever reason.

Recei ved

int HttpdWebSocket:: Recei ved (Message &nsg, unsigned int tineout);

Wait for a message to be transmitted by the far end or for t i meout seconds to elapse with no received
message. |If amessage is successfully received then the fields of nsg arefilled in and O is returned.

281

Web Sockets

After this method returns the message buffer may be used (and even written to) until Fi ni sh is called
with the message. Until Fi ni sh iscalled no further callsto Recei ved should be made.

However it is possible to call Send prior to calling Fi ni sh. In fact it is posishle to call Send with
the message structure (and buffer) that was recieved. Because the message buffer can be written to the
responses to the client can be a modified version of the request message.

Upon success, 0O is returned; otherwise a system dependent eror vaue is
returned (see Table 4.1, “OS Abstraction Layer Error Codes’). Additionaly
Ht t pdWebSocket ::HTTPD_WS _CONNECTION_CLOSED is returned if the socket is closed
for whatever reason. If no message is received within the timeout period then
Ht t pdOpSys::ERR_NOTREADY isreturned.

Normally code should not attempt to retry receiving amessage if an error is returned. An exception to this
ruleisif ERR_NOTREADY isreturned.

Codethat uses Ht t pdWebSocket objects should keep in mind that even in atransmit-only sitation this
method should be called periodically to ensure that the connection is properly maintained (i.e. ping frames
are acknowledged) and disconnects are detected.

Recei ved (multiple wait version)

int HttpdWebSocket:: Received (Message &nsg, unsigned int tinmeout,
Ht t pdSocket WAi t Handl e wait_for);

This method is similar to the version defined above that does not include the wai t _f or parameter.
Additionally this version is only available if the portability layer supports multiple-wait socket reception
(HAVE_SOCK_WAI T isdefined as 1).

This version waits either for a message to be received from the peer, for the specified timeout to occur, or
for the platform specific signaling mechanism referenced by wai t _f or to be signaled. The latter results
inareturn of Ht t pdOpSys: : ERR_NOTREADY to be returned.

Fi ni sh
virtual void HttpdWebSocket:: Finish (const Message &nsg);

Complete message reception and release any resources held by nsg. This method should be called on
messages obtained by calling Recei ved.

Protected Methods

Unhand| edFr ane

virtual bool HtpdWebSocket:: Unhandl edFrane (Message &mrsg, HttpdUint8
opcode, bool fin, int &rc);

This method is called when a frame is received with an unrecognized OPCODE field. When called the
opcode parameter is the value of the 4-bit opcode field in the received frame. Thef i n parameter is set
to trueif the FI Nbit is set in the frame. Finally the ms g structure contains a valid size and buffer pointer
for the received frame.

If this method returns false then the frame is dropped and frame reception begins again. If true is returned
thenr c isreturned to the caller of Recei ved.

282

Web Sockets

It is expected that if the frameisto be handled gracefully the Fi ni sh method is called on nsg.

This implementation simply causes the Recei ved method to return
Ht t pdOpSys: : ERR_BADFORNVMAT in the event of an unrecognized opcode.

Fr agnment

virtual bool HttpdWebSocket:: Fragnment (Message &nrsg, HttpdU nt8 opcode,
bool fin, int &c);

Thismethod handlesfragment reassembly. If adataframewith the FI Nbit clear or acontinuation frameis
received from the far end it is routed to this method. This method then stores the fragment in areassembly
buffer. The opcode parameter is the value of the 4-bit opcode field in the received frame. The fi n
parameter is set to true if the FI N bit is set in the frame. Finally the nsg structure contains a valid size
and buffer pointer for the received frame.

If this method returns false then the frame is dropped and frame reception begins again. If true is returned
thenr c isreturned to the caller of Recei ved.

It is expected that this method also removes the message bytes from the protected nFi f o member after
processing. For example:

nFi f 0. Consune(nsg. nSi ze) ;

In the event that the client wants to send large messages that can not be buffered in the memory of the
target this method may be overridden to process fragments on the fly.

If thismethod is subclassed to support special fragment processing it isimportant to remember that frames
with an opcode of HTTPD_ WS TEXT_FRAME must contain UTF-8 encoded data. It is possible that an
encoded character may straddle two frames and this needs to be accounted for.

283

Chapter 13. Endpoint Discovery

Introduction

Endpoint Location

Providing a web-based interface for a device is only useful if it can be easily found. With a multitude of
embedded devices all offering aweb interface it can be difficult to find out what URL to go to.

Seminole provides two components to hel p solve this dilemma. One component, the discovery server, sits
alongside the webserver and uses multicast UDP to help users|ocate the webserver. The other component,
thediscovery client, iseither installed or downloaded (from awell-known site, such asacorporate website)
where the web browser runs.

When the discovery client is invoked it will attempt to find all of the reachable discovery servers on a
given network that match a set of criteria. In addition to the URL other small bits of information can be
transmitted from the the server to the client. This alows the discovery mechanism to also act as an overall
status display for al the nodes in the network.

The Discovery Server

The discovery server (Ht t pdDi scover ySer ver) executes on its own thread and does not impact the
processing of HTTP requestsin any way. The discovery server does associate with an instance of Ht t pd
to derive the target URL.

A small structure must be provided to the server that describes the class of device, any name-value
parameters to report back and the network parameters. A default set of network parameters is provided
that should be used in most cases.

Severa methodsof Ht t pdDi scover ySer ver may beoverriddenin asubclassfor added functionality.
The most important of these, Bui | dResponse can be used to send real-time status data about this
endpoint for the client to display. A good example of thiswould beif any faults are present, security aerts,
or even environmental conditions (i.e. temperature, power supply levels, etc.).

The Discovery Client

Theincluded discovery client iswritten in the Java programming language so that it can be run on awide
variety of client systems (we hope). It runs as an applet within a web browser. This allows it to open a
connection to the located in the user's preferred browser.

The client should require only a few configuration parameters in an HTML document for configuration
and some way of delivering the client to whereit is needed. One old fashioned approach to delivering the
client is to package the files on a CD-ROM. Another more modern approach is to delivery the client via
awell-known web server. It is also possible to serve the discovery client right from an embedded device
using Seminole although thisimplies that the URL for at least one deviceiswell known.

The Java Discovery Client
Compiling

Compiling the Java discovery client requires an operating JDK in your current path. As with al other
Seminole components the build system is capable of building the client automatically although it is not

284

Endpoint Discovery

built as part of the default build procedure. Instead the di scovery_cl i ent target must be used. For
example:

$./buildit ports/PORTFILE di scovery_client

If al goes well the discovery client (well the JAR file) is named bui | t/ PORTFI LE/|i b/
Di scovery. j ar Thisfilecanbecombinedwith someinstructional HTML that launchesit and deployed
to wherever it is needed.

Dueto the Javasecurity model it is necessary that if the client is delivered over an untrusted source (HTTP
for example) that it be signed. Signing the JAR file requires that a public key be generated and given a
name. Once the key is created it can be signed by setting the JAVA _SI GN_KEY Perl variable in your
build file to the alias given to your key.

There are several waysto create the key but the easiest is using the keytool command. There are two steps
to making this key. The first command is used to generate the key. The second signs the key with itself.
It isalso possible to sign the key viaatrusted third party.

It is also important to specify the validity (in days) of the key. To avoid repeatedly having to re-sign the
applet it is a good idea to make the key last along time. Of course this has security implications and the
security conscious should weigh their options.

To get started generating a key named My Conpany use the following commands:

$ keytool -genkey -validity 365 -alias MyConmpany
$ keytool -selfcert -validity 365 -alias MyConpany

Oncethekeysare setup the discovery client can be cleaned by “building” thedi scovery_cl ean target:
$./buildit ports/PORTFILE di scovery_cl ean

After cleaning the client can then be re-built at described above.

Instructional HTML

In order to properly execute the JAR an HTML document must be created to launch the applet. Thisis
also aterrific place to include things like product setup instructions, troubleshooting guides, and technical
support contacts. The minimal content required to run the client is an APPLET tag. For example:

<ht m >
<head><titl| e>Active Frobinator 2000 s</title>
<body>
<appl et
code="gl adesoft. sem nol e. di scovery. Di scover yAppl et"
archi ve="Di scovery.jar"
hei ght =420 w dt h=340>
<par am nane="di scovery. sil ence-tineout-url" val ue="none_found. htm ">
</ appl et >
</ body>
</htm >

285

Endpoint Discovery

The parameter that is set within the APPLET tag, di scovery. sil ence-ti neout -url isonly one
of many that can be set to control the appearance and behavior of the client. Almost all of the parameters
have reasonable defaults if not specified.

Note
All parameters used by the discovery client are prefixed with di scovery. . Any further
references to the parameters imply this prefix.

Some parameters are not configurable at runtime and must be changed by recompiling the applet. Most of
these hard-coded constants as well as the defaults are in the Di scover yConfi gur ati on class. The
most important parameter is TI ME_I NTERVAL. Thisisthe number of milliseconds an operation cycle of
the client takes. The default value is 100ms. Other parameters are based on these units.

Parametersthat specify fontsdo soin astandard way. They consist of threefieldsthat are comma separated.
The first field is the name of the font (as seen by the JRE). The second parameter is one or more of the
following attributes combined with + characters:

* bol d - Rendersthe font in bold.
e italic-Rendersthefontinitalics.
* nul | -Ignored. Useful to signify no attributes.

Thefinal field is the point size of the font. So afont specification may look like this:
SansSeri f, bol d, 14

Colors aso are specified in a standard way. A color is composed of red, gree, and blue values (ranging
from O to 1) separated by commas. An optional alpha component (also in the range from 0 to 1) may
follow the green value.

Table 13.1. Discovery Client Parameters

Option Meaning Default Value

rx- port This is the port to listen on|1175
for beacons from the server. It
should match the configuration of
the Ht t pdDi scoveryServer
instance.

t x- port This is the port to send|1176
discovery requeststo the server. It
should match the configuration of
the Ht t pdDi scover yServer
instance.

br oadcast This is the addresses on|238.17.40.9,ff05::1:1174
which discovery requests are
sent. It should be the
multicast group address that the
Ht t pdDi socveryServer is
configured to listen on. Multiple

286

Endpoint Discovery

Option Meaning Default Value
addresses may be specified by
separating them with commas.
cl asses Thisisthelist of deviceclassesto|None. Not specifying this

allow through. Every instance of
Ht t pdDi scoveryServer has
alist of “classes’ that describe the
device. If this parameter is present
thenitisacommaseparated list of
device classes to display. Only if
there is an intersection in the two
listsis the endpoint displayed.

parameter implies no filtering.

al | owed- schenes

This parameter is a comma
separated list of URL “schemes’
without the :// portion that
aredisplayable. Discovery servers
can provide the scheme used to
accessthem. However thismay be
an untrustworthy source. As such
this parameter can be used to filter
out unwanted protocols.

http, https

bi nd This parameter allows the socket| There is no default. When this
to be bound to a particular|parameter is not specified the
interface address. socket is bound to the wildcard
interface address.
max- age This parameter controls the| 20 timeinterval units

number of time units that
an endpoint will remain in
the list without receiving a
beacon from the discovery server.
Setting this value too low
means that in heavy packet
loss situations endpoints may
disappear prematurely. Setting
this value too high means that if
an endpoint is removed from the
network it will remain in the list
way too long.

send- paci ng

This parameter controls how
often probe packets are sent. It
should be smaller than max- age.
However setting this parameter
too high will result in longer
delays for a new node to display.
Setting this parameter lower
increases network traffic.

10 time interval units

vi ewi n-pl ace

This setting determines if the
selected endpoint should be
displayed in the same browser
window (for values of on, t r ue,
or 1) or in a separate window

true

287

Endpoint Discovery

Option

M eaning

Default Value

(for values of off, false,
or 0). Some browsers have
security implications with regards
to opening new windows.

For maximum reliability and ease
of use this option should probably
be st to true. However if
multiple devices are typical then
you may wish to consider setting
thisvaluetof al se.

max-si |l ence

If no endpoint is seen by this
many time units the client will
navigate to the URL specified
by the silence-tineout-
ur | parameter. This is useful to
redirect to a “debugging” page to
help the user figure out why no
endpoints were seen.

10 time interval units

sil ence-ti neout -url

This is the URL to navigate to
if no endpoint is found in nax-
si | ence timeunits.

If this parameter is not specified
then this feature is disabled.

| oad-fail-url

The loading of the applet
can fall for a varety of
reasons (for example lack of
permission or an incompatible
runtime environment). In the
event this happens the client will
attempt to navigate to this URL
where instructions to remedy the
situation or discover the endpoint
manually may be found.

If this parameter is not specified
then this feature is disabled.

url -font This value sets the font alMonospaced, bol d, 16
discovered URL isdisplayed with.
detail -1 abel -font This value sets the font a for an|SansSeri f, bol d, 12

attribute |abel.

det ai | - val ue-font

This value sets the font a for an
attribute value.

SansSerif,null, 12

bg- col or

This value sets the background
color for adiscovered endpoint.

White

hi ghl i ght - bg- col or

This value sets the background
color for a discovered endpoint

0.47,0.94,0.47 (a
green)

light

that has been selected by the user.
url -col or This value sets the background|Blue
color for the displayed URL.
attr-1abel -col or This value sets the color that the|Black

attribute label text isdrawnin.

288

Endpoint Discovery

Option

M eaning

Default Value

attr-col or

This value sets the color that the
attribute value text isdrawn in.

Gray

attr-1 abel -col or-hl

This value sets the color that
highlighted attribute label text is
drawnin.

Orange

attr-col or-hl

This value sets the color that
highlighted attribute value text is
drawniin.

Orange

bor der-col or

This value sets the color that
the border around a discovered
endpoint isdrawn in.

Black

attr-order

This vaue sets the order in
which attributes are displayed.
See below for further details.

descr

ep- sort

Thisvalueis an optional specifier
for how to sort the displayed
endpoints. See below for further
details.

enabl e-i cons

If enabled then an optiona
icon will be displayed for each
discovered endpoint (if the server
provides one). Otherwise icons
from the server are ignored.

true

max-i con-w dt h

Specifies the maximum icon
width alowed before an icon
is scaled. The value may be
specified as a percentage of the
available areaif suffixed by a %or
an absolute sizein pixels.

10%

max- i con- hei ght

Specifies the maixmum icon
height allows before an icon
is scaled. The value may be
specified as a percentage of the
available areaif suffixed by a%or
an absolute size in pixels.

30%

m n- audi o-ti me

Specifies the minimum amount
of time (in milliseconds) between
audio notifications. In order
to prevent repeated audio
notifications this value can be set
to ignore audio notifications if
they are closetogether (timewise).
Setting this parameter to 0 will
disable audio cues.

30%

string-file

If specified thisvalue references a
propertiesfile to use for localized
strings. Setting this avoids using

the Java ResourceBundl e

Not set

289

Endpoint Discovery

Option Meaning Default Value

class which often requests
many non-existant files. For
example setting this to /
res. properties will sdect
the default properties file at the
root of the JAR.

string-url If specified this value is a URL |Not set
relative to the document base of a
properties file to use for localized
strings.

By default the client is built in “restricted” mode. This disables the effect of the br oadcast,
bi nd, rx-port, andtx- port parameters. Normally these should always be left at the defaults for
security reasons. However, for debugging or special deployments the constant RESTRI CTED, defined
in Di scoveryConfiguration.java may be set to f al se to enable the functionality of these
parameters.

Attributes

Each endpoint can display a small set of associated data items along with its URL. Each of these data
items has an internal name that the client and server use to identify an attribute. The client also associates
a“display name” along with each attribute that is shown to the user.

Theat tr- or der parameter specifies the internal name of all possible attributes as well as the order
in which to display them. It is okay to specify a display name that is not received from the server in the
attr-order parameter, it will simply beignored. At aminimum servers should send an attribute called
descr that isabrief description of the endpoint.

Unlike other labels, the displayable string for the descr attribute is automatically defined to display
“Description”. Other attribute display text can be set by defining specially named parameters. For example:

<par am nane="di scovery. | abel -attr-vers" val ue="Version">

The attribute above configures the client to display the string Ver si on as the label for a parameter of
ver s. Any attribute name mentioned in at t r - or der should have a translation entry as in the above
example.

Formatting Attributes

There are also anumber of parametersthat can affect the formatting of the attribute values. Some of these
parameters perform string manipulations while others work on attributes that are textual representations
of numbers. The formatting is done using the classesin the j ava. t ext package that provides locale-
specific formatting. Therefore it is not necessary for adiscovery server to attempt complex formatting.

Table 13.2. Attribute Formatting Parameters

Option Description

format-attr-tri mnane If this parameter is true then whitespace is
removed from the front and the back of attribute
name.

290

Endpoint Discovery

Option

Description

format-attr-| owcase- nane

If this parameter ist r ue then the value of attribute
name islowercased.

format-attr-| owcase- name

If this parameter ist r ue then the value of attribute
narme islowercased.

format-attr-type-nane

This parameter determines how attribute name is
to be interpreted. If this parameter is nunber then
the value is formatted as a localized number. If
this parameter is per cent age then the value is
formatted as a percentage (scaled by 100).

format-attr-integer-nane

If this parameter is t rue and the value is to
formatted as a number then the value is treated as a
signed number rather than a floating-point value.

format-attr-scal e- nane

If the formatting type is ether nunber or
per cent age then the value of the attribute is
multiplied by this value. For non-integer valuesthis
may be a fractional value that can be used to scale
down the provided value.

format-attr-bi as- nanme

If the formatting type is ether nunber or
per cent age then thisvaue is added to the value
of the attribute. For non-integer values this may be
afractional value that can be used to scale down the
provided value.

format -attr-nmaxfrac-nane

If the formatting type is either nunber
or percentage and this parameter is
present the maximum number of fractiona
digits is set to its vaue See the Java
Nunber For mat . set Maxi nunfracti onDi gi
documentation for details.

format-attr-m nfrac-nane

If the formatting type is either nunber

or percentage and this parameter is
present the minimum number of fractional
digits is set to its vaue See the Java

Nunber For mat . set M ni nunfr acti onDi gi
documentation for details.

format - attr-nmaxi nt - nane

If the formatting type is ether nunber or
percentage and this parameter is present
the maximum number of whole number
digits is set to its vaue. See the Java
Nunmber For mat . set Maxi numd nt eger Di gi t
documentation for details.

format-attr-mnint-nanme

If the formatting type is ether nunber or
percentage and this parameter is present
the minimum number of whole number
digits is set to its vaue. See the Java
Nunmber For mat . set M ni nund nt eger Di gi t
documentation for details.

format-attr-suffix-nane

If the formatting type is ether nunber or

per cent age and this parameter is present then

291

Endpoint Discovery

Option Description

the value of this parameter is used to construct a
Choi ceFor nat object to format a suffix for the
numeric attribute value. Seethe Javadocumentation
for Choi ceFor mat for details on the possible
values of this parameter.

format-attr-map- nanme If present this parameter alows the value from
the server to be mapped to a different value. The
map isparsed usingthe Java St r eaniTokeni zer ;
this allows character quoting and escaping.
The format of this parameter is a series of
name-value pairs. For example if the value
of this parameter is critical="Critical

Al ar Ml nl medi at e Attention
Needed", war ni ng="\War ni ngs present"

the values critical and warni ng from the
discovery server will be mapped to the moreverbose
values.

Sorting Endpoints

By default endpoints are displayed with the most newly discovered endpoint on top. The sort order can
be customized in the event many endpoints are expected. In fact multiple sort orders can be defined and
the user can select amongst them.

Sort orders are specified with a simple specification string. Multiple sort terms can be specified, separated
with commas. Endpoints are sorted according to the terms from left (most general sorting) to right (most
specific sorting).

Attributes may be sorted according to the type of datathey carry. For example to sort the list of endpoints
based uponthedescr field asastring followed by discovery time use the following:

<par am nanme="di scovery. ep-sort" val ue="string: descr,tine">

The sort specifier t i me is used to sort by the discovery time. The specifier st ri ng sorts according to
the current locale of the client. Any specifier can have its sort ordering inverted by placinga! or ~in
front of it. For example to sort the the description in the opposite direction but the same direction for the
discovery time use:

<par am nanme="di scovery. ep-sort" val ue="!string: descr,tinme">

Thedifference between! or ~ issubtle and hasto do with when the attributes are not present in endpoints.
By default endpoints without the attribute are considered to be after all of the sorted records. In the case
of I the ordering of all comparisons is reversed. This results in endpoints without the attribute coming
first. If ~ is specified then only the comparisons for records with the attribute is reversed. This resultsin
endpoints without the attribute remaining at the end of the sort order.

For attributes that are numeric values you can sort using aspecifier of doubl e. For exampleto sort based
upon the value of an attribute called t enper at ur e use:

292

Endpoint Discovery

<par am nane="di scovery. ep-sort"” val ue="doubl e: t enper at ure" >

Commonly attributes are used to specify certain device states as a string that is a set of possible
enumerations. For these cases an arbitrary set of strings can specify a particular ordering. For example
assumeadevicecansend astateof cri ti cal ,war ni ng, mai nt enance, oroper at i ng. Wewould
like to see them in that order so that devices needing attention appear on top. We could do this using the
enumsort specifier like this:

<par am nane="di scovery. ep-sort"
val ue="enum state: critical | war ni ng| mai nt enance| operati ng">

In the previous examples we have been setting the parameter ep- sort to our sort specification. But
what if you wanted multiple sort specifications and allow the user to select through them. In fact all of
the examples above may be desirable in certain cases and we should really |et the user choose what they
want to see.

If we don't specify ep- sort but instead specify alist of sorts (as shown below) the user will be presented
with a selection box of all the possible sorting options.

<par am nane="di scovery. ep-sort. 0"

val ue="Newest ::time">
<par am nane="di scovery. ep-sort. 1"

val ue="*By Status::enumstate:critical]|warning| maintenance| operating">
<par am nane="di scovery. ep-sort.2"

val ue="By Tenperature::double:tenperature,tine">

In the example above the By St at us configuration is selected by default because it begins with an
asterisk. The display names are shown and the associated with the sort specifications that follow them.

Endpoint Icons

The discovery server can optionally provide a pointer to an icon that the Java client will display. Theicon
may either be served up by the instance of Seminole running on the endpoint or included in the JAR file.
For security reasons an arbitrary URL is not allowed as this could potentially allow a malicious device to
attempt aform of cross-site scripting attack.

In order to display an icon the discovery server must publish two parameters:

* i con_| oc specifiesthelocation of theicon. It can either be ser ver to specify that theicon isonthe
discovered webserver or r esour ce to indicate that the icon is a resource in the JAR. Alternatively,
i con_| oc canbeur| to refer to aURL from the configuration.

e icon_fil e specifies the path (if i con_I| oc isserver) or the resource name (if i con_I oc is
resource).

Ifi con_| oc isurl and aconfiguration parameter exists by the name of i con-url -i con_f n then
the value of that parameter is used as the URL for the icon. Additionaly if the attributei con_nane is
present it is considered to be an additional path component appended to the configured URL.

293

Endpoint Discovery

Class Filters

In someinstances it may be desirable to allow a user to select which class of devicesthey are discovering.
By default filtering can be set with the cl asses parameter. Rather than setting this parameter a list of
classfilters can be created that the user can select at runtime.

Creating afilter list involves two things: A user visible name and the list of class namesto filter on. Each
of these are specified as parameters with numbered names. For example, let us consider three possible
filtered viewsfor asecurity system: Cameras, door and/or window switches, and motion sensors. We could
define these filters with the following parameters:

<par am nane="di scovery. cl asses. caner as"

val ue="cans" >
<par am nane="di scovery. cl asses. swi t ches"

val ue="door - swi t ches, wi ndow swi t ches" >
<par am nane="di scovery. cl asses. noti on"

val ue="noti on- sensors" >
<par am nane="di scovery.filter.Q"

val ue="caneras: : Vi deo Caneras">
<par am nane="di scovery.filter. 1"

val ue="swi tches:: I ntrusion Swtches">
<par am nane="di scovery.filter.2"

val ue="*noti on:: Moti on Sensors">

Thelist of classes for a particular filter is given a name and the list of device class names (as configured
in the discovery server) are assigned to that name. In the example above we seethat theswi t ches filter
will find devices that belong to either the door - swi t ches or wi ndow swi t ches device classes.

The list of selectable filters is defined with thedi scovery. fil t er. nunber parameters. The name
of thefilter set isfollowed by : : and the display name of thefilter. Thefilters are displayed to the user in
numerical order. The filter with the name preceeded by an asterisk is the filter selected by default.

Change Highlighting

If adiscovered deviceis displaying important statistics about itself it may be desirable to briefly highlight
changes in the display so that they catch the user's eye. By default this feature is off but it can easily be
turned via a configuration parameter: change- hi ghl i ght-ti ne

This parameter specifies the number of milliseconds that a changed attribute is to remain
highlighted for. It is important to keep in mind that this interval is processed only in multiples of
Di scoveryConfi gurati on. AGE_PACI NG, by default 1000ms.

Setting this parameter to O or not defining it disables change highlighting.

Ht t pdDi scoverySer ver Reference

Introduction

Ht t pdDi scover ySer ver implementsthe server side of the Seminole discovery protocol. The server
can be automatically found by discovery clients (such as the Java Discovery Client).

294

Endpoint Discovery

The server is also capable of sending along a set of named attributes. A static list can be provided to the
server at creation time or the Ht t pdDi scover ySer ver can be subclassed to allow the transmission
of dynamic data.

Note
TheHt t pdDi scover ySer ver classisonly availableif the portability layer providesthe
HAVE UDP_SOCKETS feature.

Configuration Structures

The HttpdDi scoveryServer class requires severa configuration structures.
Ht t pdDi scover ySer ver includes reasonable defaults for some of these strucutres. The figure below
shows an overview of how the configuration structures are arranged:

NetworkConfig
(mDefaultNetwork shown)

HttpdDiscoveryServer

. "[TX Port 1175
Config . . RX Port 1176
Network Configuratior@® Socket Options ®
Device Classes ® Broadcast Address [I31740
Constant Attributes @ Buffer Size 1380
_ Broadcast Interval | 30s
Array of HttpdPair Array of const char *
descr FridgeCam 2000 mcast:238.17.40.9
firmware ver |v1.2.17 NULL

Array of const char *
video_camera
household_appliance
NULL

The top-level configuration structure points to three different structures:

struct Config

{
const Networ kConfig *npNet wor k;
const char *const *nppDevi ced asslLi st ;
size_t nPar anCount ;
const HttpdPair *npPar ans;
1

ThempNet wor k field points to the network configuration structure. The standard protocol configuration
is available as Ht t pdDi scoveryServer: : mDef aul t Net wor k. The device class list is a set of
classes that best describe this device. This is most often used to to filter out unwanted endpoints in the
discovery client. The device class list should be a NULL-terminated list of device class names. If you are
unsure of what classes your device falls under then contact our support team. The npPar ans pointer
points to an array of name-value pairs that are sent out with each request. If mPar amCount is O then

295

Endpoint Discovery

npPar ans may be NULL. Otherwise nPar anCount should be the number of entriesinthe npPar ans
array. TheHTTPD_NUMELEM macro can be used if the compiler knows the size of the array.

Itisnormally not necessary to declare the Net wor kConf i g asthe default is almost always appropriate.
The default network configuration, available as Ht t pdDi scover ySer ver : : nDef aul t Net wor k,
can be used for the Conf i g structure above.

If INC_IPV6_SUPPORT isenabled then Ht t pdDi scover yServer: : m Pv6Net wor k isavailable
for use on IPv6 enabled devices.

struct NetworkConfig

{
Ht t pdl pPort nmrxPort ;
Ht t pdl pPor t nRxPort ;
const char *const *nppSocket Opti ons;
const char *npBr oadcast Addr ess;
size_t nBuf f er Si ze;
unsi gned int nBr oadcast | nterval ;
1

TheniTxPort and mRxPor t members control the ports the server uses. The nppSocket Opt i ons is
passed to the Ht t pdUdpSer ver Socket encapsulated by the discovery server. The server transmits
beaconson npBr oadcast Addr ess. Both transmission and reception share abuffer of mBuf f er Si ze
bytes. Packetslarger than this size can not be processed. The server will also send an unsolicited broadcast
every mBr oadcast | nt er val milliseconds.

Public Methods
Ht t pdDi scoveryServer

Ht t pdDi scoveryServer:: Htt pdDi scoveryServer (Httpd *p_server, const
Ht t pdDi scoveryServer:: Config *p_config);

Thismethod constructs adiscovery server and pointsit to the configuration described by p_conf i g. The
server is associated with the webserver instance p_ser ver.

This constructor only initializes the object. To allocate all of the required resources you must cal the
Cr eat e method.

Note
Thelifetime of the configuration structure and the webserver must be equal to or exceed the
lifetime of the Ht t pdDi scover ySer ver object.

Create
int HttpdDi scoveryServer::Create (void);

This method must be called before the discovery server can be started. It alocates all of the necessary
resources for operation. These resources remain allocated until the discovery server object is destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

296

Endpoint Discovery

Start

int HttpdDi scoveryServer::Start (void);
This method starts the discovery service.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

St op

voi d HttpdDi scoveryServer::Stop (void);

This method stops the discovery service.

Protected Methods

Request processing can be customized by subclassing Ht t pdDi scover ySer ver and overriding the
protected methods. All of the context involving a particular request are bundled up into a Request
structure:

struct Request

{
Ht t pdCgi Par anet er *nmpQuery;
Ht t pdl pAddr ess m nqui si t or Addr ess;
Ht t pdl pPort m nqui sitorPort;

i

Thefields are asfollows:

mpQuery Thisisthelist of name/value pairs contained in the
reguest packet.

m nqui si t or Addr ess Thisisthe address of the host making the discovery
reguest. The reply will be sent back to this address.

m nqui si t or Port This is the port of the host making the discovery
request.

Shoul dHandl eRequest

bool HttpdDi scoveryServer:: Shoul dHandl eRequest (Request *p_request);

This method determines if an incoming request for discovery should be responded to. The list of device
classes in the request is intersected with the list of device classes in the server configuration. If the
intersection is not empty then this method returns true. Otherwise false is returned.

Subclasses may override this to change the response criteria
Bui | dResponse

int HtpdD scoveryServer::Buil dResponse (H tpdCgi Witer *p_witer);

This method writes the response packet to be sent to the machine running the discovery client. In particular
name/value pairs are writtentothep_wri t er object.

297

Endpoint Discovery

The default implementation adds the information necessary to derive the URL of the associated webserver
plusthe static array of Ht t pdPai r elementsinthe Conf i g structure.

Subclasses may override this to add dynamic data to the response. Subclasses should call the base class
implementation and avoid writing an attribute named port or schenetop_witer.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Pr epar eResponse

int HttpdDi scoveryServer:: PrepareResponse (void);

This method rebuilds the beacon packet if arebuild is necessary (mRebui | dResponse istrue). Itis
called before aresponse packet is sent.

Subclasses may override thisif they intend to send dynamic data (in order to set nRebui | dResponse
prior to calling the default implementation).

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’).

SendBeacon

bool HttpdDi scoveryServer:: SendBeacon (void);

This method is called when the server needs to decide if a beacon should be sent for clients that can
collect them without solicitation. The default implementation simply calls Bui | dResponse to prepare
the response and returnst r ue if building the response was successful.

Subclasses can use this method to inhibit the sending of the beaconsif, for example, the deviceisnot ready
for administration at thistime.

Protected Data

nMRebui | dResponse

bool nmRebui | dResponse

This member is checked at the start of Ht t pdDi scoveryServer: : Prepar eResponse. If it is
t r ue then the packet contents is rebuilt. Once built this member variable isset to f al se. This prevents
the CPU overhead of regenerating the packet each time it needs to be transmitted.

Subclasses of Ht t pdDi scover ySer ver can override Pr epar eResponse and set this variable to
regenerate the packet. Thisisuseful, for example, if it contains dynamic data (such as someform of device
status).

Ht t pdDi scoveryCd i ent Reference

Introduction

The Ht t pdDi scoveryd i ent implements a native (i.e. non-Java) client for the discovery server
(Ht t pdDi scover ySer ver).ltmanagesalistof Ht t pdDi scover edEndpoi nt objectswhereeach
one represents a discovered endpoint on the network.

298

Endpoint Discovery

Both Htt pdDi scoveryCient and HttpdD scover edEndpoi nt are abstract. A native
discovery client must subclass both of these classes and implement a user interface.

Note
TheHt t pdDi scoveryd i ent classisonly availableif the portability layer providesthe
HAVE_UDP_SCCKETS festure.

Configuration Structures

The HttpdD scoverydient class requires a configuration structure, NetworkConfig,
to operate. Reasonable defaults for these parameters are provided by
Ht t pdDi scoveryd i ent:: mDef aul t Networ k. If INC_IPV6 SUPPORT is enabled then
Ht t pdDi scoveryd i ent:: m Pv6Net wor k isavailable for use on IPv6 enabled devices.

struct NetworkConfig

{
Ht t pdl pPort nmrxPort ;
Ht t pdl pPort nRxPort ;
const char *const *nppSocket Opt i ons;
const char *npBr oadcast Addr ess;
si ze_t nBuf f er Si ze;
unsi gned int nBr oadcast | nterval ;
i nt nmvaxTi meToli ve;
const char *const *nppCl asses;

1

The nirxPor t and nRxPor t members control the ports the client uses. They should be the reverse
of the server configuration. The nppSocket Opt i ons is passed to the Ht t pdUdpSer ver Socket
encapsulated by the client. The client transmits beacons on npBr oadcast Addr ess. Both transmission
and reception share a buffer of nBuf f er Si ze bytes. Packets larger than this size can not be processed.
The client will also send an unsolicited broadcast every nBr oadcast | nt er val . nivaxTi neToLi ve
controls, in seconds, the longest an endpoint is considered “alive’” without any response from the
server. Finally, mppd asses is a NULL-terminated list of device classes that is to be queried for. If
nppCl asses isNULL devices of al classes are discovered.

Public Methods
Ht t pdDi scoveryd i ent

Ht t pdDi scoverydient:: Ht pdD scoveryd i ent (const
Ht t pdDi scoverydient:: NetworkConfig *p_config);

This method constructs a discovery client and pointsit to the configuration described by p_confi g.

This constructor only initializes the object. To allocate all of the required resources you must cal the
Cr eat e method.

Note
The lifetime of the configuration structure must be equal to or exceed the lifetime of the
Ht t pdDi scoveryd i ent object.

299

Endpoint Discovery

Create

Start

St op

int HtpdDi scoveryClient::Create (void);

This method must be called before the discovery client can be started. It alocates all of the necessary
resources for operation. These resources remain allocated until the discovery client object is destroyed.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

int HttpdDi scoveryClient::Start (void);
This method starts the discovery client.

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’).

voi d HttpdDi scoveryClient::Stop (void);

This method stops the discovery client.

Protected Methods

Cr eat eEndpoi nt

Ht t pdDi scover edEndpoi nt *Ht t pdDi scoveryd i ent:: Creat eEndpoi nt
(Ht t pdl pAddr ess addr, Htpdl pPort port, HttpdCgi Paraneter *&p attr, bool
& ree_addr);

This pure virtua method must be implemented by subclasses. This method should allocate
memory (using Htt pdQpSys: : Mal | oc) sufficiently large to hold the desired subclass of
Ht t pdDi scover edEndpoi nt and construct the object.

If the object can not be allocated for any reason then NULL should be returned. Noticethat p_at t r and
free_addr arepassed by reference. For efficiency these structures (the address and the attributes) may
be directly transferred to the endpoint. In this case the discovery client should not free them as it looses
ownership. To prevent the discovery client from freeing addr this method should set f r ee_addr to
f al se. To avoid freeing the attribute list the method can simply point p_att r to NULL (or to alist of
nodes that should be freed).

A typical implementation of this method for the MyEndpoi nt classwould be as follows:

void *p_buffer;

p_buffer = Htt pdOpSys:: Mal | oc(si zeof (MyEndpoi nt));
if (httpd_rarely(p_buffer == NULL))
return (NULL);

300

Endpoint Discovery

Ht t pdCgi Par aneter *p_saved_attr = p_attr;
p_attr = NULL,;
free_addr = fal se;

return (new(p_buffer) MyEndpoint(this, p_saved_attr, addr, port));

Notice that the parameters passed to the MyEndpoi nt constructor above al fall through to the
Ht t pdDi scover edEndpoi nt constructor.

Del et eEndpoi nt

voi d Ht t pdDi scoveryd i ent: : Del et eEndpoi nt (Ht t pdDi scover edEndpoi nt
*p_endpoi nt) ;

This pure virtua method is responsible for releasing an endpoint that has been created (via
Cr eat eEndpoi nt) and displayed. The discovery client calls this method when p_endpoi nt isno
longer needed.

Implementations should clean up any display or mention of the endpoint and then deletep _endpoi nt .

@ Note
It is important to keep in mind that all objects created by the Cr eat eEndpoi nt method
are destroyed by this method with one exception:

If the endpoint is never displayed (the Di spl ay method is never called) then the object is
simply deleted rather than being passed to this method.

Pur geEndpoi nt

voi d Ht t pdDi scoveryd i ent: : Pur geEndpoi nt (Ht t pdDi scover edEndpoi nt
*p_endpoi nt) ;

This method is called during shutdown of the client to remove endpoints. The default behavior, to simply
call Del et eEndpoi nt can be overridden by subclasses to perform a more efficient “mass delete.”

For example: Consider a GUI client where deleting the endpoint has significant cost in terms of updating
thedisplay. Thismethod could be overridden to avoid those updatesif al the endpoints are being destroyed
anyhow.

Ht t pdDi scover edEndpoi nt Reference

Introduction

The Ht t pdDi scover yd i ent object represents each discovered endpoint with an instance of this
abstract base class. Pure virtual methods must be implemented in subclasses. A factory method must then
be providedin Ht t pdDi scover yCd i ent to create subclasses of Ht t pdDi scover edEndpoi nt .

@ Note
This class is only available if the portability layer provides the HAVE UDP_SOCKETS
feature.

301

Endpoint Discovery

Protected Methods
Ht t pdDi scover edEndpoi nt

Ht t pdDi scover edEndpoi nt: : Ht t pdDi scover edEndpoi nt (H t pdDi scoveryd i ent
*p_owner, HttpdCgi Paranmeter *p_attr, Httpdl pAddress addr, HtpdlpPort
port);

This method constructs an endpoint object. The object is managed by p_owenr. The p_attr,
addr, and port parameters describe the endpoint. These parameters are provided to the
Ht t pdDi scoveryd i ent: : Creat eEndpoi nt method that is responsible for creating endpoint
instances.

Updat e

virtual void HttpdD scoveredEndpoint:: Update (void);

This pure virtual method is called when any characteristics of the endpoint have changed. Typically this
should result in refreshing the display of the endpoint.

It is important to realize that this method is called from a thread managed by the
Ht t pdDi scover yd i ent . Synchronization between other components may be necessary.

Di spl ay
virtual void HttpdDi scoveredEndpoint::Display (void);

This pure virtual method is called when a newly discovered endpoint is created and ready for display.

It is important to realize that this method is called from a thread managed by the
Ht t pdDi scover yd i ent . Synchronization between other components may be necessary.

~Ht t pdDi scover edEndpoi nt
virtual HttpdDi scoveredEndpoint::~HttpdDi scover edEndpoi nt (void);

The endpoint object is destructed when the endpoint is no longer discoverable. The destructor should
remove any display of the endpoint.

Protected Data Members

npAttri butes
Ht t pdCgi Par anmeter *npAttri butes;

This member holds alist of attributes from the endpoint. Some of the pairsin the list have awell defined
meaning (such asschene and por t). Other pairs (those that begin with aleading) are used for internal
operation of the discovery service.

The endpoint isalso freeto put additional datadescribing it in various pairs. It isup to the client and server
to figure out the meaning of these pairs (typically based upon device class).

302

Endpoint Discovery

nmpOwner

npUr |

Ht t pdDi scoveryd i ent *npOaner;

This member holds a pointer to the discovery client that found (and is managing) this endpoint.

char *mpUrl;

This member is a string containing the URL of the discovered endpoint. It should not be modified by
subclasses.

The Win32 Discovery Client

The Win32 discovery client usesthe Ht t pdDi scover yd i ent classto implement a discovery client
application. The user interface of the discovery client is based upon HTML and an embedded browser
object. The dynamic content is generated using the template engine.

This discovery client comes with full source code insrc/ di scovery/client/w n32. Almost al
of the behavior is configurable by changing templates and resource scripts. Little knowledge of the Win32
API isrequired to modify the appearance of the client.

Compiling

Compiling the discovery client can be done using any compiler capable of producing Win32 executables.
For Microsoft Visual C++ project and solution filesareincluded. Theproject file(w32dscl nt . vcpr oj)
will automatically build the MSVC- DSCLNT port of Seminole.

For other compilers the client builds similar to any other Win32 application. The settings in the included
project file (described as follows) should be mimmicked for other compilers:

» Theexecutableislinked statically. This helps ensure that the client runs on the widest range of systems
aspossible.

e Linksagainsttheurl nmon. i b,winmmlib,andws2_ 32.|i b import libraries.

* Builds the content template using SCPG.

Configuring the Client

All of the “configurable” portions of the client areinsr ¢/ di scovery/client/w n32/content.

The most likely change necessary to the client is to add additional attributes to the display. Each
endpoint is represented by a DI V HTML element. The body of that element is cleverly created by the
template engine. The template for the body isnamed sr ¢/ di scovery/ cl i ent/w n32/content/
endpoi nt . t ht m By default only a single attribute, descr (“description”) is supported. However
additional attributes can be added. Consider the fragment that displays the description:

303

Endpoint Discovery

<tabl e class="epattrs">
9%if:attr-exists nane="descr"}%
<tr>
<t h>Descri ption: </th>
<td>%eval :attr-val nane="descr" quote="htm "}%/td>
</tr>
% endi f}%
</t abl e>

As evident from above, the Ht t pdCgi Synbol s classis used to expose the attributes to the template
with aprefix name of “attr”. Simply replicate the fragment producing the table row abovefor each attribute
desired along with the descriptive name heading.

The parameters of the client are kept in src/discovery/client/w n32/content/
client.cfg. It is recommended that if you modify the parameters you change the value of the
CLI ENT_PRODUCT macro to something that uniquely idenfities that set of parameters. Most of the
parameters are described by commentsin thisfile.

304

Chapter 14. The Other Direction: An
HTTP Client

The HTTP Client

Introduction

Seminole includes asimple HTTP client package that shares code with the server component. The client
can be used for many things. For example a device could update its firmware in the background from
a public HTTP server. Even more amibitious, combined with the discovery service and XML parser, a
network of embedded devices could self-organize and communicate with one another using aform of RPC

over HTTP.

The client is similar in design to the server component: Functionality can be traded for resources via
compile-time options and settings. In fact many of the options that affect the server component (such as

XFER BUF_SI ZE) also affect the client.

Performing HTTP Transactions

There are three main objects involved in performing an HTTP request. The request object,
Ht t pdCl i ent Fet ch contains all of the information specific to the particular HTTP resource being
requested. This object is submitted to an instance of Ht t pdC i ent . Instances of this class contain all of
the common resources required for performing HT TP requests. In most environments there is no need to
have more than a single instance of the client. However if complete isolation between requestsis desired

then different requests can be directed to different client objects.

Once a request is processed the state of the transaction is represented by an instance of
Ht t pdC i ent Tr ansf er . UnliketheHt t pdCl i ent Fet ch object thetransfer object holdsresources
needed only during the actual transfer. Instances of Htt pdCl i ent Tr ansf er are created by the
Ht t pdCl i ent object and passed into the various methods of the Ht t pdCl i ent Fet ch object.

It is normally not necessary to subclass the Ht t pdCl i ent or Htt pdd i ent Tr ansf er classes.
Application behavior isexpected to beimplemented in subclassesof Ht t pdCl i ent Fet ch. Inparticular

the ResponseOk method of the fetch object is called to process the response body.

Because of the limited amount of storage on most embedded devices HT TP responses can be processed in
a“streamy” fashion. Thisis accomplished by subclassing Ht t pdCl i ent Fet ch sothat Response(k

processes the data from the Ht t pdQut boundTr ansf er in an application-specific manner.

Ht t pdCl i ent Reference

Introduction

TheHt t pdd i ent classimplements acomplete environment for performing HT TP requests. Although
each HTTP transaction is self-contained it is expected that clients maintain a certain amount of state such

as cookies, persistent connections, and cached redirects.

It is normally expected that only one instance of this class be created for all HTTP client operations. If
it is of critical importance to isolate two different fetching environments then multiple instances of this

class may be created.

305

The Other Direction: An HTTP Client

Public Methods

Create
int HHtpddient:: Create (void);
This method must be called before any fetching can be performed using this environment.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Set Socket Opti ons

void Httpddient:: Set Socket Opti ons (const char *const *pp_options);

This method sets the platform-specific options used for socket connections.

Set Cooki eJar Si ze

void Httpddient:: Set Cooki eJarSi ze (size_t max_cookies);

This method sets the maximum number of cookies this client object will hold inits cookie jar.

@ Note
Thismethod isonly availableif the INC_CLIENT_COOKIE_SUPPORT option is enabled.

Set ProxySer ver
void Htpddient:: SetProxyServer (const char *p_proxy_url);

This method configures the client to use a proxy server. The proxy server is specified in URL format.
The URL allows a proxy to be used via alternative transports (e.g. SSL). Additionally the authentication
information for the proxy may be part of the URL.

@ Note
Thismethod is only availableif the INC_CLIENT_PROXY_SUPPORT option is enabled.

NoPr oxySer ver
void Httpddient:: NoProxyServer (void);

This method disables any prior use of aproxy server (configured via Set Pr oxySer ver).

@ Note
Thismethod is only availableif the INC_CLIENT_PROXY_SUPPORT option is enabled.

Set KeyRi ng

void HtpdCient:: SetKeyRing (HttpddientKeyRing *p_key ring);

306

The Other Direction: An HTTP Client

This method configures the client to use a key ring object. If client authentication is supported
(INC_CLIENT_AUTH is non-zero) then a key ring object must be configured for the client before any
fetches may be performed. The key ring object is responsible for maintaing cached authentication data.
As such the key ring must have alifetime that meets or exceedsthe Ht t pdCl i ent object. Additionally
the key ring must not be changed while any fetches are in progress.

Fl ush
void Htpddient::Flush (void);
This method flushes all cached data (except data being used by fetch operationsin progress). The memory
occupied by the cached data is released hence this method could be called to reduce memory pressure in
other components using HttpdOpSys::Malloc.

It may also be useful to call this method during any kind of major reconfiguration event (e.g. |P address
change) to avoid stale information from being used.

Ht t pdCl | ent Fet ch Reference

Introduction

Ht t pdCl i ent Fet ch objects represent a packaged request for an HTTP server. Instances of this object
are submitted toaHt t pdC i ent object for processing.

Note
Itisrequiredthat applicationssubclassHt t pdCl i ent Fet ch toprovidehandlersfor server
responses.

Public Methods
Htt pdd i ent Fetch

H tpdCientFetch:: HtpddientFetch (Htpddient &client);

The constructor creates the client fetch and associates it with a client context. The lifetime of cl i ent
must exceed the lifetime of this request object.

Fet ch

int HtpddientFetch::Fetch (const char *p_url, const char *p_nethod
= "GET");

This method performs a fetch using the associated client object. Asthe fetch progresses various protected
methods of this class are called in an event-driven fashion.

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1,

“OS Abstraction Layer Error Codes’). Additionally, HTTP-client specific error codes, such as
HTTPD_ERR_TOO_MANY_REDIRECTS, may be returned.

MaxRetri es

void HtpddientFetch:: MaxRetries (HtpddientCounter v);

307

The Other Direction: An HTTP Client

This method sets the maximum number of retries dueto transient errors before thefetch isno longer retried
by the client.

MaxRedi rects
voi d HttpdCientFetch:: MaxRedirects (Httpdd ientCounter v);

This method sets the maximum number of redirects before the fetch is abandoned. Thislimitisin placeto
prevent an infinite loop of redirects. The default value is normally sufficient and comes from the RFC.

MaxLogi nAtt enpt s
void HttpddientFetch:: MaxLogi nAttenpts (Httpdd ient Counter v);

This method sets the maximum number of authorization challenges that are not unlocked before the fetch
isno longer retried by the client.

Ret r yDel ay
void HitpddientFetch:: RetryDelay (unsigned | ong nsec);

This method sets the delay time between retrying requests. The thread performing the fetch is suspended
for thistime period to avoid excessive network traffic in the event of network failure.

Body Sour ce
voi d Ht t pdd i ent Fet ch: : BodySour ce (Htt pdd i ent Request BodySour ce
*p_source);

For HTTP methods where the request includes an entity body (e.g. POST) the body is provided by a class
that implementsthe Ht t pdCl i ent Request BodySour ce interface.

If p_sour ce isNULL (the default valueif this method is not called) then the request body comes from
aHt t pdCont ent Si nk obtained viathe Request Body Si nk method.

To improve performance applications can implement the Ht t pdCl i ent Request Body Sour ce
interface to alow the client to decide the best way to send the request body.

BodyCont ent Type
void Httpdd i ent Fetch:: BodyCont ent Type (const char *p_source);

For HTTP methods where the request includes an entity body (e.g. POST) this method sets the content
type of the request entity body.

Request BodySi nk
Ht t pdCont ent Si nk &Ht t pdCl i ent Fet ch: : Request BodySi nk (voi d);

If the request body source is NULL then this method may be called to obtain a sink object that can be
used to store the request body.

Note
If arequest body source object is employed this method should not be called.

308

The Other Direction: An HTTP Client

Protected Methods
SendHeader s

int HtpddientFetch:: SendHeaders (Httpdd ient Transfer &xfer);

This virtual method sends out the request headers for the regquest. Subclasses can override this virtual
method to add additional headers. It is recommended that subclasses call the base class method after the
custom headers are written.

This method returns O if successful or a a system dependent error value (see Table 4.1, “OS Abstraction
Layer Error Codes’).

Pr ocessResponse
int HtpddientFetch:: ProcessResponse (HttpdCientTransfer &xfer);

This virtual method examined the ntSt at us field of xf er to handle the appropriate response from the
server. The standard HTTP status codes are handled but this method may be overridden for additional
error logging or the handling of non-standard server responses.

This method returns 0 if successful or a a system dependent error value (see Table 4.1, “OS Abstraction
Layer Error Codes”).

ResponseCk

i nt Ht t pdd i ent Fet ch: : ResponseCk (Htt pdd i ent Tr ansf er &xf er,
Ht t pdQut boundTr ansf er &body);

This pure virtual method must be implemented by subclasses. If a200 response is returned by the server
this method is called. Of particular importance isthe body parameter. This object can be used to process
the returned entity body.

This method returns O if successful or a a system dependent error value (see Table 4.1, “OS Abstraction
Layer Error Codes”).

Ht t pdCl | ent Request BodySour ce Reference

Introduction

The Ht t pdCl i ent Request Body Sour ce interface is used to descibe the way that the request body
is submitted during a fetch.

Public Methods

Traits
virtual int HttpddientRequestBodySource:: Traits (void); const

This method should return a combination of zero or more of the following flags describing the request
body:

SRC_CHEAP This indicates that the generation of the regquest body
is “cheap.” A body is cheap to generate if little CPU

309

The Other Direction: An HTTP Client

time is needed to recreate it. The most obvious example
of this is a request body that is ssimply sitting around
in memory as a string. However depending on the
application other sources (e.g. Ht t pdXm DomW i t er)
may also be considered “cheap.”

SRC SIZE KNOWN This indicates that the size (in bytes) of the request body
is known. If this flag is set then the client will call the
Tot al Si ze method to compute the size of the body.
Again aperfect example of thiswould be aarequest body
that isa static string in memory.

SRC_LARGE_WRITES Thisindicates that the implementation of the Gener at e
method will perform mostly large writes. Thisis often set
because the content is buffered rather than assembled on
the fly. This flag should not be set if the request body is
assembled with many small writes (e.g. building strings
withHt t pdWitabl e:: Printf).

The default implementation returns 0. It is expected that implementations of this interface optimize
performance by returning the appropriate hints about their implementation.

Tot al Si ze

virtual size_t HttpddientRequest BodySource:: Total Size (void);

This method is only called by the client if the SRC_SIZE_KNOWN trait is present. When called it should
return the size (in bytes) of the entity body for the request.

Gener at e

vi rtual i nt Ht t pdd i ent Request BodySour ce: : Generate (HttpdWitable
*p_target);

Thismethod isonly called to generate the request body. It should write therequest body top_t ar get . A
a system dependent error value should be returned (see Table 4.1, “OS Abstraction Layer Error Codes’).

Keep in mind that this method may be called multiple times by the client in the face of retries— especially
if the SRC_CHEAP trait is present.

Ht t pdCl | ent Buf f er Request Body Reference

Introduction

The Ht t pdd i ent Buf f er Request Body class implements the
Ht t pdCl i ent Request Body Sour ce interface for static, in-memory buffering. The advantage of
storing the request body in memory is efficiency. Although keep in mind that if it isimpractical to store
the request body in memory (or that the request body be dynamically generated) then you should consider
creating a custom implementation of Ht t pdCl i ent Request BodySour ce rather than this helper
implementation.

Note
Only the methods in addition to those that are part of the abstract interface are documented
here.

310

The Other Direction: An HTTP Client

Public Methods
Ht t pdd i ent Buf f er Request Body

Ht t pdCl i ent Buf f er Request Body: : Ht t pdd i ent Buf f er Request Body (const void
*p_data, size t size);

All that is needed to construct a buffered request body is a pointer to the data (p_dat a) and the size (in
bytes) of the data (si ze).

Ht t pdCl i ent KeyRi ng Reference

Introduction

Aninstanceof Ht t pdCl i ent KeyRi ng isused by the Ht t pdCl i ent class to manage authentication
data. In particular it cachesauthentication databased upon client URL to avoid round-tripsduring repetitive
fetches.

This class may be subclassed to add support for additional authentication schemes or to obtain credentials
in a non-standard way.

Public Methods
Ht t pdd i ent KeyRi ng

Ht t pdC i ent KeyRi ng: : Ht t pdC i ent KeyRi ng (size_t max_keys, | ong
max_key age, int match_nethod = HTTPD CLI ENT_KEY MATCH PATH SUBSET) ;

The constructor sizes the parameters of the key ring. The max_keys parameter controls the maximum
number of cached keys. Keysare expired in LRU order when the cachefillsup. For security reasons akeys
should be periodically deleted after a certain amount of time. Themax_key_age parameter controls the
maximum duration (in seconds) that akey can exist in the cache.

The final parameter controls what keys are applied to what requests. Setting this parameter is a balance
between security (preventing credentials leak out to apart of URL-space they shouldn't) versus efficiency
(avoiding round trips because credentials are already known).

mat ch_met hod may be set to one of the following values:

HTTPD_CLIENT_KEY_MATCH_EXACT This is the most secure option. Every part of the URL
(even the query string) must match before credentials are
sent out.

HTTPD_CLIENT _KEY_MATCH_IGNORE_QUERY |Thisis similar to the above option except that the query
string may be different. However the entire path (and host,
port, and scheme) must match before credentialsare given
out.

HTTPD_CLIENT_KEY_MATCH_PATH_SUBSET |This option (the default) is what is specified by the
RFC's: Paths that are “subsets’ of the path (but with
matching host, port, and scheme) are given credentials.
The definition of a subset in this case ignores the final
component in a path specifier (assuming them to be
filenames within adirectory tree).

311

The Other Direction: An HTTP Client

HTTPD_CLIENT_KEY_MATCH_IGNORE _PATH Thisistheleast secureoption. It requiresonly that the host,
scheme, and port match before credentials are given out.

Create
int HtpddientKeyRing::Create (void);
This method must be called before the keyring is used. It creates the internal objects used by the ring.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes”).

Protected Methods
Get Aut hority

int HtpddientKeyRing:: CGetAuthority (HtpdCientFetch &fetch, const
char *p_header, const char *&p_authority);

This virtual method should return a pointer to the credentials needed for fetch. The WWV
Aut hent i cat e header line for the selected authentication schemeis also provided.

If credentials are available then p_aut hority should point to the credentials in the format of
user: password.

Upon success, O is returned; otherwise a system dependent error value is returned (see Table 4.1,
“OS Abstraction Layer Error Codes’). If the authority must be dynamically allocated then subclasses
may override FreeAut hori ty which the key ring will always cal for al successful returns of
Get Aut hority.

The default implementation of this method obtains the authority from the fetched URL - for example:

http://user: pass@ost: port/path/to/resource

Cet Key

i nt Ht t pdC i ent KeyRi ng: : Get Key (Httpdd i ent Fetch &f et ch, const
Ht t pdM neParser &m ne, HttpddientKey *&p key);

This virtual method creates a key object for unlocking the fetch.

Upon success, 0 is returned; otherwise a system dependent error value is returned (see Table 4.1, “OS
Abstraction Layer Error Codes’). If successful the key object will have its Cr eat e method called and
it will be added to the key ring.

Subclasses may override this method to add additional callsto | sScherne to add support for aternative
authentication schemes.

| sSchene

const char *HttpddientKeyRing::lsSchene (const HttpdM nmeParser &m ne,
const char *p_scheme, size_t schene_len);

312

The Other Direction: An HTTP Client

This static method searches for WAV Aut henti cat e heads with the specified scheme. The
schene_| en parameter must be the length of the p_schene string (not including the terminating null
character).

If the scheme is present in i e then a pointer to the additional arguments in MIME lineis returned. If
the scheme is not offered then NULL is returned.

| sDef unct

bool HttpddientKeyRing::IsDefunct (HtpddientFetch &fetch, const
Ht t pdM nmePar ser &mi ne);

Thisvirtual method determinesif akey object should no longer be used. The key ring maintainsthe LRU
and aging properties. However thismethod may al so cause akey to beremoved from the cache by returning
true.

The default implementation expires keysthat have failed to unlock arequest. Subclasses may override this
method and return true in additional cases for added security.

313

Chapter 15. Integrating Seminole With
An Application

Porting and Integrating Seminole

Introduction

Seminole is usable as a standalone webserver, but its primary purpose is to serve as one component of a
whole embedded system. To that end, Seminole is provided with considerable support structure intended
to ease its integration into an existing project environment. In particular, Seminole has:

» A generalized, modular build system
* A clear separation between portable and non-portable code
 Controlled resource utilization

As aresult of these attributes, implementors will hopefully have more time to spend on their real goals
rather than struggle with integration problems.

This section discusses the Seminole build system and portability layers in further detail.

Seminole compile-time parameters and options

For efficiency reasons many parameters are provided that control the various features of Seminole at
compile time. Some of these options enable and disable features. Others control limits or parameters of
normal operation. Options that enable and disable features typically begin with al NC_ prefix. Setting a
feature parameter to zero disables the feature and any non-zero value enables the feature.

These parameters are set when configuring the build system. All of these parameters have default values
that are a best guess of what an ideal deployment environment is like. When putting Seminole into
production it isimportant to review these parameters and adjust them accordingly.

* INC_QUEUED_ HEADERS - This option enables support for queuing headers during the processing of
arequest to be delievered to the client when the responseis sent. The default is 1. Disabling thisfeature
resultsin aminor reduction in code size.

e INC_SORTED_HEADERS - This option causes the MIME parser to sort the headers. If the headers
are sorted they can be binary searched. The sorting is done using the gsort () library function. In
certain obscure cases (i.e. alarge number of MIME headers) enabling this option may result in improved
performance. The default is 0.

e INC_OPTIONS METHOD - This option enables support for the HTTPOPTI ONS method. If this
feature is not required then disabling this option reduces code size. The defaultis 1.

e INC_REQUIRE HOST HEADER - This option enables validation of the HTTP/1.1 behavior that a
Host header must be specified. If strict validation is not required then disabling this option reduces
code size. The default is 0.

* INC_DYNAMIC_SERVER NAME - Thisoption makesthe Ht t pd: : Ser ver Nane method virtual
so subclasses can override it. By default the method is static for maximum efficiency. The default is 0.
Disabling this feature resultsin aminor reduction in code size and greater performance.

314

Integrating Seminole
With An Application

INC_FAST _URI_DECODE - This option makes the Ur i Decode family of functions faster at the
expense of code size. The default is 0.

INC_TRACING - This option enables a run-time debugging facility that traces various operations in
Seminole to help debugging during the integration phase. The default is 0.

INC_XML_TRANSCODE_SUPPORT - This option enables character set transcoding and automatic
detection for the XML parser. Disabling this feature reduces code size and improves performance but
requiresthat all XML content submitted to the parser be encoded as UTF-8. The default is 1.

INC_XML_NAMESPACES - This option enables namespace support for the XML parser. The default
is 1. Disabling this option results in a reduction of memory usage and code size.

INC_ XML _DOM_WRITE_CDATA - This option enables XM._OPT_USE_CDATA support in
Ht t pdXm DomW i t er . Thedefault is 1. Disabling this option results in smaller code size.

INC_WEBDAV_LOCKING - This option enables Class 2 support in Ht t pdWebDAVHandl er . The
default is 1. Disabling this option resultsin smaller code size and reduced memory consumption.

INC_WEBDAV_SHARED | OCKS - This option enables shared locks for WebDAV. Shared
locks are useful in some distributed authoring scenarios. This option only has meaning if
INC_WEBDAYV_L OCKING isenabled. Thedefaultis1. Disabling thisoptionresultsin slightly smaller
code size.

INC_ WEBDAV_TOKEN_TIMESTAMP - In anideal world lock tokens are globally unique across all
time. Enabling this option adds a timestamp component to lock tokens. If the entropy source backing
Ht t pdOpSys: : Ent r opy is strictly time based then enabling this option will not help. This option
can bedisabled if the SESSI ON__NONCE_LEN parameter is sufficiently large. This option has no effect
unlessINC_ WEBDAV_LOCKING isenabled. Additionally thisoption also hasno effect if the platform
abstraction layer does not provide areal-timeclock (i.e. HTTPD HAVE CLOCKis0). Thedefaultis1.
Disabling this option gives asmall reduction in code size and aminor increase in performance.

INC_WEBDAV_QUOTAS - Thisopen enables support for RFC 4331 (WebDAYV Quotas). Thissymbol
has no effect unless INC_FILE_QUOTAS is enabled. The default is 1. Disabling this option gives a
small reduction in code size.

INC_SHUTDOWN - This option includes the code for graceful shutdown, including the
Ht t pd: : St op method, socket force close logic, and memory cleanup logic. The default is 1.

INC_WRITE_BATCHING - This option batches writes to the HTTP socket to avoid lots of small
packets. When enabled the Ht t pdBat chW i t er is used to provide this behavior. It causes a small
increase in code size in exchange for increased network throughput and efficiency. The default is 1.

INC_VERBOSE RESPONSES - Disabling this option removes details from the HTTP responses.
Normally the HTTP response includes a description of the response and (for error responses) a body
indicating the error. Disabling this option makes the responsesterse to save code space. Thedefaultis1.

INC_MODIFIED_SINCE - Enabling thisentry adds support for thel f - Mbdi f i ed- Si nce: header.
The defaultis 1.

INC_UNMODIFIED_SINCE - Enabling this entry adds support for the |l f - Unnodi f i ed- Si nce:
header. The defaultis 1.

INC_SIMPLE_MODIFIED_SINCE - When processing conditional headers with timestamps the
provided date must be parsed to implement the correct semantics. However a possible shortcut is to
simply do an exact string comparison on the provided date with the last modified date. This resultsin
smaller code sizein exchange for less protocol conformance. Enabling this option enables this shortcut.
The defaultis 0.

315

Integrating Seminole
With An Application

INC_BYTERANGE_SUPPORT - Define this entry to support partial content fetching (byte ranges)
using the Range: header. The defaultis 1.

INC_PERSISTENT_CONN - Enablethisoption toinclude support for persistent connections. Persistent
connections avoid TCP connection setup overhead for multiple requests. It isespecially useful for pages
with many images or referencesto other objects. It resultsin acode sizeincrease. The default valueis 1.

INC_OVERLOAD_PROTECTION - This option enables the overload protection feature of Seminole.
This option only takes effect if INC_PERSISTENT_CONN is enabled and the platform has threads
(HTTPD_HAVE_THREADS). The default value is 1 on platforms where this capability is supported.

INC_ABORT _IDLE SHUTDOWN - This option enables Seminole to close idle connections
during a graceful shutdown. This option can only be enabled if INC_ SHUTDOWN and
INC_OVERLOAD_ PROTECTION are enabled. The default value is 1 on platforms where this
capability is supported.

INC_ETAGS - ETags are aform of unique identifiers for HTTP objects. They can be used to assist in
caching and conditional fetching. If it is expected that most browsers will support ETags they can be
used in place of | f - Modi fi ed- Si nce: header support. The default valueis 1.

INC_FILE_QUOTAS - This enables support for quotainformation inthe Ht t pdFi | eSyst emclass.
Thedefault valueis 1. Disabling thisoption if it isnot needed will result in aminor code size reduction.

INC_DIRECTORY _LISTS- Enablethisoptionwhen directory indexing support isdesired. Thisfeature
istypically only used for debugging or testing configurations and generally disabled for production use.
Enabling this option results in additional codeinthe Ht t pdFi | eHandl er class. The defaultis 1.

INC_LZRW1KH_COMPRESSION - Enable this option when the LZRW1/KH (codepoint 1)
compression algorithm is to be supported by the ROM file system. This compression engine uses very
little memory and has a very small code footprint. It also performs very well and results in moderate
space savings. The default is 1.

INC_LZJB_COMPRESSION - Enablethisoption when the LZJB (codepoint 3) compression algorithm
is to be supported by the ROM file system. This compression engine is very fast and efficient. The
decompression processis very fast for the savingsit gets. The default is 1.

INC_ LZARI_COMPRESSION - This option includes support for the LZARI (codepoint 2)
compression algorithm is to be supported by the ROM file system. This compression engine requires
more resources than the LZRW1/KH algorithm but may result in higher compression ratios. The default
isl.

INC_ROM_DIRECTORIES - If this option is enabled runtime support for directory indexesis enabled
in Ht t pdRonTi | eSyst em Even with this feature enabled, SCPG must aso be told to generate
directory objects. The default is 1.

INC_ROM_SAFETY_CHECKS- If thisoption isenabled thenthe Ht t pdRonTi | eSyst empackage
does more stringent checking of the content data. In most embedded systems this option can be safely
turned off to reduce code size. The content data in these systems is usually stored in the same flash
deviceasthe code and is checksummed during startup. However in more complex systemswhere content
packages can be loaded from other sources (such as disk files or plug-in modules) then it is wise to
enable this option. The default valueis 1.

INC_ROM_ATTRIBUTES - If thisoption is enabled then the Ht t pdRonTi | eSyst emwill support
per-fileattributes. With this option disabl ed the code sizeimpact for the ROM filesystem may be smaller.
This is because the attributes are encoded using URL encoding and enabling attributes will link in the
CGl parser.

316

Integrating Seminole
With An Application

INC_ROM_FAST _COMPRESSED PUSH - Enable optimized pushing of compressed content stored
inaHt t pdRontFi | eSyst em Disabling this option results in reduced performance at the expense of
code size. The default valueis 1.

INC_ROM_FAST_RANGE_PUSH - This option includes an optimization that improves the handling
of byte ranges for uncompressed filesin aHt t pdRonFi | eSyst em Enabling this option results in
dlightly larger code size. The default valueis 1.

INC_TEMPLATE_MIME_TYPES - This option enables the ability to override the default MIME type
emitted by Ht t pdFSTenpl at eShel | . Disabling this feature results in miniscule performance and
code space savings. The default valueis 1.

INC_CHARCLASS PATTERN_MATCH - Enabling this feature adds character class support to the
HttpdUtilities:: MatchPattern function. Disabling this feature saves code space at the
expense of functionality. The default valueis 1.

INC_HASH_PJW - Enabling this option changes the hashing algorithm used by
HttpdUtilities::Hash tothe“P.J Weinberger” hash function. This hashing function resultsin
abetter distribution at the expense of dlightly increased CPU consumption and code size. For very large
numbers of CGI parametersin aHt t pdCgi Hash enabling this may be a performance win on 32-bit
processors. If this option is disabled (the default) then anormal addative hash function is used instead.

INC_MODIFIABLE_FILESY STEMS - Enabling this option enables the methodsin the filesystem API
for writable file systems. The default value is 1. Disabling this option reduces code size.

INC_BACKGROUND_SESSION_PURGE - Thisoption enablestime-based purging of unused session
objects. Without thisoption, instancesof Ht t pdSessi onManager will only destroy asession object
when there is no additional room for a new session. When this option is set, a background thread
periodically examines the session table and deletes any sessions that have an idle time exceeding a
predefined threshold.

For applications with very large session objects this option can help reduce the contention for memory
by other tasks using HttpdOpSys.:Malloc. Using this option also results in a significant increase in
security because it makes replay attacks more difficult. However, in order to use this option the target
platform must support threads and the ability to note the passage of time. The default valueis 1.

INC_FAST_MD?5 - If this option is enabled the code implementing the Ht t pdIVD5 classwill be larger
but much faster. The default is 0.

INC_FAST_SHA1 - If this option is enabled the code implementing the Ht t pdSHA1 class will be
larger but much faster. The default isO.

INC_SECURE_MDS?5 - If this option is enabled then the Ht t pdMD5 class will wipe all working data
from memory when complete. This resultsin increased security at the slight expense of additioal CPU
utilization. The default value for thisoptionis1 and it is recommended that this option not be disabled.

INC_SECURE_SHA1 - If thisoption is enabled then the Ht t pd SHAL classwill wipe al working data
from memory when complete. This resultsin increased security at the slight expense of additioal CPU
utilization. The default value for thisoptionis1 and it is recommended that this option not be disabled.

INC_LOW_STACK_PRESSURE - For performance reasons Seminole allocates several large objects
on the stack of the servicing thread. For systems where stack spaceislimited this option can be enabled.
When enabled this option causes these objects to be allocated from the heap. The downside of thisis
that this reduces performance and increases code size (dlightly). It also opens up a window of failure
if the heap does not have enough free space to allocate request objects. In that case, the client socket
is simply closed without even sending back aresponse. This may also result in slightly increased heap
fragmentation. The default valueisO.

317

Integrating Seminole
With An Application

INC_LOW_HEAP_PRESSURE - This option causes Seminol e to use less heap memory at the expense
of code size and execution time. In low memory environments enabling this option is a worthwhile
optimization. Thedefault valueis1. Thisoption may also beset to 2 or 3 for amore aggressivereduction
in heap usage at the expense of performance. The higher the value the less pressure placed on the heap.

INC_LOW_CODE_PRESSURE - This option causes Seminole to use less code size at the expense of
execution time. This option should be enabled when the expected HTTP load is light and code size
footprint isimportant. The default valueis 1.

INC_MULTIPLE TRANSPORTS - This option enables the optional transport-sel ection mechanism.
With this feature enabled Seminole allows several different network transport protocols to be selected
at runtime. The most important reason to enable this option is to support SSL (which must be enabled
separately using the INC_SSL option). The default value is 0.

INC_SSL - Enable SSL protocol support. This option should only be enabled if support is provided
on your particular target. This feature requires the INC_MULTIPLE_TRANSPORTS feature also be
enabled. There may be additional parameters that can be configured in the portability layer when this
option is enabled. The default valueis 0.

INC_IPV6_SUPPORT - Enable support for IPv6. This option should only be enabled if this protocol is
supported by your target platform. The default valueis 0.

INC_BUFFER_OUTPUT - There are some cases where the length of the response is unknown. In these
casesthe Ht t pdDynam cQut put classis used to control how the output is delivered. Enabling this
option tells the Ht t pdDynami cQut put class to buffer the output in dynamic memory in order to
avoid closing persistent connections. This resultsin increased use of run-time memory usage but allows
greater network throughput. The buffering is performed by the HttpdContentSink class. The value of
this option has no effect if the INC_PERSISTENT_CONN feature is not enabled. The default value
for thisoptionis1.

INC_CHUNK_OUTPUT - Similar to the INC BUFFER_OUTPUT feature this option alows the
Ht t pdDynami cQut put class to use the “chunked” transfer encoding if possible. This encoding is
only supported with HTTP/1.1 clients, older clients will be handled by other methods (if available) or
by closing persistent connections. The chunked encoding is performed by athe Ht t pdChunkedSi nk
filter class. The value of this option has no effect if the INC_PERSISTENT_CONN feature is not
enabled. The default value for thisoptionis 1. The default valueis 1.

INC_BUFFER_OVERFLOW_RECOVERY - If the INC_BUFFER_OUTPUT option is enabled and
the server runs out of temporary storage for the content an attempt is made to recover by shutting down
persistent connections when this happens. In the event of this failure the content is still delivered by
sending what has been buffered until the heap was exhausted then continuing with data transmission and
finally closing the connection when complete. Enabling this option results in a slight increase in code
size. Enabling this option has no effect if the INC_PERSISTENT_CONN or INC_ BUFFER_OUTPUT
options are disabled. The default valueis 1.

INC_FAST_STRING_SINK - Enabling this option causes Ht t pdSt ri ngSi nk to allocate reserve
memory to avoid each Wi t e call resulting in acall to Real | oc. This option can a so reduce heap
fragmentation. It increases code size slightly but also resultsin again in CPU utilization. The amount
of pre-allocated memory is bounded by the STRING_GROW _SIZE parameter. The default valueis 1.

INC_ BASIC_ AUTH - This option enables the basic HTTP authentication mechanism in the
Ht t pdAut henti cat or class. If no authentication mechanisms are enabled then requests to
authenticate a request will always fail with a HTTPD_RESP_UNAUTHORI ZED (401) status. The
default value is 1 and should not be disabled in most circumstances.

INC_DIGEST_AUTH - Thisoption enablesHT TP digest authentication. Digest authentication prevents
passwords from being transported in the clear acrossthe network. Thisresultsin anincreasein codesize.

318

Integrating Seminole
With An Application

This feature uses the session manager therefore the security precautions involved in using the session
manager (good quality entropy and background session scrubbing) should be employed if possible. The
defaultisl.

Setting thisvalueto 2 will result in presenting digest authentication ahead of basic authentication (when
both are enabled). Thisnormally is against the recommendations of the RFC's. However many versions
of the Firefox® browser will always choose the first scheme presented rather than the strongest scheme
presented (asisrequired). Setting thisvalueto 2 works around this bug; at the expense of compatability.

INC _DIGEST_AUTH_URL_MATCH - Digest authentication requires that the URL be a component
of the password hash. The URL is passed in an attribute rather than taken from the actual HTTP request
line. This prevents proxies from modifying it and thus corrupting the password hash.

If this option is enabled then Seminole verifies that the URL is equivilent to the request URL. This
verification requires additional processing overhead but reduces the effectiveness of man-in-the-middlie
attacks. Disabling this option reduces code size and memory requirements at the expense of security.
With this option disabled passwords are still never sent across the network in the clear — providing
secrecy. The nonce mechanism ensuresthat replay attackswill not succeed. However if thereisachance
that an attacker can intercept (and modify) the request then this verification step preventsthis.

The default valueis 1.

INC_PASSWD_BLINDING - This option reduces the risk of timing attacks when comparing
passwords. HTTP basic authentication is particularly vulnerable to this kind of attack although
in many environments the attack is difficult to mount. Enabling this option causes the
Ht t pdAut henti cat or:: Secur eSt r EQu method to aways take the same amount of time
comparing stringsirrespective of the contents of those strings. Enabling this option reduces performance
and increases code size. In security critical environmentsthisoption should be enabled. For performance
critical applications this option can be disabled. The default valueis 1.

INC_CONDITIONAL_HINTS - Enabling this option adds conditiona hints if the C++ compiler
supportsthem. Conditional hintshelp toidentify i f statementsthat are used for infrequent events (such
as total failure cases) and cause the compiler to generate code that is more efficient for the frequent
cases. With the GNUGCC™ compiler this is accomplished withthe __bui | ti n_expect built-in.
The default valueis 1.

INC_ALIASING_HINTS- Enabling this option adds pointer aliasing hintsif the C++ compiler supports
them. Aliasing hints help identify pointers that don't alias and avoid reloading values from memory.
This reduces code size and increases efficiency. The default valueis 1.

INC_ALLOCATION_CACHING - Enabling this option causes some classes to cache memory
alocationsto avoid aperformance penalty. For systemswith very limited amounts of memory disabling
this option reduces resource consumption at the expense of performance. The default valueis 1.

INC_ALLOCATION_CACHE_PURGE - Enabling this option enablesthe ability to purgeall allocation
caches when the system is low on memry. The default valueis 1.

OVERLOAD ABORT_RETRI ES - This parameter controls how many times overload protection will
attempt to release an idle thread before failing the new request instead. This parameter only has any
effect if INC_OVERLOAD_PROTECTION is enabled. The default valueis 1. In some high-volume
configurations (especially when running under a POSIX operating system) it may be advantageous to
increase this value.

OVERLOAD ABORT_SLEEP - This parameter controls how long the acceptor task sleeps
(in milliseconds) during retries when in overload. This parameter only has any effect if
INC_OVERLOAD_PROTECTION is enabled. The default valueis 130.

319

Integrating Seminole
With An Application

INC_CLIENT_CONN_POOL - This option enables connection pooling inthe Ht t pdC i ent class.
Enabling this option makes HTTP fetching much faster at the expense of code size and memory (and
socket) consumption. The default valueis 1.

INC_CLIENT_REDIR_CACHE - This option configures the size and desire for redirect caching in
Ht t pdd i ent . If the value is O then permanent redirects are never remembered. Otherwise this
controls the number of slotsin the cache. Disabling the cache reduces the code size of the client. The
default valueis 16.

INC_CLIENT_PROXY_SUPPORT - This option enables support for HTTP proxies. Disabling this
option reduces code size and improves fetch performance. The default valueis 1.

INC_CLIENT_COOKIE_SUPPORT - This option enables support for HTTP cookies on the client side.
Disabling this option reduces code size and improves fetch performance. The default valueis 1.

INC_CLIENT_AUTH - This option enables authentication support in the client. Disabling this option
reduces code size. The default valueis 1.

INC_CLIENT_AUTH_BASIC - This option enables basic authentication support in the client. The
default valueis 1.

INC_CLIENT_AUTH_DIGEST - This option enables digest authentication support in the client.
Disabling this option reduces code size. The default valueis 1.

INC_CLIENT_COOKIE_BUFFERING - This option prevents the HTTP client from writing cookie
headers while holding the mutex of the cookiejar. This preventsthe somewhat unlikely case of asocket
write stalling for along period of time while holding the cookie jar mutex and affecting other fetches.
Enabling this option increases code size and memory consumption slightly. It is probably a good idea
to enable this option if there are many threads performing simultaneous fetches against a single client
object. The default valueisO.

CLI ENT_MAX_CONN - When INC_CLIENT_CONN_POOL is enabled this parameter controls the
maximum number of connectionsthat will be pooled per instance of Ht t pdC i ent . The default value
is130.

CLI ENT_MAX_CONN_PER HOST - When INC_CLIENT_CONN_POOL is enabled this parameter
controls the maximum number of connections to a single host per instance of Ht t pdC i ent . This
value must be smaller than CLI ENT_MAX_CONN. The purpose of thislimit isnot to reduce the resource
consumption of Ht t pdCl i ent — that is the purpose of CLI ENT_MAX_ CONN. This constant is to
avoid causing excessive resource consumption on other servers. The default valueis5 asrecommended
by RFC 2616.

CLI ENT_HASH BUCKETS - When INC_CLIENT_CONN_POOL is enabled this parameter adjusts
the size of the hash table used to |ook up pooled connections. It should be a prime number. Larger values
increase the memory footprint of Ht t pdCl i ent . The default valueis 17.

CLI ENT_AUTH_KEY_BUCKETS - Authentication credentials are cached to help reduce round trip
times. Increasing the value reduces search overhead at the expense of memory. Setting thisvalueto less
than 2 will disable hashing (thus saving code and data space). The default valueis 19.

CLI ENT_AUTH_CNONCE_LEN - This parameter controls the length of the client nonce when using
HTTP digest authentication. Increasing this value will increase security provided sufficient entropy is
available. The default valueis 16.

TMPL_MAX | NCL_DEPTH - This is the maximum number of file includes that may be nested when
processing atemplatewiththeHt t pdFSTenpl at eShel | mechanism. Thedefault valueis16. There

320

Integrating Seminole
With An Application

is no cost to increasing this limit except that beyond a certain point of nested includes may cause a
stack overflow.

TMPL_MAX_SYM LENGTH- Thisisthe maximum length of asymbol identifying atemplate operation.
This value only applies to the actual name of the action, not the associated attributes. The maximum
theoretical value is 127 and the default value is 126. Lowering this value may save a few bytes of
storage during template processing.

Cd _HASH_SI ZE - This parameter controlsthe number of bucketsintheHt t pdCgi Hash class. The
more buckets the quicker parameters can befound (at acost of space). In general, the number of buckets
should be a prime number. But thisis not a hard-and-fast rule if memory isin short supply. The default
valueis?.

Bl TSET_WORD_SI ZE - This parameter selectsthe word size used by classessuchasHt t pdBi t Set .
Ideally the word size selected should be the most efficient for the machine to manipulate. Setting
thisincorrectly only resultsin reduced performance. However computing the correct setting takes into
account a number of factors such as the compiler, CPU, and memory bus width.

Value Word Type
0 unsigned int
1 unsigned long
2 unsigned short

The default valueis 1.

MAX_M ME_ENTRI ES - This parameter controls the maximum number of name-value pairs on an
incoming request. The default valueis 48 pairs.

MAX_ I NPUT_LI NE - Thisisthe maximum length of aline on anincoming request in bytes. The default
valueis1024.

XFER_BUF_SI ZE - This parameter controlsthe transfer buffer size. This buffer sizeisused in severa
places where the copying of data from one source (such as a file) to another (such as a socket) is
performed. The default value is 1024 bytes. Increasing this value may result in increased efficiency
in some usage scenarios.

M N_BATCH WRI TE_SI ZE - This parameter controls the smallest write that will be sent to the target
writable associated with aHt t pdBat chW i t er . If this constant is set to O then all writes will be at
least XFER_BUF_SI ZE bytesin size. Setting this parameter to anon-zero value resultsin aslight code
sizeincrease but may reduce CPU consumption. The default valueisO.

S| NK_BUFFER_SI ZE - This parameter is the size of the data buffers that HttpdContentSink uses to
buffer dynamically generated content. The default value is512 bytes. Setting this value higher results
in fewer memory allocations by the content sink but may result in increased memory consumption.

STRI NG_GROW SI ZE - If the INC_FAST_STRING_SINK option is enabled then this parameter
controlsthe amount of extramemory allocated by the Ht t pdSt r i ngSi nk object to reduce allocation
overhead and fragmentation. If the INC_FAST_STRING_SINK option is disabled then this parameter
has no effect. The default value is 512 bytes but could be made smaller if memory is tight with little
performance impact.

CHUNK_QUTPUT _SI ZE - This parameters controls the maximum size (in bytes) of a segment of data
when using the HTTP/1.1 chunked transfer encoding. Chunked transfer encoding is provided by the
Ht t pdChunkedSi nk class. The default valueis 1024,

321

Integrating Seminole
With An Application

DI GEST_W NDOW SI ZE - This parameter controls the number of pending noncesthat are allowed in
a digest authentication session. Increasing this parameter can help avoid digest authentication failures
in very high request rates at the expense of memory. The default valueis 128.

DI GEST_MAX_ACE - This parameter controls the maximum age of a digest authentication session (in
seconds). If the background session scrubbing option (INC_BACKGROUND_SESSION_PURGE) is
not enabled then this parameter has no effect. The default valueis900.

DI GEST_MAX_SESSI ONS - This parameter controls the maximum number of digest authentication
sessionsat any onetime. Raising the number of sessions allowsmore simultaneousclientsat the expense
of memory. The default valueis 32.

DI GEST_BATCHSI ZE - This parameter adjusts the number of session objects processed
for aging during a single cycle. If the background session scrubbing —option
(INC_BACKGROUND_SESSION_PURGE) is not enabled then this parameter has no effect. The
default value is 8 sessions.

DI GEST_CYCLETI ME - This parameter determines how often the background scrubber is woken up
to scrube digest authentication sessions. The default is 60000 milliseconds.

FI RST_TI MEQUT - This parameter represents the amount of time to wait (in seconds) after the
establishment of a TCP connection for the first line of the request. This timeout serves two purposes.
First, it serves to prevent persistent connections from lasting indefinitely. Second, it functions as a
denial-of-service attack recovery mechanism. The timeout for the first request line is distinct because
often times a client may take longer to send the initial line of the request. Once the request is generated
the headerstypically are sent quickly. Thereforethistimeout should belarger thantheM VE_TI MEQUT
parameter. The default valueis 160.

M ME_TI MEQUT - This parameter represents the amount of time to wait after the first request line is
received for the transmission of the MIME name-value pairs. Unlike FI RST_TI MEQUT expiration of
this timer would more likely indicate a network or protocol error rather than an overloading condition.
The default value is 30 seconds.

CA _TI MEQUT - This parameter represents the maximum amount of time that the CGI parsing classes
(suchasHt t pdCgi Par amet er and Ht t pdMul ti part Cgi Par ser) will wait for new incoming
data. The default valueis 200 seconds.

ACCEPT_FAI L_DELAY - With some TCP/IP implementations the Ht t pdSocket : : Accept

operation can return an error code that indicates anon-fatal but transient error condition (resource limits,
insufficient buffers, link connectivity problems, etc). This is the amount of time the acceptor thread
should wait before calling accept again to process additional incoming connections. It is mainly used
as athrottling timer to reduce the likelyhood of similar setup errors ocurring in succession. The default
valueis 500 milliseconds.

MAX_REQUESTS PER_CONN - When persistent connections are enabled this parameter controls
the maximum number of requests that can be processed on a single connection. Even if the
FI RST_TI MEQUT timer is not exceeded the maximum number of requests can never be exceeded.
This option has no effect if the INC_PERSISTENT_CONN feature is disabled. The default value is
5 requests.

MAX_PASSWD LENGTH - This is the maximum length of a password when using the
Ht t pdAut hent i cat or framework. The default is48 characters.

MAX_REALM LENGTH - This is the maximum length of the ream when using
Ht t pdAut hent i cat or framework. The default value is 48 characters.

322

Integrating Seminole
With An Application

SESSI ON_NONCE_LEN - This parameter controls the number of random characters included in a
session identifier included to prevent spoofing. Making this value longer is only likely to increase
security if athetarget platform has a good source of entropy. The default value is 32 characters.

MAX_MODAL _DEPTH - This parameter isthe maximum number of widgets that may be stacked within
aHt t pdW dget St ack object. The default valueis 4.

W DGET_TABLE_GROW SI ZE - This value is the number of “widget dots’ to allocate when the
current widget manager (Ht t pdW dget Manager) runs out of available tracking slots. The default
valueis64. The default should be appropriate for amost all circumstances however reducing thisvalue
may result in decreased memory consumption when using the application framework.

G F HASH SIZE - This parameter controls the compression engine in the
Ht t pdG f 87aRender er object. Adjusting thisvalue may result in bandwidth reduction in exchange
for higher memory consumption during image creation. The default valueis5003.

PVMATCH MAX RECURSI ON - This parameter limits the default recursion depth of the
HttpdUtilities::MatchPatt ern method. Patterns that involve “globbing” matches can make
thisroutinerecursive. To guard against stack exhaustion (especially when the pattern string comes from
an untrusted source, such as a CGl variable) alimit is placed on the maximum depth of the recursion.
The default valueis 16 but this may have to be altered depending on available stack space.

DSC TRANSM T_JI TTER - This parameter controls the amount of “jitter” artificially added to
beacons transmitted by Ht t pdDi scover ySer ver . The purpose of thejitter isto prevent a storm of
broadcasts which may result in a high collision rate on some networks. This value is in milliseconds
and defaultsto 90.

DSC BEACON JI TTER - This parameter controls the amount of “jitter” artificially added to
unsolicited beacons transmitted by Ht t pdDi scover ySer ver . This value is in milliseconds and
defaultsto 20.

DSC _REQUEST _JI TTER- This parameter controlsthe amount of “jitter” artificially added to request
beacons transmitted by Ht t pdDi scover yCl i ent . The purpose of thejitter isto prevent a storm of
broadcasts which may result in a high collision rate on some networks. This value is in milliseconds
and defaults to 5000.

DSC _ENDPT_HASH SI ZE - This parameter controls the number of buckets in the hash table that
Ht t pdDi scoveryd i ent usestoholdHt t pdDi scover edEndpoi nt objects. Thedefault value
is171.

DSC _CLI ENT_SCRUB_BATCH - This parameter controls the number of endpoints examined by
Ht t pdDi scover yd i ent during ascrubbing cycle. The number of endpointsislimited to a subset
to avoid execessive bursts of CPU consumption. The default valueis 16.

XM._TAG BUF_SI ZE - Thisparameter controlsthe number of charactersthat theinternal name buffer
of Ht t pdXnm Node holds. If atag name exceeds this length a dynamically allocated buffer is used.
The default valueis 32.

XM._PARSE_NODE_CACHE_SI ZE - This parameter controls the maximum number of node objects
to cache during a parse. These nodes are temporary objects that are used during parsing. To avoid
continuous memory reallocation the XML parser caches these objects as it parses the document. The
higher this value the more temporary memory consumed during parsing. The default value is 24.

XM._NAMESPACE CHUNK_SI ZE - This parameter determines the size of space reserved when
allocating storage for namespace URL's. To reduce the number of heap allocations memory is allocated
in chunks when a namespace must be stored. As many URL's are packed into a single allocation as
possible. Setting this parameter tunes the amount of internal versus external fragmentation. Setting this

323

Integrating Seminole
With An Application

parameter to 0 disables chunking and all ocates each namespace URL in a separate object, reducing code
complexity instead. The default valueis 140.

* XM._NAMESPACE MAX SEARCH - When a namespace URL is encountered the XML parser scans
the list of namespaces that have aready been seen to seeif the string space can be shared. This sharing
reduces memory consumption at the expense of CPU time. If this parameter is set to O then the entire
list of namespace URL'sis searched. Otherwise this val ue specifies the maximum number of URL'sthe
XML parser will examine in an attempt to save space. The default valueisO.

* MACRO_MAX_ ARGS - This parameter controls the maximum number of arguments to a macro in the
Ht t pdMacr oPr ocessor class. The default valueis 32.

* INC_CACHING_FILE DATA_SOURCE - If this option is enabled the code implementing the
Ht t pdFi | eDat aSour ce class will employ a caching mechanism. This caching mechanism is
useful when the associated Ht t pdFi | e does not have any caching performed by the underlying
operating system and system calls are expensive. For operating systemswith no memory protection and
tight memory requirements disabling this option may result in a reduction of code size and memory
consumption. The default is 1.

* FI LE_DATASRC CACHE_SI ZE - This parameter controls the size of a cache block in the caching
versionof Ht t pdFi | eDat aSour ce. Itisrecommended that it be a power of 2. See File Data Source
Caching for details. The default valueis 4096 bytes.

* FI LE_DATASRC_MAX_ CACHE BLOCKS - This parameter controls the maximum number of cache
blocks that a Ht t pdFi | eDat aSour ce may hold. See File Data Source Caching for details. The
default value is 16 blocks.

* FI LE_DATASRC _HASH BUCKETS - This parameter controls the number of hash buckets in the
caching version of Ht t pdFi | eDat aSour ce. It isrecommended that it be a prime number. See File
Data Source Caching for details. The default valueis 7 buckets.

* FI LE_DATASRC_MAX_PI NNED - This parameter controls the maximum number of pinned cache
blocksin aHt t pdFi | eDat aSour ce. See File Data Source Caching for details. The default value
is4 blocks.

* HAVE GLOBAL_CONSTRUCTORS- Thisoption determinesif global constructors are supported on
this platform. Some embedded systems do not call globa constructors or call them at the wrong time.
This problem can beworked around at aminor cost in efficiency by setting thisoptionto 0. If thisoption
is set to 0 then the runtime environment must provide properly synchronized delayed construction of
static locals. The default valueis 1.

The Seminole Build System

Overview

Like the rest of Seminole, the build system is oriented towards embedded systems developers. Using
the build system is completely optional. If your project has aradically different build system from what
Seminole offers, it can be used instead with little effort. The major features of the Seminole build system
are:

» The compilation tools and build environment are easily changed.
» Multiple targets are easily selected and built.

» The output files for each target are isolated so one can have Seminole built for a variety of targets at
the sametime.

324

Integrating Seminole
With An Application

The Seminole build system consists of two logical pieces. Thefirst pieceisaPerl script (calledbui | di t)
which recursively descends the source tree and applies commands to the files within based on the
particular quirks of the host operating environment. bui | di t obtains pertinent information about the
host environment from the second logical piece of the build system, the ports files. These files, so named
because they arelocated inthe por t s subdirectory of the distribution, ssimply contain Perl code whichis
directly evaluated at the beginning of the build process. One ports file may include other files, to form a
hierarchy of overlapping definitions so that common information can be centralized in asinglefile. Thus,
factors common to all POSIX systems are contained in the POSI X ports file, which is then included by
other ports which are POSIX-like environments.

Once the system-specific declarations in the ports file(s) have been evaluated, bui | di t proceeds to
look for arules file called Bui | df i | e in the current working directory. This file contains a series of
Perl subroutines which are analogous to the names of make targets. If no target name is provided on
the command-line, the def aul t subroutine is executed (typically all source files will be rebuilt if the
corresponding object file is stale). This process is often recursive, with bui | di t descending into each
subdirectory in the tree and executing the same subroutine.

Extensive documentation on the Perl language is available on the World Wide Web or in book form, and
no attempt will be made here to duplicate it.

Performing a Build

The first step in performing a Seminole build is to select a ports file that most closely describes your
particular environment. Choosing an appropriate ports file greatly reduces the amount of customization
that must be done to generate a successful build. See Table 15.1, “ Standard Ports Files” for alist of ports
files provided with the distribution.

Table 15.1. Standard Ports Files

Port Description

Li nux GNU/Linux with GCC

OpenBSD OpenBSD with GCC

Fr eeBSD FreeBSD with GCC

Sol ari s-gcc Solaris® with the GCC compiler

Sol ari s-CC Solaris® with the Sun Studio compiler

MsVC Windows NT® with Microsoft Visual C++

Wat com Windows NT® with Watcom C++

MacOSX- gcc MacOS X® development kit (using Apple-provided
GCC

Mac OSX- xI ¢ MacOS X® development kit (using IBM's
VisualAge C++)

Tor nado Wind River Systems Tornado® devel opment kit for
VXWorks®

eCos eCos embedded devel opment environment

QN\IX6 The QNX distributed operating system

Androi d The Linux based Android platform

When using ports such as Tor nado and eCos which represent cross-compilation environments, it is
critical to properly identify the target architecture and binary type by assigning the appropriate variables.

325

Integrating Seminole
With An Application

In most situations the best method isto take advantage of the hierarchical nature of portsfilesand create a
customized file matched to your specific needs. Thefile containing your customi zationswould theninclude
other portsfiles"above" it in the hierarchy; for example, anew portsfileintended to build Seminolefor an
ARM -based embedded target running the eCos® operating system might be called eCos- ar m Sinceall
the default definitions acceptable and only a few parameters are being changed, eCos- ar mmight look
something like this:

Example 15.1. Using Inherited Definitionsin a Ports File

$ECOS ARCH = "armel f';
$CPUENDI AN = 'little';
$ECOS = '/ecos-tree';

Load the definitions for eCos targets.
definitions(sanepat h($DEFI NI TI ON_FI LE, 'eCos'));

Once a usable ports file has been selected or customized as described above, the build process can begin.
Depending on the host operating system, the bui | di t script must be invoked dightly differently. In
POSI X-like environments, something similar to the following command may be executed from the root
directory of the Seminole distribution:

./buildit ports/PORTFILE

PORTFI LE should specify the desired ports file to be evaluated. If your Perl interpreter is located in a
non-standard directory (/ usr/ bi n/ per| is assumed), you will need to change the path manually in
bui | di t with atext editor or create afilesystem link.

In Microsoft Windows NT® and related environments, the build system should be invoked as follows:
PERL buildit ports\ PORTFILE

In this case, PERL should be the name and/or path of your system's Perl interpreter (per | will probably
work if you are unsure).

When complete, the results will be in bui | t/ PORTFI LE. The header files needed by the client
application are placed in i ncl ude and the libraries needed are placed in | i b. In addition, most ports
provide a standalone binary that can be used to verify the build of Seminole.

The files that are created during the build are referred to as the SDK (Software Development Kit). Once
Seminole is compiled the files from the SDK are the only things required to build applications that use
Seminole. Thelocation of the SDK can be changed by overriding the build system configuration variables
inthe por t s/ Sem nol e file.

After building Seminole for the first time, one should be verify that the resulting libraries are functional.
When targeting a POSIX (or more generally, UNIX®-like) target, this can be done by invoking the
Seminole executable.

Once proper operation is verified with aweb browser, you have successfully built Seminole.
Build System Internals
The build system contains three major components. The first is a support library of subroutines that do

basic operations useful for building software. The most important of these is cx. This function executes
an external command such as running the C++ compiler or linker.

326

Integrating Seminole
With An Application

Another important support routineis st al e. Thisroutine takes two array references as arguments. Both
are lists of files, the first argument describing a list of target files and the second argument describing a
list of source files. If the source files are newer than the target files or the target files do not exist then
this routine returns true.

Thedefi ni tions isusedto load a file containing auxiliary Perl code for building Seminole. Thisis
how the hierarchy of port files are implemented. The top-level port file imports lower-level port files
using this function. In turn those lower-level files may import other files. The filename provided to the
defi ni ti ons subroutine should be an absolute path. In general al of the build system files are in the
same directory and the sanepat h subroutine can be used to make a full path name. The global variable
$DEFI NI TI ON_FI LE containsthefull path name of the build file requested onthebui | di t command
line.

Thesubdi r s subroutine performsarecursive build in the named subdirectories. ThefileBui | df i | ein
the root of the Seminole source tree shows how the sr ¢ directory isbuilt. The opt subdi r s subroutine
is similar to subdi r s except that non-existant directories are non-fatal. The role of Bui | dfi | e is
explained below.

The cx and st al e subroutines can be combined to produce make-style functionality with the and
operator. For example:

stale(['foo.0"], ['foo.cpp', 'foo.h', 'comon.h']) and
cx('g++, '-c', 'foo.cpp');

In the above example, f 00. cpp will be recompiled if f 00. 0 does not exist or is older than the source
file or the two header files. This functionality is used to implement the second major component of the
build system: the target routines. These are subroutine references that point to routines that perform basic
tasks used to build Seminole:

» $target _|ink-Performalink stepif to produce aloadable or executableimage from object modules
and libraries.

» $t arget _xf or m- Generate the object file name of a source file. In most cases this is a straight
transformation such as changing afile extension.

» $t arget _bi nary - This subroutine computes the output file name used for the link step.

e $target _cxx - This subroutine compiles a source module to an object module by invoking the C+
+ compiler for the target system.

« $target_addl i b - This subroutine adds one or more object files into alibrary (or archive) file. If
the library file does not exist it should be created.

» $host _c_xf or m- Trandate the name of a C source module to the file name needed to run the C
program. Thehost toolsawaysconsist of asingle C sourcefilethat iscompiled (using the host compiler)
to run as a standal one program.

» $host _conpi | e_c - Invoke the C compiler for the host system.

The final component of the build system isthe bui | di t script. This script drives the build system by
preparing the environment and then executing the build instructions for each source directory. The build
environment is prepared by loading definition files that define subroutines and variables that are used
during the build phase.

Oncethe environment is prepared the directory treeistraversed and the Bui | df i | e filesareloaded. The
Bui | df i | e defines one or more named subroutines that perform abuild action. Depending on the build

327

Integrating Seminole
With An Application

target (if any) specified on the bui | di t command line the subroutine in the Bui | df i | e is executed
to perform the build step.

Itisbest to think of the subroutinesinthe Bui | df i | esasmaketargets(suchasal | or cl ean). These
subroutines use the variables and subroutines defined in the build environment to accomplish their tasks.
Infact thetraversal of the directory treeisdone using the built-in subroutinessubdi r s or opt subdi r s
and is not explicitly part of bui | di t.

Building Seminole using an alternative build environment

There is nothing particularly unique that Seminole's Perl-based build system does that can't be done with
other build environments. Sometimesin alarge project the Seminole build system is not appropriate. For
these situations it is possible to build the source code for Seminole with make or an IDE.

One important point to underscore is that even if the build system is not used it is still necessary to have
an operating Perl environment if the Host Tools are used.

The first step in building Seminole manually is to copy over thefilesendingina. i n extension to afile
with the same base name but ending in . h. Then edit the . h files replacing the text within the ${ ..}
directives with the actual configuration values desired.

The second step is to create an appropriate set of build options for your compiler. It isimportant to add
any of the directories that contain header files to the include path of the compiler.

Finally using whatever is appropriate for your host environment add the . cpp filesto your build list. Only
add the files that are appropriate for your target; i.e. do not add the files under src/ t ar get s/ W n32
if you are targetting a POSI X system.

The above approach puts al of the effort of building Seminole and your application on the developer. A
different alternative is building Seminole is a hybrid approach. For example. Build Seminole using the
provided build system then simply reference the built libraries and header files in a completely separate
build environment.

Another approach is to integrate the Seminole build system into the existing environment. For example,
an external “Makefile” project can be created within Microsoft Visual Studio® and call the Seminole
build system. Thiskind of integration gives the benefits of “push button” builds without requiring in depth
knowledge of either build environment.

Whichever approach is taken for the build machinery it isimportant that the correct compiler options are
set for efficient code generation. Seminole does not use templ ates, exceptions or run-time typeinformation.
So these features can be disabled if the code it calls (user-provided handler code) does not. This will
often result in a performance increase and a code size reduction. Choosing the right level of optimization
(size versus speed) is also important and depends on the performance requirements and the capabilities
of the target platform. Often the only way to correctly choose these options for a complex project is by
experimentation.

Toolchain

Regardless of what build system is being used builds are performed by calling tools to operate on files.
Some of thesetools, such asthe C/C++ compiler are not part of Seminole. Other tools, such asmimegen or
bin2c are part of Seminole. Understanding how the various tools interact is what this chapter is all about.

A very common usage of thetoolchain isto take web content and packageit for use by the ROM filesystem.
This is typically done by embedding the content directly in the system image. This configuration is
described by the following figure:

328

Integrating Seminole
With An Application

Figure 15.1. Toolchain for Combining Content in the System Image

Web Content [~

content.cfg

ROMfs Image

Source Code

Header File

E=Toolchain[J= Authored File{]=Intermediate Fileis

Asyou can see each tool tries to do asingle task. In this case SCPG processes the web content and builds
an image that the ROM filesystem code can mount. To get this data inside the system image the bin2c
command converts this binary file to a source and header file. The sourcefileis compiled in to the system
image and the header file allows the binary data to be referenced.

A much more complex orchestration of toolsis involved in building an application using the application
framework.

Figure 15.2. Toolchain for Building a Web Application

Web Content

ROMfs Image

content.cfg

Localized Text

Interface
Specification

Message Catalog
Header

Webapp
Source+ Header

ROMfs
Source+ Header

E=Toolchain[J= Authored File{d=Intermediate Fileis

329

Integrating Seminole
With An Application

As you can see from the above figure there are quite a few tools involved with a complex web of
dependencies. The msgemp tool is used for localization support and builds abinary “string package” file
that is included in the ROM filesystem along with the content. The output of SCPG is then utilized by
specgen to verify the interface specification is correct.

The output of specgen which contains the support code for the web application is combined with the ROM
filesystem image and compiled into a single system image.

Using SSL

Seminole supports SSL if the underlying socket stack provides an implementation of the SSL protocol.
The OpenSSL [http://www.openssl.org/] library is a free implementation of SSL and works on most
platforms. The Seminole build system currently has OpenSSL [http://www.openssl.org/] support in the
following ports: Li nux, QpenBSD, Wt com MacOSX- gcc, MacOSX- x| ¢, Fr eeBSD, and MSVC.
Adding support to other build environments should be relatively simple, by following the example of these
portsfiles.

TousetheSSL library on, check the appropriate portsfilefor acommented-out set of directivesreferencing
OpenSSL [http://www.openssl.org/]. Follow theinstructions and uncomment the necessary Perl directives.
Thiswill enable SSL support in all subsequent builds.

There are specia considerations for SSL in the Win32 environment. Since there is no standard location
for the OpenSSL [http://www.openssl.org/] library, the location of OpenSSL [http://www.openssl.org/]
must be assigned to the OPENSSL_ DI R variable in the ports file being used. If the SSL stack is to be
dynamically linked using DLL files, then the variable OPENSSL_ DLL should also be defined to a non-
null value.

Once enabled, it may be necessary to supply additional parametersto the SSL protocol stack. Thisisdone

by passing an array of strings to the Ht t pd: : St art method. A typical set of options for OpenSSL
[http://www.openssl.org/] would be similar to this:

pem server. pem

sock: ssl

rand-fil e: 4096, / dev/ urandom
The most important lineis:

sock: ssl

That parameter tellsthe transport selector (enabled viaINC_MULTIPLE_TRANSPORTS) to use the SSL
socket type instead of the standard TCP type.

Theline
pem server. pem

instructs the SSL socket to use the private key and PKI certificates from the fileser ver . pem

@ Note
The options file and the certificate data can be generated with the makecert utility.

330

http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/

Integrating Seminole
With An Application

Using MatrixSSL

The OpenSSL [http://www.openssl.org/] library is quite large and not suited to many embedded systems.
Seminole includes support for the MatrixSSL [http://www.peersec.com/matrixssl.html] commercial SSL
library from PeerSec. Thislibrary is smaller and easier to work with in embedded environments.

To enable MatrixSSL™ support the MATRI X_SSL_PATH variable must point to the location of the
library (called | i brat ri xssl . a on most POSIX-like systems) and header files. The | NC_SSL and
USE_MATRI X_SSL configuration variables also need to be enabled in the p variables must be defined in
the port file. The fragment in the build file should be similar to the following:

MATRI X _SSL_PATH = 'l ocati on/ of /matri xSSL' ;
config(INC SSL => 1,

USE_MATRI X_SSL => 1,

I NC_MULTI PLE_TRANSPORTS => 1);

Once enabled, MatrixSSL support is activated by passing aset of optionstotheHt t pd: : St art method.
The most important of whichissock: ssl which informs Seminole to use the SSL transport layer.

When using MatrixSSL the following additional options should be specified in additionto sock: ssl :
e cert:certificate - Thisconfiguresthe server certificate as the inline contents of the string.
» key: key - This configures the encryption keys of the server asthe inline contents of the string.

For more information on configuring MatrixSSL, see the documentation for the
mat ri xSsl ReadKeysMem

Operating Environment Abstraction Layers

Introduction

The Seminole portability layer insul ates the portable code from the following system specific areas:
e Memory allocation

e Multi-tasking

* File system access

* Networking

 Entropy (randomness) generation

» Time accounting

Of the services listed above only the memory allocation and networking services must be provided by
implementations of the portability layer. Multi-tasking in Seminole is optional and if a platform does
not support it then requests are processed serially. Native filesystem access is rarely needed because the
HttpdRomFileSystem class provides an efficient self-contained file service optimized for web serving.

The memory alocation abstraction islikely to be of particular interest to embedded systems programmers.
Sinceall dynamic memory allocationin Seminoleisobtained throughthe APl inHt t pdOpSy's it provides
aconvenient place to constrain or measure memory usage. Thisis especially important to prevent denial-
of-service attacks from disabling the primary function of an embedded system.

331

http://www.openssl.org/
http://www.openssl.org/
http://www.peersec.com/matrixssl.html
http://www.peersec.com/matrixssl.html

Integrating Seminole
With An Application

Another place where operating systems differ widely is in their support of networking models. Within
Seminole these differences are abstracted by the Ht t pdSocket class which manages the creation of
socket objects that implement the Ht t pdSocket | nt er f ace interface.

Theinterface described by Ht t pdSocket | nt er f ace resemblesthat of BSD sockets. On any platform
offering the sockets interface, porting the provided TCP (and optionally SSL) implementations ought to
require little or no modification. Other transports supporting at least the general concepts of addressable
communications endpoints and bi-directional data flow should be capable of abstraction within via
Ht t pdSocket | nt er f ace. If a given platform's interface does not support byte-oriented 1/0, some
adaptation will be required inthe ReadN() and Wi t eN() methods.

The reference implementations for POSIX and Win32 include support for shutting down sockets in
operation through a control interface. This makes these implementations more complex than a naive
implementation but makes server shutdown more responsive. In many casesthereisno need for agraceful
shutdown concept and the implementation of the TCP socket abstraction can be greatly simplified.

The multi-tasking interface assumes very little in terms of operating system functionality. It is assumed
that mutual exclusion and a flag-style semaphore are available for task synchronization. Care has been
taken to not require recursive mutexes although they cause no harm. Event semaphores are one-shot flag
style semaphores. Thuseither counting or binary semaphores may be used. It isnot required that onethread
waits for the termination of another. Thisis explicitly done (using event semaphores) when necessary.

The generation of entropy is heeded by afew Seminole support classes. Better quality randomness results
in amore secure system athough if a good entropy source is not present afew system variables (current
thread id, stack pointer, tick counter) with some processing can result in acceptable entropy. If SSL is
employed then it isimportant that entropy provided to the SSL protocol stack is of very high quality and
that entropy should also be exposed viathe Ht t pdOpSys: : Ent r opy method.

Seminole is not critical about the resolution of the system clock as error timeouts are the main use of
a system clock. If a real-time clock is present then Seminole can utilize the current time in the HTTP
responses although it is not necessary.

Adding New Abstraction Layers

The process of porting Seminole to a new target or host platform generally involves one or both of the
following steps:

» Create a new build framework definition file in port s/, named after the host environment, and
populate it with appropriate make meta-commands and variables to carry out the Seminole build
process. This step is only necessary if the included build system is used.

* Create the sem sys. h, sem syssock. h, and sem sysconfi g.in files The sem sys. h
header must define the HitpdUint8, HttpdUintl6, HttpdUint32, HttpdipAddress (unless
HTTPD_HAVE_BULKY_SOCKET_ADDRESSES is non-zero), and HttpdipPort types. The
sem syssock. h file should define a class named Httpdl pAddressbject if
HTTPD_HAVE_BULKY_SOCKET_ADDRESSES is non-zero

 The sem sys. h header contains the declarations of the Htt pdOpSys, and the optional
Ht t pdMut ex, Ht t pdEvent Semaphor e classes. The sem syssock. h header file defines the
Ht t pdTcpSocket and optional Ht t pdSsl Socket classes.

» Within whatever source file structures are necessary the implementation of these classes should be
written using the native services of the target platform.

As noted earlier it may often be ssimpler to use an existing portability layer as a skeleton for a new port.
There are many ways to architect the portability layers and care has been taken such that the examples

332

Integrating Seminole
With An Application

cover as many of the approaches as possible. When contemplating anew port it is often instructive to read
the existing portability layers to gain insight into what techniques are ideal for the new target.

Itisalso helpful to realizethereisnothing “magical” about the portability layer. Itissimply aset of routines
that Seminole uses to support its operations. Sometimes the best approach is to see where a particular
portability routineiscalled and design it for theway in which it will be called. For examplethe POSIX and
Win32 portahility layers provide two different multi-tasking models. One approach simply creates a new
thread in response to acall to Ht t pdQpSys: : For k. This approach is simple and compact but can be
a performance limitation. So an alternative implementation is provided that keeps a pool of ready worker
threads that can be assigned to atask rather than created when For k is called.

Although this alternative implementation is useful for POSIX and Win32 it may not be for some real-
time operating systems where thread creation is very fast or already pooled. Many of the decisionsin the
portability layer are like this.

Essentially, the job of the abstraction layer implementor is to rewrite the classes mentioned earlier in this
section, keeping to the public interfaces defined elsewhere in this document. The total effort involved in
writing or porting each method is highly dependent on the nature of the new target and what services it
offersto applications. The more familiar an implementor is with the target platform the easier thistask is
likely to be. Keep these factsin mind when planning a port.

Therearea so some parametersthat are defined by the portability layer that determinethe capabilities of the
target platform. These parameters may be adjustable depending upon the specifics of the portability layer.
For example, floating point support is often an optional concept on many embedded operating systems
but the concept is always present on the POSIX targets. Therefore the POSIX portability layer always
enablesfloating point support. These parameters can be used in your own application code to make it more
portable. When implementing anew portability layer the following macros must definedinsem sys. h,
sem sysconfi g. h, orinthe configuration of the compiler:

» HTTPD_OS_NAME - Thismacro expandsto aquoted string that isthe name of the host operating system
or target. Itissent in the Ser ver : MIME header line in response to an HTTP request. If thismacrois
undefined then no additional datais appended to the server name.

* HTTPD_HAVE_BI G_ENDI AN - This macro should evaluate to a non-zero (true) value if the target
platform uses “big endian” byte ordering.

 HTTPD_HAVE REENTRANT LI B - This macro should be defined to a non-zero (true) value if the
runtime library supports the reentrant versions of the standard ANSI C library.

e HTTPD_HAVE_NATI VE_FI LE_SOURCES - This macro should be defined to a non-zero (true)
value if the platform has a native file system and that native file system is exposed via the
Ht t pdOpSys: : Nati veFi | eSyst emmethod.

e HTTPD_HAVE_BULKY_SOCKETS - This macro should be defined to a non-zero (true) value if the
size of the Ht t pdTcpSocket is significant. Under normal circumstances a Ht t pdTcpSocket
holds a handle to a TCP socket. However some very ssimple TCP implementations al of the
protocol state is held within the Ht t pdTcpSocket . In these cases enabling this option when the
INC_LOW_STACK_PRESSURE option is enabled the Ht t pdTcpSocket is stored on the heap
instead of on the stack.

e HTTPD_HAVE_CLQOCK - This macro should be defined to a non-zero (true) value if the target has a
clock capable of keeping the current date and time.

e HTTPD TI MESTAMP_I S TI ME_T - This macro should be defined to a non-zero (true) value if the
Ht t pdOpSys:: TimeStamp typeis represented using time_t. If thisis not known then it is always safe
to leave this option O which results in some micro-optimizations being disabled.

333

Integrating Seminole
With An Application

HTTPD_HAVE THREADS - This macro should be defined to a non-zero (true) value if the target
platform supports simultaneous execution of two or more threads.

HTTPD_HAVE _OPSYS_REALLCC - If the porting layer has its own native implementation of
Ht t pdOpSys: : Real | oc then this macro should be defined to a non-zero (true) value. If this
macro is defined to O then a pre-defined implementation of Ht t pdOpSys: : Real | oc that uses
Ht t pdOpSys: : Saf eReal | oc.

There are several parameters that are common more than one portability layer implementation. Many of
these parameters adjust the internal operation of the portability layer. These are configurable through the
generalized configuration mechanism of the build system:

HCLOSE_TI MEQUT - This parameter represents the maximum amount of time to allow the TCP
connections managed by Seminole to exist in the FI N_WAI T_2 state. The default value is 3600
seconds. If sockets are a limited resource on the target platform the lowering this value may help in
recovery from failed network connections.

AVO D_LI NGER- Enabling thisoption causesthe portability layer to manually keep closed socketsthat
till have undelivered data open. This option is necessary because on most platforms the SO_LINGER
option does not work at all or dowhat isneeded for an HT TP server. Disabling thisoption should only be
done on TCP stacksthat specifically implement the expected behavior with regardsto HT TP pipelining.

CONN_BACKLOG - This value is sent as the second argument to the | i st en() system call. Under
most operating systems this controls the depth of the queue that holds incoming but not processed TCP
connections. The default value for most targetsis 5.

MAX_HEAP_USACE - If non-zero this places ahard limit on the amount of memory Seminole will use.
Attempts to keep more than this amount (in bytes) allocated will result in memory allocation failures
that Seminole will handle gracefully.

MAX_THREAD_USAGE - If non-zero this places a hard limit on the number of threads that Seminole
may spawn.

MAX_WAI T_FREE_TASK - If MAX_THREAD_ USAGE is non zero (or thread pooling is enabled) then
Seminolewill wait for upto MAX_WAI T_FREE_TASK milliseconds for the number of running threads
to go below MAX_THREAD USAGE. If MAX WAl T_FREE_TASK is 0 then spwaning a thread when
over quotaresultsin animmediate failure return from Ht t pdOpSys: : For k which Seminole handles
gracefully.

I NC_THREAD_ POOLI NG - If this symboal is defined to a non-zero (true) value then threads will be
reused as requests come in (within certain limits). For devices that function primarily as web servers,
significant gains in performance can be obtained with this option; depending on operating system and
hardware platform.

MAXI MUM_FREE_THREADS - If INC_THREAD_POOLING is enabled then this is the maximum
number of free threads to keep on the free list. Any additional threads will eventually be scrubbed.

MONI TOR_PCLL_TI ME- If INC_THREAD_POOLING isenabled then thisis how often (in seconds)
the pool of threads is trimmed to no more than MAXI MUM_FREE_THREADS entries. Decreasing this
delay will make Seminole less able to adapt the thread pool to sporadic load however it may reduce
resource usage (at the expense of CPU time).

I NI TI AL_THREAD_COUNT - If INC_THREAD_POOLING isenabled then thisis how many threads
will initially populate the freelist.

Additionally, the provided POSIX target layer makes use of a few preprocessor symbols which may
be relevant in adapting it to new POSIX variants. These are listed below and may be set as described
previously.

334

Integrating Seminole
With An Application

e HTTPD_USE SINGLE may be defined to a non-zero (true) value to cause Seminole to have only one
thread of execution; each For k() 'ed function runs to completion from the caller. This option is very
useful when debugging because many debuggers do not deal well with threads.

« HTTPD_USE CLOCK_GETTIME tells the portability layer that the operating system supports the
cl ock_get ti me system call. Most modern UNIX® systemsdo. Definethismacro to O if thissystem
call is not available or broken on the target platform.

e HTTPD_HEAP DEBUG can be used to enable a debugging version of the memory interface in
the Ht t pdOpSys class (see HitpdOpSys.:Malloc). The debugging version verifies pointers, collects
stati stics about memory usage, and tracks memory leaks.

« HTTPD_USE POLL should be defined to a non-zero (true) value if the target platform supports
pol I (). Thepol I () systemcall isfar moreefficient thanthesel ect () systemcall. If your system
supportspol | () then this symbol should be defined to make use of it.

e Setting USE_INTEGER _DIFFTIME to 1 avoids the use of the ANSIdi ffti ne() routine. This
routine subtracts two time_t values and returns the difference in seconds as a floating point value. In
many embedded systems floating point is undesirable. In most POSIX environmentsthetime t typeis
understood to be a count, in seconds, from awell defined epoch. In this case asimpleinteger subtraction
can be performed instead of callingdi ffti ne().

» Enabling INC_PRIORITY_ADJUST causes the priority of the threads to be adjusted when they are
performing work. This feature is only possible if the pthreads implementation supports scheduling
parameters. The POSIX_PRI_ACCEPT, POSIX_PRI_WORKER, and POSIX_PRI_SCRUBBER
parameters, if not set to O control the scheduling priority of the task.

e Enabling USE_USLEEP causes the Ht t pdQpSys: : TaskSl eep method to use the usl eep()
system cal. If USE_USLEEP is disabled then sel ect () or pol | () is used to delay execution
instead.

* IfINC_OVERLOAD_PROTECTION isenabled the POSIX portability layer requires an unused signal
tointerrupt idle but in-use threads. This signal is configured with SOCK_INTR_SIG. The default value
is SIGUSRL1. If your application uses SIGUSR1 for itself then change this parameter to an available
signal that has no significant side effects.

e If INC_OVERLOAD_PROTECTION is enabled the POSIX portability layer may encounter a small
race condition window in sending the signal to the blocked thread. Theraceiswon by retry with adelay.
The SOCK_ABORT_POLL parameter controls how long (in milliseconds) to sleep during retries. This
should be set to avery low time value. The default value of 120 milliseconds should be sufficient. For
high volume processing this timer can be reduced to improve throughput at the (slight) expense of CPU
time.

» If SOCKET_SEND_TIMEOUT is greater than zero the send timeout of the underlying TCP stack is
set to this value (in milliseconds).

Extending Seminole

Introduction

For programmers used to the functionality offered by HTTP servers such as Apache, Seminol€'s sparse
feature-set and intimate APl may seem like liabilities. Embedded systems programmers, on the other hand,
will recognizethose attributes asits greatest strengths. However, sinceit isneither possible nor desirableto
predict every application which will incorporate Seminole, extending Seminol€e's functionality isanatural

335

Integrating Seminole
With An Application

requirement in most cases. This chapter attempts to answer basic questions implementors are expected to
raise, and provide a starting point to begin making changesin alogical way.

Asdiscussed intheintroductory sectionsof thismanual, Seminole'sdesignisquitemodular. Great carewas
taken to abstract mundane protocol issues and hide irrelevant complexity within a set of clean interfaces.
For these reasons, the difficulty of adding code to Seminole ranges from trivia (adding handlers or
tweaking isolated routines) to slightly involved (porting the environmental abstraction layersto aradically
different system, or heavily altering a core class).

Adding Handlers

Basics

By far the easiest way to extend Seminoleis by adding new handlers. In many cases, the combination of a
few custom handlers with the utility classes provided out of the box are sufficient to successfully integrate
Seminole into your application or system.

As discussed briefly in the first chapter, Seminole services incoming requests by calling each registered
handler until one willing to service the request is found, or al handlers have declined. When handlers
areinstantiated during Seminol€e'sinitialization, one of the constructor arguments represents a URL -space
prefix used to discriminate requests for which that handler is responsible. The handler chain maintained
by Seminole is sorted in decreasing prefix order, such that the longest match for any given request will
always be taken.

Two handlers are provided with Seminole because of their common necessity; the Ht t pdRedi r ect or
class provides for HTTP redirections, and the Ht t pdFi | eHandl er class implements a POSIX
filesystem reader suitable for providing file service through Seminole. Both classes are fully documented
in the preceding chapters.

All Seminole handlers are derived from the abstract Ht t pdHandl er class, which provides appropriate
linkages for the handler chain as well as any common handler methods. Classes derived from
Ht t pdHandl er must provide their own version of the virtual method Handl e() , which serves asthe
primary entry point and request dispatch routine for a handler. Needless to say, in threaded environments,
multiple instances of a given handler may be processing requests simultaneously.

Conventions

Most conceivable types of handlers will need to follow certain conventions. Since they must be registered
with acertain URL prefix, and the checking of each request's URL takes place within every handler (until
ahandler dispatchesthe request), it is necessary for each installed handler instance to know its own prefix.
The prefix is given as a constructor argument when the handler object is instantiated, and subsequently
used to populate the member npPr ef i x (inherited from Ht t pdHandl er). Care should be taken in
deciding how to do this; if the implementor can be certain that the pointer passed into the constructor will
remain valid throughout the handler's lifetime, then a simple assignment will suffice. Otherwise, acall to
St r VCat () (oranything elseallocating dynamic storage) may be appropriate, asshown in Example 15.2,
“A Skeletal Handler”).

npPr ef i x isused by thel sMe() method (also inherited from Ht t pdHandl er) to determine whether
arequest is appropriate for the calling handler. Typically thefirst thing donein each handler'sHandl e()

isacaltol sMe(), passing a pointer to the current request being examined by Handl e() ; if the return
value is NULL, then there is no further work to be done, and Handl e() returns false, indicating that
Seminole should continue to traverse the handler chain looking for abetter candidate. Otherwise, | sMe()

returns the request path with the prefix portion removed (so in the case of a handler registered to service
“/ abc/ def ", the handler-specific portion of “/ abc/ def / ghi ” would be“/ ghi ”). Notethat there are

336

Integrating Seminole
With An Application

certain scenarios where the longest match according to | sMe() is not, in fact, the most desirable. For
example, given the URL “/ pr oduct | ogo. j pg”, with handlers installed on the prefixes “/ " and “/
product”, requestsfor “/ pr oduct | ogo. j pg” would actually be accepted by the handler registered
on “/ product”, which in this case is unlikely to be the intended behavior. For these situations, the
| sMyPat h() method is provided in Ht t pdHandl er . The calling conventions are the same, except
that | sMyPat h() takes a second argument, a const char specifying the path delimiter (which is usually
“I”, but the option is |eft to the implementor). | sMyPat h() is somewhat more discriminating; it checks
the request path and ensures that prefix actually maps to one segment in a hierarchical URL rather than
merely a matching substring of a path belonging to another handler. Thus, in the previous example,
since “/ product | ogo. j pg” does not contain “/ pr oduct ” as a path segment (as a URL like “/
product /i nfo. ht M ” would), that handler would receive a NULL return value from | sMyPat h()
and allow the succeeding handlersto pick up the request. Thetypical scenario in which this problem might
be encountered is serving files from a hierarchical filesystem, but many other possibilities exist. Both
interfaces are provided for flexibility, and they are almost equivalent in terms of processing cost.

Once the question of acceptance or rejection is settled, the handler isresponsible for processing the request
inits entirety; after Handl e() returns, the client network connection is shut down with no further work
done.

Example 15.2. A Skeletal Handler

cl ass NewHandl er : public HtpdHandl er
{

/1 sone public data menbers

publi c:
NewHand| er (const char *p_prefix);
virtual ~NewHandl er();

virtual bool Handl e(HttpdRequest *p_request);
/1 sonme public functions

b
/1

NewHandl| er : : NewHandl er (const char *p_prefix)

{
mpPrefix = HitpdUilities:: StrVCat(p_prefix, (const char *)O0);

}

NewHandl er : : ~NewHandl er ()

{
Ht t pdOpSys: : Free((char *)nmpPrefix);

}
/1

bool NewHandl er: : Handl e(Ht t pdRequest *p_request)

{
const char *p_req_path = IsMe(p_request);

/1 or perhaps this instead, if we're worried about the IsMe()
/1 ambiguities mentioned above:
/1

337

Integrating Seminole
With An Application

/1 const char *p_req_path = I sMyPat h(p_request);
if (p_reg_path !'= NULL)
{ /1 this request is a match.

/1 perform sone processing ...

return (true);
}
el se
return (false); // this request doesn't match our prefix.

CGlI Processing

Most non-trivial handlers needing to accept input from a dynamic source will need to use the Common
Gateway Interface, CGl. By making use of the provided Ht t pdCgi Par anet er class, handler
implementors can quickly take care of retrieving CGI input and concentrate on their real work.

CGIl permits an arbitrary number of name/value pairs to be passed to an HTTP server, either
as pat of the URI (known as URL-encoded parameters) or as request data via the POST
method. HttpdCgiParameter::ParsePostData handles POST data, and expects a pointer to the current
Ht t pdRequest . HttpdCgiParameter::ParseUriString parses parameters encoded in a URI string,
and expects a string pointer to same. In either case, the parsing method returns a pointer to a
Ht t pdCgi Par anet er object representing the start of achain. Thischainisasingly linked list with each
node containing the name and value (specifically, an HttpdPair member called nPai r) of each parameter
found. The npNext member servesasapointer to thenext Ht t pdCgi Par anet er , or NULL if theend
of the chain has been reached.

Example 15.3, “Parsing CGl Parameters’ shows achunk of code that might be found in a custom handler.
In this simple example, we can accept up to three URL -encoded arguments, named f 0o, bar , and baz.
Each of these in turn is used to set integer variables in the handler, and presumably to control behavior
somewhere else. If the arguments were to be passed via the HTTP POST method, one need only call
HttpdCgiParameter::ParsePostData instead with a pointer to the Ht t pdRequest being handled. In all
other respects the example would be the same.

Example 15.3. Parsing CGl Parameters

/1

int foo = O;
int bar = O;
int baz = O;

Ht t pdCgi Par anet er *par anhead, *parancur;
/1

/!l Retrieve all the CE@ paraneters that were encoded in our URI,
/1 previously saved into *p_uri by Handl e().

par amhead = parancur = HttpdCgi Paraneter::ParseUri String(p_uri);

338

Integrating Seminole
With An Application

i f (paranmhead != NULL)
{

/1 1f we're here, then we nust have gotten sonething. Iterate
/1 through the parameter |ist.

whi | e (parancur != NULL)

{
/1 W only care about foo, bar, and baz. Qher paraneters
/1 are ignored (a real handler m ght throw a syntax/usage
/1 error instead).
if (strcnp("foo", parancur->nPair.npKey) == 0)
foo = atoi (parancur->nPair. npVal ue) ;
if (strcnp("bar”, parancur->nPair.npKey) == 0)
bar = atoi (parancur->nPair. mpVal ue) ;
if (strcnp("baz", parancur->nPair.npKey) == 0)
baz = atoi (parancur->nPair. mpVal ue) ;
/1l Follow the forward link to the next paraneter.
par ancur = parancur->npNext;
}

/1 Al done, so free the paraneter |ist.
/1 1t's inmportant that the *head* of the list be freed, obviously.

Ht t pdCgi Par anet er : : Fr eeLi st (par anmhead) ;

/1

Dynamic Memory Allocation

Introduction

Seminole performs all memory allocation through an API provided by the Ht t pdOpSy's class. The API
issimilar tothemal | oc package provided by ANSI C.

For efficiency reasons, when objects are alocated with the new operator, it is aways done using

“placement new”. In addition, vector construction and destruction are not used. These choices were made
to alow Seminole to be comparable in code size to straight C code with as much efficiency as possible.

Creating Objects

Objects that are created on the heap are defined using a custom version of new:

339

Integrating Seminole
With An Application

cl ass Myhj ect

{
publi c:
void *operator new(size_ t, void *p_buffer)
{ return (p_buffer); }
voi d operator delete(void *p_buffer)
{ HtpdOpSys:: Free(p_buffer); }
b

Toinstantiate a version of that object requires a sequence like the following:

void *p_buffer = Ht pdOpSys:: Mal | oc(sizeof (MyObj ect));
if (p_buffer == NULL)
return (Ht pdQpSys: : ERR OQUTOFMEM) ; // Handl e error

MyQbj ect *p_obj = new(p_buffer) MyObject; // Construct object.

This approach allows error handling to happen before the actual allocation. In the case of Seminole, out
of memory handling is critical to building robust systems. In most cases, the web interface is exposed to
a (potentially) hostile network. Denial of service attacks against the web interface should not result in a
failure of unrelated parts of the system.

By putting the error handling up front (before the constructors are called) it is easier to avoid partia
construction of objects. The alocations of several objects can be batched and then the entire action can
fail if insufficient memory exists before any constructors (which may modify state) are called.

Chapter 16. Host Tools

Introduction

Seminole attempts to do as much processing on the host as possible. Embedded systems are typically
limited in space and speed and adding a web interface to an existing embedded system should have the
smallest impact possible.

Most of the host-based tools are written in Perl. They were specifically coded to run on Perl 5. 005_03
or better. Some of the tools (such as the compressors) are written in C (not C++) and need to be compiled
with a C compiler for the host environment — not with the target's C++ compiler.

Note
Itisimportant to make surethat the build system usesthe correct toolsfor the correct modules
when using a cross-compiler.

Host Tool Input Format

All of the host-based tools use a common preprocessor mechanism that is similar in function to the C
preprocessor; providing conditional compilation, file inclusion, and compile-time variables. The most
common syntax for the preprocessor is aline that begins with the bang character (!) and terminates with
anewline. Although, depending on the way the preprocessor is used (such as an HTML filter), directives
can be identified in different was depending on the input format.

Most strings in the preprocessor can use escape sequences similar to C strings.

Table 16.1. SCPG Escape Sequences

\ XXX This interprets the two characters following the
X as a hexadecimal representation of the ASCII
character.

\{V} Thisextractsthe environment variable named V. For
example: “pat h \ { HOVE} / publ i c_htm "

\p This is the current process identifier of the

SCPG process. Commonly used with thevnfi | e
directive to specify atemporary working file.

\'s A space.

\n An ASCII newline.

\r An ASCII carriage return.
\t An ASCII tab.

\q A single-quote character.

\d A double-quote character.
\\ A literal \ character.

The preprocessor allows sections of the input to be conditionally included or not. A simple conditional
can be expressed like this:

341

Host Tools

l'if env(| NCLUDE_HW DOCS)
pat h hwdocs
l'endi f

The above example would only apply the path statement if the environment variable
| NCLUDE_HW DCOCS were set to a non-zero or empty value. There are also much more complex things
possible:

l'if env(| NCLUDE_HW DOCS)
Lif env(HW MODEL) eq ' X5530
pat h hwdocs/ X5530
I elif env(HW MODEL) eq ' X6001'
I if env(lNCLUDE_HOTPLUG or env(LARGE_CHASSI S)
pat h hwdocs/ X6001/ hot swap
I else
pat h hwdocs/ X6001/ nohot swap
I endif
I endif
lel se
pat h hwdoc_st ub
l'endi f

The expression syntax is quite simple and includes the logical operators and, or, and not . Strings
are single or double quoted and contain escape sequences (see Table 16.1, “ SCPG Escape Sequences”).
Strings can be compared with the eq and ne operators. Environment variables are queried with the env
function. In addition, arithmetic can be performed using the traditional arithmetic operators + (addition),
- (subtraction), * (multiplication), / (division), and %(modulus). The osnarme operator is the name of
the operating system running the host tool.

Numerical comparisons are done using the = (equality), ! = (non-equality), > (greater than), < (lessthan),
>= (greater than or equal to), and <= (less than or equal to).

Expressions can test for the existence of afilein either the host file system (host exi st s). In addition,
tools can add their own functions. For example, the SCPG tool adds a function called r onexi st s:

I'if hostexists("/usr/share/special.htm")
EXTRN host man. ht i /usr/share/special.htm
l'endi f

I'if not romexists("secure/debug")

nodebug. ht m
l'endi f

In addition, Perl code loaded withthe! scri pt directive can be called. For example:

I'script /usr/local/lib/capabilities.pl

I'if perl:HasCapability(' | NCLUDE HW DCCS')
pat h hwdocs
l'endi f

342

Host Tools

The above example would call a Perl routine named HasCapability. The return value of that function
determines the path of the conditional.

There is no reason to even limit the argument to literal values. For example:

I'if perl:CheckFeature(env(FEATURE ID) + 2, osnane)
pat h sonefeature
l'endi f

Will call the routine with the value of the environment variable FEATURE_| D plustwo and the operating
system name. Albeit, redundant (because those values are available directly in Perl), it is possible.

Environment variables can be set using the ! set directive. There are two forms of this directive. The
first formof name = val ue will set the environment variable called nane to the value “value” (taking
into account any escape characters). Double quotes are not recognized as special characters in the above
form. For example, this:

I'set ny_var = "This is in environ[]"

Would actually set thevariableny var tothestring containing the double quotesand spaces. Even though
guoting is not relevant for setting environment variables, the escape sequences defined above work on the
left hand side and can be used to put specia charactersinto environment variables.

Alternatively, the : = operator can be used. This evaluates the right-hand side of the expression as if it
werepart of a! i f directive. For example:

ny_var := env(OTHER_VAR) + 2

Conversely an environment variable can be deleted using the! unset directive.

Theset and unset commands manipulate the environment of the host tool. This environment persists
for aslong as the tool is running. For tools that process more than one file when run (such as SCPG) this
may not be the most useful thing. Instead it would be better if avariable could be set only for the duration
of processing afile. Thel ocal and| ocal unset commands behave just like their global counterparts
only the changes they make are undone after preprocessing is complete.

File paths can be manipulated somewhat portably with the catfil e and cat di r functions which
concatenate the components of a file path and a directory path, respectively. The current directory can
be obtained with the cwd function. The updi r function returns the path component used to mean the
previous directory.

For example, to construct a fully qualified path to afile in an environment variable:
Iset CONFIG FILE := catfile(cwd, updir, 'foo', 'bar.cfg')

The value of an expression can also be inserted “in line” using the eval directive. For example:

defaul t _val ue {

Host Tools

l'eval env(DEFAULT_VALUE) + 16
}

Files can also beincluded using the! i ncl ude directive:

l'include stdconfig.cfg

Refer to the objects in stdconfig.cfg

Using the SCPG Tool

Introduction

SCPG runs on the development host and compacts content from the filesystem to form a single binary
image that can be served from the embedded host's ROM filesystem. The term “ROM filesystem” isreally
a misnomer, because the content package can actually be stored anywhere as long as it can be accessed
as a HttpdDataSource. Optionally, SCPG can even compress certain components of the content so that it
takes less space. The data source is then interpreted by a HttpdRomFileSystem object.

SCPG is written in Perl but calls upon other tools for certain things (such as compression). In addition
to the main tool, other tools such as bin2c are provided that can be useful for dealing with the content
package after it's assembl ed.

Usage

When Seminole is built, SCPG is placed in bui | t/t ool s. It can be run from that directory and can
(usually) locate all of itsrequired files from the path that it is executed in.

During the build process of some of the example applications a small content package is built from the
content inthe ht m subdirectory. Thecont ent . cf g in the examples directory is a good starting point
for creating your own content packages.

The following command-line options are accepted by SCPG:

Table 16.2. SCPG Command Line Options

-h Show help and usage information for command line
arguments.

-V Verbose. Give a summary of the content as it is
processed.

-0 Set the output filename. If this option is not

specified, it defaultsto cont ent . pkg.

-C Set the configuration filename. If this option is not
specified, if defaultsto cont ent . cf g.

- X Treat any error as fatal. SCPG removes the output
file and exits with an error code in the case of any
warnings or errors.

-T Preprocess and compile atemplate file. This option
overrides the normal behavior and is used for per-
file processing. See Standalone Templates.

Host Tools

-t Compile a template file. This option overrides the
normal behavior and is used for per-file processing.
See Standalone Templates.

-w If -t or -T is specified this option also causes
whitespace to be minimized. See Standalone
Templates.

Input Configuration File Format

Theformat of the configuration fileissimilar to most UNIX® command line shells. Tokens of one or more
non-whitespace characters are separated by one or more whitespace characters. Both single and double
guotes may be used to specify tokens containing whitespace. The beginning and ending quoting characters
must match. If single quotes are used, then double quotes are ignored inside quoted strings. If double
guotes are used, then single quotes can be used inside a double quoted string.

Comments are allowed. They are begun by the # character and extend to the end of that line. Comments
can begin at any point in aline and terminate with the end of the line.

Aswith most other host tools, the input files are first processed by the host tool preprocessor. SCPG adds
an additional expression function to determine if afile existsin the file system that is being generated for
the target (r omexi st s).

Linesin the configuration file that are neither blank nor comments are interpreted as directives by SCPG.
Long lines may be continued to the next line with atrailing backslash (\) on the end of the previous line.
This does not apply to conditionals (conditionals must be on a single line). This allows conditionals to
work on asingle, continued line. Line continuation does, however, apply to variable assignments.

The following directives are available:

Table 16.3. SCPG Configuration File Directives

use Set or clears options and flags. One or more options
may be listed on the command line following this
directive. If the option is preceded by a “-” then
the option is disabled, otherwise it is enabled.
Available options are listed in Table 16.4, “ SCPG
Configuration File Options”.

m ne Add an entry to the extension-to-MIME type
mapping table. As SCPG processes the directory
hierarchy it will try to guess the MIME type of any
files that aren't explicitly given MIME types. The
guess is done based upon the extension of the file.
Each mi nme statement adds one or more extensions
to a MIME type. For example, “ni ne text/
htm html htm hypert xt” would mean that
filesendingin. ht m ,. ht mand. hypert xt are
assumed to be have the MIME typet ext / ht m .
More than one ni me statement can be issued for
each MIME type; each additional mapping is added
to the list (the example statement could easily be
written asthree statements, one for each extension).

m ne_nap Specify an Apache-style m ne. t ypes file. This
is an aternative to specifying the MIME mappings
manually using the mi me directive described

Host Tools

above. If you have a m ne. types file in the
standard Apache format, then this directive causes
it to be sucked in and thus populate the MIME
mapping table. For example, “m nme_map /var/
www/ conf/ mi nme. types” would read in the
common MIME mappings from a standard Apache
installation on an OpenBSD system.

filter

Specify a series of filters to apply to a specific
MIME type. Thefirst argument isthe MIME typeto
trigger on. The second argument is the MIME type
to actually encode thefile as (thisiswhat the HTTP
client gets). Optionally, the output MIME type may
bea- which meanstheinput MIME typeisthe same
asthe output MIME type. The remaining arguments
are dl filter specifiersthat are executed from left to
right. See Filters.

encodi ng

Specify the recommended encoding for a specific
MIME type. The format of the ROM filesystem
allows for different files to be encoded using
different means. For example, somefilesmay use a
compressed encoding or perhaps a tokenized form.
As with MIME types, SCPG tries to guess the
correct encoding based upon a file's MIME type
(of course, this can be overridden on a file-by-file
basis). Its syntax is otherwise similar to the m ne
directive.

pat h

Specify the directories containing the root files
for the package. Using the example of an average
Apache installation (crunching a document root
into a ROM filesystem): “path /[var/ ww/
ht docs”. More than one directory may be
specified in this statement. In that case the content
package contains the union of all the filesin all the
root paths.

listing

Specify the filename of the listing files. Each
directory that is to contain actua files (not
intermediate directories) must have an associated
“listing file”. The listing file explicitly determines
which files in a directory go into the ROM
image (to avoid working files being mistakenly
added). Listing filesalso allow MIME and encoding
parameters to be overridden on afile-by-file basis.
By default, listing files are called cont ent . | st
(one per directory). However, some people may
wish to name them something else, such as
.content. | st sothatthey arehhiddenfiles. This
directive permits such a change.

defi ne

This statement is used to define new constructs
(such as encodings) to SCPG. The first argument
to defi ne is the type of the object to define.
Subsequent arguments are depend on the type of
construct. Further discussion of encoding types (for

346

Host Tools

when the second argument is “encoding”) is found
in the next section. Alignment is covered in its own
section aswell.

Table 16.4. SCPG Configuration File Options

subdirs

Setting this option will include additional
information in the ROM image so that directory
listings can be constructed. By default, subdi r s is
disabled to save image space.

have-attri but e-decoder

This option tells SCPG that the
| NC_ROM _ATTRI BUTES option is enabled. Both
of these options should be enabled if you plan to use
attributes for files (such as char set). There are
also certain corner cases that require this option for
extremely large ROM file systems. If this option is
not enabled and it isrequired then SCPG will inform
you with afatal error.

bad-filter-error

Normally if afilter does not complete successfully
construction of the content package is aborted and
an error is returned. If this option is set and a filter
fails, it is just skipped and processing continues
normally.

Filters

SCPG allows preprocessing to be done on content before it is packaged. For each possible MIME type
one or more filters may be run on the input. The output of each filter is passed as the input to the next in
succession. After al filters have been applied to a file the MIME may optionally be changed and the file

is passed to the appropriate encoder.

Filters are specified with thef i | t er keyword and attached to a specific MIME type. The following are

the built-in filters:

Table 16.5. SCPG Filter Types

ht m - squi sh

This filter should only be applied to HTML (or
similar files). It removes redundant whitespace
when possible to shorten the final content length.
This reduces storage requirements and transmission
time of the file. For a further reduction in storage
the file can also be encoded with a compressor.
This encoding can optionally take an argument of
keep- conmment s to prevent removal of HTML
comments. An argument of avoi d-t okens can
be used to handle the tokens of the pr eproc or
t enpl at e filters appropriately. Both options may
be specified with a comma.

€css-squi sh

This filter should only be applied to CSS files.
It removes redundant whitespace when possible
to shorten the final content length. This reduces

347

Host Tools

storage requirements and transmission time of the
file. For a further reduction in storage the file can
also be encoded with a compressor. This encoding
can optionally take an argument of keep-fi r st -
comment to prevent removal of the first comment
in thefile. Thisis useful to keep a copyright notice
or other important comment at the start of the file
but to remove programming comments.

ext er nal This represents a filter operation that is performed
by an external program. The supplied argument
is the operating system command to run. If
the argument to this filter contains the string
__input___and__out put__ thenthose strings
are substituted with the input and output file names
of the filter, respectively. Otherwise the external
filter isgiven itsinput on standard in and the output
isread from standard out.

per | This filter relies on the fact that SCPG is written
in Perl. Using code loaded with the ! scri pt
preprocessor directive, subroutines in that code can
be called. If the subroutine returns true the filter
operationisconsidered successful, otherwisefailure
is assumed.

pr eproc Thisfilter provides compile-time preprocessing for
textual content, typically HTML. If the htm -
squi sh filter is used, be sure to enable the
avoi d- t okens option. For a complete reference
on the syntax of the preprocessing directives see
Content Preprocessing.

tenpl ate This filter compiles a template into binary form.
Because the output of this filter is binary it should
aways be the last filter applied to content. If
the htm - squi sh filter is used, be sure to
enabletheavoi d- t okens option. For acomplete
reference on the syntax of the template directives
see Template Syntax.

The ext er nal filter can be quite useful for quick transformations using UNIX® tools such as tr. For
example, to remove all of the $ from a document, use the following filter rule:

filter text/htm - "external:tr -d '$""
Theper | filterisquite powerful because al of the constructs of Perl are available for processing content.
The syntax of the per | filter argument is similar to that of normal Perl subroutine calls:
perl: nysub(1, 2, foo)
The above filter argument would result in a call to an included subroutine called mysub with four

arguments. The first argument is always passed in by SCPG and is areference to a hash that contains the
following members:

Host Tools

Table 16.6. SCPG Perl Filter Hashr ef Contents

input_file This is the name of the input file, which is also
opened for reading with a handle of INPUT.

output_file This is the name of the output file, which is also
opened for writing with a handle of OUTPUT.

The remaining parameters are 1, 2, and the literal string “foo”.

Encoding Types

Asbriefly described in the previous section, thedef i ne directive can be used to add new encoding types.
This section describes the particulars of how SCPG implements encoding.

By default, there is one encoding type predefined by SCPG: st or ed. Thisis the most basic encoding
method. The content is stored in the ROM image “asis’. Thisis the most efficient encoding in terms of
speed but theleast efficient in termsof space. Infact, on some operating systemsthat map the ROM package
into the address space a direct send to the TCP/IP stack can be performed without any copying overhead.

However, other encodings can be established by use of the defi ne directive. Seminole supports
several compression schemes that cover a range of performance characteristics. A simple but effective
compression scheme based upon the LZRW1/KH algorithm that has been floating around the net for some
time. Alternatively the LZJB agorithm gets good compression while being very easy to decompress.
Seminole also supports a more agressive (but slower) compression engine based on LZ with arithmetic
coding. The compressors are bundled as hel per applications compiled during the normal Seminole build.
A description of how to add the compressors as encoding types will be illustrated below.

The initial part of an encoding type definition in the input configuration file is def i ne encodi ng.
After encodi ng, the next argument isthe symbolic name by which the encoding is known to SCPG with
the ID number used by Seminole to decode the datain parentheses.

Following the symbolic name and ID isthe encoding access method. Currently, all encodings are accessed
asexterna “helper” applications signified by the argument hel per . However st or ed may also be used
to indicate no transformation. Stored encodings should have an ID of 0.

The arguments following the access method are the command and arguments to execute. Certain tokens
are replaced during execution of the helper:

Table 16.7. SCPG Encoder Symbols

__is_ascii__ Set to either the string “ascii” or “binary” depending
on whether the input file's MIME type requires any
format conversion.

__source_file Thisis expanded to the name of theinput filethat is
to be used as the source of data.
__output file This is the name of the file that the encoded data

should be written to. This file should be opened in
binary append mode as there may be existing data
that can not be clobbered in thefile.

Additionally, it is very important that the encoder report any changes to the content such that the decoded
content is a different length than what is delivered (e.g. by altering the line endings of ASCII files). This
is done by having the encoder emit the string cont ent - | engt h: NNNto standard output.

349

Host Tools

For example, to attach the supplied compression helper apps to encodings called | zr wikh, | zj b, and
| zar i, you can add the following directivesto your input configuration file;

define encoding | zrwlkh(1) hel per |zrwlkh_conmpress 16384 \
__source_file__\
__output _file__

define encoding |zari(2) hel per | zari _conpress 16384 \
__source_file__\
__output _file__

define encoding |zjb(3) hel per |zjb_conpress 16384 \
__source_file__\
__output _file__

The number in parenthesis after the encoding name is the codepoint that is used to reference the encoding
in the runtime portion of Seminole. It isimportant that the numbers always are associated with the correct
encoding. It is correct to define two |zari encodings with different block sizes as long as the code point
isaways 2.

The first parameter is the compressor (Izrwlkh_compressor Izari_compress), 16384, isthe block size
that the tool tries to compress with. There is afixed amount of overhead per compressed block, however;
the larger this value, the more memory is required by Seminole during decompression of thefile.

Alignment
For efficiency reasons, it is often desirable to align content on specific addresses. This can be especially
true of certain kinds of flash memory. Alignments can be specified either globally or on a per-mime-type

basis.
To define an alignment specific to HTML pages of 16 bytes, for example, add the following to the
configuration file:

define alignment text/htm 16

To define an alignment for all content that does not have a specific alignment of 8 bytes, the following
may be added to the configuration file:

define alignnent * 8

Note

not align various infrequently used MIME types.

Note

@ An alignment of 0 means no alignment. This can be used to override a default alignment to

Currently, no attempt is made to optimize content by placing files with larger alignments
first. It is expected that some common sense is used when assigning alignments.

350

Host Tools

Listing File Format

After setting up an appropriate input configuration file, the only remaining step isto create listing filesin
each of the subdirectories beneath the directory named by the pat h directive.

Theformat of alisting fileissimilar to the SCPG configuration file format. Each line startswith adirective
and then a series of parameters. The directives define files that are to be included in the content package
aswell as optional parameters (such as MIME type or encoding). Comments are designated using # to the
end of the input line. Preprocessing directives are also allowed throughout the listing file.

The smplest directiveisf i | e. Thisdirective includes a single file. By default the file is included from
the current directory of the host filesystem into the same (relative) directory of the target filesystem. For
example, to include several HTML files:

file "order.htnm"
file "pizza.htnm"
file "sandw ch. htn "
file "frootloops. htm"

@ Note
The same escape sequences defined in Table 16.1, “ SCPG Escape Sequences’ are allowed
inthefilenames placed in thelisting file. If the string constants do not include any characters
outside normal aphanumeric characters and a period (.) then the quotation marks may
be omitted and the value is not subject to escape sequences. Adjacent string constants are
concatenated just asin C.

Options that override the defaults may follow the filename. For example, let's assume that a directory
containsat ar . gz file. Inthat case, you would liketo override the default MIME type that SCPG normally
guesses from the file name:

file "testdata.tar.gz" mine "application/x-funky-tar"

In addition it is also possible to use a different encoding type (such as | zr wlkh, for example). In this
case both overrides can be specified separated by acommac,).

file "testdata.tar.gz" mme "application/x-funky-tar", \
encode | zrwlkh

Note
Notice how the single line was continued to the next using a backslash as the last character
on theline.

The Ht t pdFi | el nf o class aso supports arbitrary name-value pairs called “attributes’ to describe
additional data about afile. These attributes can be set in the listing file using an assignment-like syntax.
Adding to the example above two attributes are set on thefile:

351

Host Tools

file "testdata.tar.gz" mme "application/x-funky-tar", \
encode | zrwlkh, security = "restrict", password = "ny file"

By default files are placed in the ROM file system in the directory of the listing file that describes them
relative to the pat h directive in the configuration file. For example, if the pat h directiveiscont ent /
webapp and the listing file is located in cont ent / webapp/ set t i ngs/ har dwar e then the files
would be placed in the ROM filesystem under set t i ngs/ har dwar e.

This default location can be changed with thel ocat i on directive. Continuing with the above example:
file "testdata.tar.gz" mme "application/x-funky-tar", \

encode | zrwlkh, security = "restrict", password = "ny file", \
| ocation "/downl oads"

With very complex content descriptionstwo or morelisting filesmay try to insert the samefile. Ordinarily
thisresultsin an error from SCPG. However thei gnor edups keyword prevents this from happening.
It can becometediousto place every filein thelisting file. SCPG allowsfilename globbing with adifferent
directive:

glob "*. htm"

It is possible that a particular pattern may match nothing. This is especially possible when generic listing
files are used with automatic content generators. For these situationsthe opt i onal attribute ignores any
file patterns that do not match any files.

When using the gl ob directive any attributes or parameters associated with the directive are applied to
al thefiles.

Sometimes it is necessary to ensure a file has a different name in the ROM filesystem than on the host

filesystem. This can be accomplished using the ext er n directive. Thisdirectiveisidentical tothefi | e
directive except that two file names must be specified. For example:

extern "ronfs.name" ("data.htm")

The above example includes dat a. ht M from the host filesystem as r onf s. nane in the ROM
filesystem. Of course, as with other directives modifiers and attributes can follow the left parenthesis.

Standalone Templates

For development or where the ROM filesystem is not used it may be desirable to use the template
mechanism independently. With the correct command-line options SCPG can generate binary template
files from one or more input files without going through the content packaging or compression steps.

To simply compile a series of template files the following command would suffice:

scpg -c std.cfg -t tl.thtmt2. thtmt3.thtm

352

Host Tools

@ Note
Notice that it is still valid to specify a configuration file so that global options can be set.
Directives specific to packaging and compression are ignored when the-t (or - T) options
are specified.

Sometimes compile-time pre-processing is also desired. For those cases the -t option can ssimply be
substituted with a- T. In addition, with either - t or - T the - woption can be added to remove redundant
whitespace asif theht ml - squi sh filter was applied.

Content Preprocessing

In many embedded systems multiple models of the same product require slight alterationsto content. This
can lead to the annoying situation of maintaining similar but slightly different versions of content for each
product.

SCPG provides afilter, called pr epr oc that provides a mechanism for preprocessing content similar to
the C preprocessor. This is the same mechanism that is employed in the SCPG configuration and listing
files.

Asaquick example let us assume a PBX as our embedded device. Smaller models store all of their data
in flash memory, while larger models offer ahard disk. Thefirst issue isthat commands relating to a hard
disk are not present in some models, so we want to be able to select this at compile time. So we assume
that an environment variable named MODEL contains the model number of the PBX that we are building
the content for.

Using thefilter directiveinthecont ent . cf g wetell SCPG to preprocessall t ext / ht ml files:
filter text/htm text/htm pr eproc
We then use a special sequence to denote preprocessor commands in the content:

<htm >
<body>
<h2>Act i ons</ h2>

<l i >Reboot system
Configure line card
<l i >Update dialing plan
%if (env(MODEL) eq 'P3000') or (env(MODEL) eq 'P3500')] %
Format hard di sk
<l i >Check consi stency of hard disk
%if env(MODEL) eq ' P3500']%
<l i >Copy disk to spare
% endi f]%
% endi f]%

</ body>
</htm >

353

Host Tools

When SCPG runsthe pr epr oc filter onthisfileit evaluatesthe % directives. If the model is P3000 or
P3500 (the models with hard disks) the extra options are included. Furthermore, if the model is P3500
(two hard disk slots) an additional option of backing up the hard disk is included.

The preprocessor can do much more than just conditionally select content. The same expression engine
used for SCPG configuration file format is used for the content preprocessor.

Table 16.8. SCPG Content Preprocessing Commands

Command Description

eval Evaluate an expression and substitute the value for
thisdirective.

i ncl ude Include (and additionally pre-process) another file.

if,elseif,else,andendif Conditionally include sections of content.

Using the bin2c Tool

Introduction

The bin2c tool is a simple utility that can be used to take binary files and encode them as statically
initialized C arrays. This is mainly useful for encoding content packaged with SCPG, which produces a
single binary file as outpuit.

This is often the most efficient (and easiest) way to get content included into an embedded system.

The included data can then be encapsulated as a HttpdM emoryDataSource and passed to an instance of
HttpdRomFileSystem.

Usage
When Seminoleis built, the bin2c tool isplaced inbui | t/ t ool s.

The following command-line options are accepted by bin2c:

Table 16.9. bin2c Command Line Options

-0 Set the output filename. This option is required. A
usage message is generated if it is not set.

-h If this option is specified, a header fileis generated.
The filename of the header file must follow this
option.

-p Use this option to generate C++ code. There is a
subtle differencein theway constant dataisdeclared
between C++ and C.

Anything else is taken to be the file name of afile to turn into an initialized array and the corresponding
symbol nameto call that array (see below). More than one file may be generated in a single output file.

Typically, bin2c isused to encapsulate acont ent . pkg file:
bi n2c -0 content.c -h content.h website=content. pkg

The above would generate a header and source file that define an array called website. The header file
would look similar to the following:

354

Host Tools

unsi gned const char website[16384];

Becausethe size of the array isincluded even in the header file, the size of thefile can be easily determined
with a construct such as:

Ht t pdMenor yDat aSour ce website_data(website, sizeof (website));

Using the makecert Tool

Introduction

The makecert tool is a simple utility that helps to create SSL certificates and private keys. This tool
requires that the openssl program be correctly installed.

Thetool performs severa stepsincluding generating aprivate key, creating a certificate request, and self-
signing the certificate. Once complete, the certificate and private key are in separate files aswell asbeing
availablein asingle PEM file that can be given to Seminole

The server certificate is also generated in DER format. This format is sometimes needed to install the
certificate in abrowser. In particular, thisisthe format expected by Microsoft Internet Explorer.

Usage

makecert takes no command-line parameters. It isinteractive. To automate the generation of server keys
and certificates the openssl tool should be used directly.

Once executed, makecert will ask several questions. The most important oneis:
What shoul d the cert be called?

Thisis the base name of the generated files. If “f 00” is entered, then the files generated will be:

f 00. key (Server private key)

f 00. csr (Certificate signing request)

f 0o. cert (Server identification certificate)

f 00. pem(Server key and certificate)

f 0o. der (DER-encoded certificate for distribution)

f 00. opt s (Seminole optionsfile)

f oo_dh1lk. pem(1024-bit DH parameters; only if Diffie-Hellman is enabled)
f oo_dh512. pem(512-bit DH parameters; only if Diffie-Hellman is enabled)
Only f 0o. opt s and f 00. pemare required to start the server.

At some point during the generation of the certificates the script will ask for some geographical and
identification parameters. The most important of theseisthe“common name.” Thisfield must bethe DNS
name or | P addressthat the server will beidentified asto the browser. The browser verifiestheinformation
about the current page with the value of thisfield in the certificate.

A typical run of makecert would be:

355

Host Tools

Do you want to see the commands used for this run? [y/N n
VWhat should the cert be called? testl

Do you want a password protected key? [y/N n

Cenerating a 1024 bit RSA private key

R
.. ++++++

witing new private key to 'privkey. pem

You are about to be asked to enter information that will be incorporated

into your certificate request.

VWhat you are about to enter is what is called a D stingui shed Name or a DN
There are quite a few fields but you can | eave sonme bl ank

For sonme fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US

State or Province Nane (full name) []:Florida

Locality Name (eg, city) []:Boca Raton

Organi zati on Nane (eg, conpany) []:Acme Ceneral Wdgets, Inc.
Organi zational Unit Nanme (eg, section) []:Engineering Departnent
Common Nane (eg, fully qualified host nanme) []:ww. exanpl e. com
Emai | Address []:jrandom@xanpl e. com

Pl ease enter the following 'extra' attributes

to be sent with your certificate request

A chal | enge password []:

An optional conmpany name []:

witing RSA key

Si gnat ure ok

subj ect =/ C=US/ ST=FI ori da/ L=Boca Rat on/ O=Acne GCeneral Wdgets, |nc./QOU=Engi neering
Getting Private key

Cenerating default options file testl. opts

For nmore security, symmetric key encryption should not use the
server's private key. Instead, a key should be exchanged using
the Diffie-Hell man al gorithm Generating the parameters for this
al gorithm may take some time but it will not adversely inpact
server perfornmance.

Do you want to use DH epheneral keying? [y/N n

The files testl.opts and testl.pemcontain all that is
necessary for the server to operate in SSL node.

Using the msgcmp Tool

Introduction

The msgemp tool is used to compile atextual message catalog into abinary file that can be accessed using
the string bundle class (Ht t pdSt ri ngBundl e).

356

Host Tools

Theinput to thistool isasinglefile containing thelogical namesfor the strings (how they arerepresentedin
the code) aswell as one or more physical stringsin different languages. Thetool builds one or more binary
files, each containing one particular set of physical strings. Optionally, a header file may be generated
containing the identifiers for the logical strings defined as constants (with a prefix of MSG).

Theideaisto generate adifferent binary file for each locale that isto be supported but only asingle header
file. The same header file is always produced for the same input set of logical messages. Therefore, a
generic code image can be compiled for all locales. Then a specific locale can be bound at a later time
(typicaly by with the HttpdRomFileSystem). Alternatively, multiple binary files can be kept in asingle
device so the locale can be switched at runtime.

Usage

Input

When Seminoleis built, the msgecmp tool isplacedinbui | t / t ool s.

The following command-line options are accepted by msgcmp:

Table 16.10. msgcmp Command Line Options

-r If this option is specified, the binary file is
generated. The filename of the binary file must
follow this option.

-h If this option is specified, aheader fileis generated.
The filename of the header file must follow this
option.

- This option must be present if the -r option is
specified. The requested locale name must follow
this option.

-d This option specifies that al of the locales in the
input file should be build into appropriately named
files and placed in the directory specified by this
option. This is most commonly done to produce
images containing all specified languages. If this
option is specified thenthe -1 and - r options are
not allowed.

At least one of - r or - h must be specified. Alternatively, both can be specified to generate al of the
required filesin one pass.

Anything else is taken to be the file name of a file to process. At a minimum one file must always be
specified. To keep things consistent the same set of filenames must always be specified in the same order
between each invocation of msgcmp.

File Format

The input file is a text file that contains one or more “message definitions.” Each message definition
contains a name and one or more physical strings associated with locale names.

[1 NVALI D_CHARACTER | N_NAME]

english: Invalid character in nane
german: Unzul 8ssi ger Buchst abe i m Nanen
italian: Carattere non valido nel none

357

Host Tools

A locale of * can be used to mean all other locales. So if for a particular message was the same for
everything except English, a shortcut would be:

[FI LE_SYSTEM FAI LURE]
english: Please contact us at 1-800- BAD- HARDWARE.
*: Pl ease contact our overseas offices at 1-561-212-5555.

Using the specgen Tool

Introduction

The specgen isan extensible tool for generating complex code sequences from clear, concise specification
files. In particular, specgen is well suited for generating some of the code for interfacing with the more
complex API's of Seminole.

The format of specification filesis similar to C or C++. In addition, host tool preprocessor directives are
understood. The actual syntax of specification filesis open ended. Initially, afew commands are defined
by specgen internally. The most important of which, package loads additional capabilitiesinto specgen.
The package directive loads a Perl module from a file. That module can then add new directives to
specgen.

By default, the specgen tool always creates a header file and a C++ (or C) sourcefile. Typically the header
fileisincluded in other (hand-written) source modules to use the definitions declared by specgen in the
source file.

The produced sourcefileisthen compiled and linked with the resulting application. The most common uses

for specgen are for generating template symbol maps (Ht t pdSynbol Map parameters) or application
framework objects.

Usage
When Seminoleis built, the specgen command isplacedinbui | t/ t ool s.

The following command-line options are accepted by specgen:

Table 16.11. specgen Command Line Options

-C This mandatory option should be followed by the
filename or the source file that will be generated.

-h This mandatory option specifies the filename of the
generated header file.

Anything else is taken to be the file name of a file to process. At a minimum one file must always be
specified.

Input format

General conventions

Aswith most other host tools, comments are indicated with the pound character and terminate at the end of
theline. Identifiersfollow the rules of C++ identifiers. In particular, the scoping operator (: :) can be part

358

Host Tools

of an identifier. For example, Syst em : Heap is avalid identifier but Syst em 1234 is not. Quoted
strings and numeric constants also follow the rules of C and C++ aswell.

Directives are identifiers with special meanings. Similar to C keywords they are almost always all lower
case (although the directives are at the discretion of the package and not under the control of specgen).
All directive bodies should be terminated with a semicolon just as C++ statements are terminated with a
semicolon. Blocks are typically indicated using curly braces. Unlike C++, components of a block must
also be terminated by a semicolon.

So atypical structured block in a specification file would look like:

obj ect nyQbj ect

{
anattribute 0x100;
bl ockattri bute
{

val ue 1;

ot herval ue 2;

}s

}s

Often timesit is necessary for specification filesto contain small snippets of C or C++ code. Thisis done
using an arrow operator (<-). After this operator specgen will scan forward and absorb a single statement.
The code fragment can contain nested blocks; specgen will copy a full statement, including any nested
blocks.

For grouping multiple statements, the <= operator beginsablock of native C or C++ codethat isterminated
by the end keyword.

pass source <=

static unsigned int gCounter = 0,
static char gFi l eNane[16] = "default.file";
end;

Built-in directives

When initialy processing an input file, specgen understands afew initial directives.

Table 16.12. specgen Default Directives

package This directive loads a specgen “ package” specified
by the identifier name following the directive.
There are severa pre-built packages and additional
packages can be built by a skilled Perl programmer.

i ncl ude This directive is used to specify a header file that
should beincludedinthegenerated output. A quoted
filename should follow the directive.

There are also two modifiers that can precede the
filename. The first, st andar d instructs specgen

359

Host Tools

to use an include directive with angle brackets.
Typicaly this tells compilers to find the include
file using the specified include path. The second
modifier, header causestheinclude declarationto
be emitted to the generated header file aswell asthe
generated sourcefile.

If both modifiers are present, the st andard
modifier must always precede the header
modifier.

pass The pass directive is used to simply pass code
straight through to the output files. It must be
followed by one of: sour ce (send the following
block to the generated source file only), header
(send the following block to the generated header
fileonly), or al | (send the following code to both
files).

The option is then followed by a C or C++ code
fragment preceded by the arrow operator.

Typical specification fileswill first usethei ncl ude directive to pull in the appropriate header files (the
Seminole APl and whatever application-specific header files are necessary). The specific packages are
then loaded using the package directive, followed by the actual specification bodies.

Included Packages

Seminoleinstalls afew packages by default that can be used without any Perl programming. Each of these
packages provides afew new directives that assist in programming a particular API.

The templates package

Thet enpl at es package provides directives for programming some of the more tedious interfaces to
the template engine.

The tenplate constants directive will build the necessary tables for using the
Ht t pdConst ant Synbol Tabl e class:

tenpl ate_constants Presentati onParaneters

{
style = "border: 2px; margin: lem";
theme = "/thenes/slate.css";
attrs = "readonly maxl ength=\"25\"";
1

That specification will result in the following declaration:

extern const HttpdPair PresentationParamneters|3];

If the HttpdPair table were to be declared manually, it would have to be sorted by
key (HttpdConstant Synbol Table wuses a hinary search). However, when using the

360

Host Tools

t enpl at e_const ant s directive, thetool automatically sortsthe entriesfor you. Removing these kinds
of error prone, tedious tasks is the primary reasoning behind specgen).

Thesymmrap directiveisused for generating HttpdSymbol Entry tablesto support the Ht t pdSynbol Map
and Ht t pdScopedSynbol Map classes. Briefly, a symbol table map is an array of named fields that
specify an offset in a structure and one or more handler procedures. These maps make displaying data
from C (or C++) data structures easy.

Aswith Ht t pdConst ant Synbol Tabl e tables, the sorting is done automatically and fields can appear
in any order. A structure name must be associated with the map name, as an example we will assume a
structure named Per son is defined in an application-specific header file as follows:

struct Person

{
char first_nane[64];
char | ast _nane[64] ;
unsi gned | ong age;
bool marri ed;
const char *occupati on
char sex;

b

Given the structure above, we can use the symrap directive to map this into template directives. Most
of the fields can be handled using the standard handlers provided by Ht t pdSynbol Map, except sex.
Of course, we can write some simple code to handle the character field and do anything we want. In fact,
we can make that particular field more complicated. It can be Mfor male, F for female, or zero if the sex
is not known.

We can make the identifier sex both a template conditional (not zero) and a template evaluation (the
appropriate label).

symmap PersonhMap: Person

{

first_nane = stringbuf;
| ast _nane = stringbuf;
age = ul ong;
marri ed = bool ;
job (occupation) = string;
sex
{

cond <-

{

const char *p_char = (const char *)p_data;
return (Ht pdSynbol Tabl e: : Ret urnBool (*p_char !'= 0));

i
eval <-
{
const char *p_char = (const char *)p_data;
const char *p_label = (*p_char == "M) ? 'Male' : 'Female';

return (p_eval ->Qutput()->WiteString(p_Ilabel));
b

361

Host Tools

For the types that sy mmap knows about we can use the simplified sequence as is done for the first four
fields. Thefield occupat i on ismapped toj ob inthe template, but it is still a predefined type.

For the sex field, we provided a conditional code fragment and an evaluation code fragment (we also
could have provided code for al oop fragment). Therefore, the template symbol sex can be used in
conditionals (to determineif it is present) and can be evaluated to produce the actual value.

Alternative names can also be provided for specifically defined types. In addition, in place of the code
blocks, an identifier can be provided. Care must be taken to ensure that the prototype of the provided
identifier is included and matches what is needed. With those two additional changes in mind, the last
field could be specified like this:

gender (sex)

{
cond <-
{
const char *p_char = (const char *)p_data;
return (Ht pdSynbol Tabl e: : Ret urnBool (*p_char !'= 0));
1

eval Ot herd ass:: Fornmatti nghet hod;
1

Table 16.13. symmap predefined types

Type Function

string Ht t pdSynbol Map: : Eval Stri ng

stri ngbuf Ht t pdSynbol Map: : Eval St ri ngBuf f er
ul ong Ht t pdSynbol Map: : Eval Ul ong

| ong Ht t pdSynbol Map: : Eval Long

hexl ong Ht t pdSynbol Map: : Eval HexUl ong
bool Ht t pdSynbol Map: : CondBool

362

Appendix A. Obtaining Support

All Seminole licensesinclude 8 hours of support. Additional support can be purchased at a cost of $90US
per hour. Please contact a sales representative for more information.

(+1) 1-561-213-6177
E-mail <sal es@l adesoft. conp
http://www.gladesoft.com/

363

http://www.gladesoft.com/

Glossary
A

Alignment

ANSI

Application
Interface (API)

Programming

Application

ASCII

B

Base-64

Blocking

C

Certificate

Cal

Locating data such that it is at an address that is appropriate for its type.
For example, many CPU architectures can only access words on their natural
boundary. Thus, a 16-hit value can not be accessed at an odd address (on a byte-
addressable machine). Unaligned data may not always result in failure but may
often result in performance degradation.

The American National Standards Institute. A standards body responsible for
various standards incuding those in computers and engineering. Typicaly the
acronym ANSI is used to refer to the C programming language standard.

Theinterfacethat to devel operswho are utilizing Seminoleto build web interfaces
and applications see. The term “Application Programming Interface” is used in
this manual to refer to all the documented public interfaces of Seminole.

Any code that is not part of the Seminole library. Typically this term is used to
refer to user-written code that implements a web-based interface.

American Standard Code for Information Interchange. A 7-bit character encoding
that assigns the letters of the Roman alphabet, the decimal numbers and various
special symbols and control sequences to numeric codepoints.

An encoding scheme used to make 8-bit (binary) data safe for transfer over
protocols and interfacesthat can only send ASCI|I text. Thisisacommon encoding
for large binary data when transmitted using older Internet protocols that do not
tolerate binary datawell.

When an operation (such as reading from a socket) halts the current thread until
the operation can be completed. An operating system may perform other tasks
while the thread performing the blocking operation is suspended. If an operation
issaid to be non-blocking then it will return immediately (often with failure) if the
operation can not be completed at the current moment.

See Also Thread, Real-Time Operating System.

A cryptographically signed blob of data that is used for identification. SSL-
enabled webservers should present a certificate that allows the client to prove the
validity of the server. Typically server-side certificates are signed by a hierarchy
of third-party registrars where some type of physical proof was presented. It is
also possible for serversto verify clients with certificates when using SSL.

Formally a standard for externa software to interface with a web server.
Informally this term is used to refer to any kind of dynamic web page generated
with parameters sent along with the request. In Seminole there is no concept of a
process or separate address space so the forma meaning does not apply.

364

Glossary

Cookie

DOM

Endian

Entropy

H

Hash Function

Hash Table

Host

A small chunk of datathat is stored within the HTTP client and sent back to the
HTTP server on subsequent requests. A cookieisoften used likean ID card or the
key to a building. It allows the stateless HTTP protocol to associate a particular
client with incoming requests.

A tree data structure representing a structured document. This data structure is
typically created from an XML representation.

The organization of multi-byte words in computer memory. There are two very
common byte orderings used by modern CPU'stoday. In big endian byte ordering
the most significant byte (the big end) comes first (at the lowest address of the
word). Little endian byte orderingisthe opposite of big endian, theleast significant
byte comes first.

Randomness, usually in the form of random byte values. Typically when referred
to as “Entropy” it is being used in a cryptographic context where high quality
randomness is essential.

A function that reduces alarge amount of data (call the input) to asmaller sasmple
of data (called the hash result). Typically the length of the hash result is fixed.
The larger the input is compared to the length of the hash result the higher the
chances of a*“collision” are. A collision is when two different inputs produce the
same hash resullt.

The hash result, although not unique, can in many cases be used as a shorthand
for the input. There are two principle uses of hash functions. hash tables and
cryptographic purposes. In the cryptographic case a hash can be used to detect the
tampering of data (such as adigital certificate). Hash table use the hash result as
a hint to make searches much more efficient.

A data structure used for quick lookups of exactly-matching keys. A typical style
of hash tables, open-chained, consist N linked-lists (called buckets) and a hash
function that produces a result from 0 to N-1. A key value can then be placed
through a hash function and used to identify which list the associated record can
be found in. The larger the value of N the less nodes per bucket therefore the less
time spent searching for the correct record.

The machinewhere devel opment with Seminoletakesplace. In embedded systems
this is often not the same machine where the resulting software is executing.
Seminole is designed with the idea that the host system has much greater
performance and resources than the target system. This is typical of embedded
development environments.

See Also Target.

365

Glossary

| dempotent

M

Multimedia Internet Mail
Extensions (MIME)

Multicast

N

Nagle Algorithm

Perl

Porting

RFC

ROM

Real-Time Operating System

The property of an action where the same results are obtained reguardiess of the
number of times the operation is performed.

A standard encoding mechanism for E-mail extensions. Portions of this standard
have been employed in the HTTP protocols. In particular requests and responses
include name-value pairs encoded the using MIME header format.

A multicast packet is an IP packet that is directed to a group of hosts rather
than asingle host. Multicast packet delivery takes advantage of the properties of
broadcast networks (such as Ethernet) to efficiently transmit datain aone-to-many
fasion.

An agorithm that delays the sending of a packet in a TCP socket in the face of
single-byte writesto reduce the number of packets that are transmitted. The Nagle
algorithm is often a benefit for interactive data transfer but a detrement for bulk
transfers. Seminole attempts to transmit data intelligently when possible and does
not require the Nagle algorithm.

Practical Extraction and Reporting Language. Perl is a powerful scripting
language with many text processing features. Well written Perl scripts are
independant of the host operating system and can be run on any host platform
without modification. Most of the host tools are written in Perl for portability
reasons.

See Also Host.

The process of adjusting Seminole so that it can run in a new environment
(e.g., different CPU, operating system, or compiler). Often time this is simply
accomplished by modifying the porting layer or re-implementing it for the
new target. This process is described in detail in the section called “Operating
Environment Abstraction Layers’.

Request For Comment. A forum of peer-reviewed documents that are used to
define and devel op Internet protocols.

A form of non-volatile storage that maintains its data even in the even of a power
loss. In this document ROM is used to refer to the type of storage used to hold
compiled code and constant data. In most cases thisistypically flash or disk.

An operating system, typically designed for embedded systems, that provides
certain guarantees about the scheduling of tasks. Although Seminole does not
require real-time behavior it is often necessary for the kinds of environments

366

Glossary

S

Seminole

Socket

Static Class

T

Target

Thread

Transport

WebDAV

Seminoleisused in. Thisterm is often used to describe the operating system that
is supervising the execution of Seminole even if that operating system does not
provide real-time guarantees.

See Also Thread, Blocking.

A tribe of Native American Indiansthat have since settled in South Florida, where
Seminole was written. The name Seminole means “run away.” Aside from the
similarity to the Apache webserver we hope that Seminole can run-away web-
interface problems.

An endpoint of the TCP protocol that is either used to accept new incoming
connections (a“listening socket”) or to transport data to another socket elsewhere
in a TCP/IP network.

A class which is only used to provide a namespace. Instances of a static class
should never be declared.

The CPU that is executing Seminole. In embedded systems this is often not the
same machine where development takes place.
See Also Host.

One instance of code in execution. In many operating systems multiple threads
of execution exist and execute simultaneously. When one thread must wait for an
event an operating system can make more efficient use of the CPU by running
other threads during the wait.

See Also Real-Time Operating System, Blocking.

The layer(s) of aprotocol stack used to perform the reliable stream-oriented data
exchange that is used by the HTTP protocol. Normally thisis either TCP or SSL
but there is nothing inherent in the HTTP protocol that prevents the use of other
transports if appropriate.

WebDAV is an extension to HTTP to alow for distributed authoring and
versioning. New methods are defined to upl oad resources (files), create collections
(directories), delete resources, as well as iterate collection listings in a machine
readable way.

367

Colophon

This book was produced using the XML DocBook [http://mww.docbook.org/] schema and the xsltproc processor to
create an XML FO (Formatting Object) file. The FO file wasrendered to PDF using Apache™ FOP. Illustrationswere

created using Inkscape and saved in SV G format.

368

http://www.docbook.org/
http://www.docbook.org/

	Seminole Developer's Guide
	Table of Contents
	Introduction
	Chapter 1. Overview
	About Seminole
	Performance

	Chapter 2. Core API Reference
	Using the API
	Seminole Constants, Macros, and Types
	Introduction
	Constants
	HTTPD_U8_BYTES
	HTTPD_U16_BYTES
	HTTPD_U32_BYTES
	HTTPD_SESSION_KEY_LEN

	Types
	HttpdUint16
	HttpdUint32
	HttpdBitWord
	HttpdPair
	HttpdIpv4Address
	HttpdIpAddress
	HttpdIpPort
	HttpdSocketWaitHandle
	HttpdTransport
	HttpdProtocolVersion
	HttpdAuthSchemes
	HttpdUnicodeCharacter
	HttpdMD5Digest
	HttpdSHA1Digest
	HttpdClientCounter

	Macros
	HTTPD_NUMELEM
	HTTPD_BASED_PTR
	httpd_often
	httpd_rarely

	HttpdUtilities Reference
	Introduction
	Public Methods
	StrLimitCopy
	StrVCat
	SaveString
	StrChop
	MatchPattern
	StringIsEmpty
	StrCmp
	StrCmpi
	StrnCmpi
	UriStringCompare
	SkipWhitespace
	SkipNonWhitespace
	UrlPrefixMatches
	UrlPathPrefixMatches
	RemoveChars
	FilterChars
	GetLcExtension
	GetComponentPath
	Normalize
	NormalizeUrl
	Hash
	HasTrailingSlash
	HasPrefix
	IsUriPathPrefix
	IsUriProtocol
	HostPortion
	UriEncode
	NeedsUriEncoding
	UriDecode
	UriDecodeSingle
	HtmlQuote
	NeedsHtmlQuoting
	CQuoteString
	BinToHex (static buffer version)
	BinToHex (dynamic string version)
	AssembleU16
	AssembleU32
	Lookup (Generic)
	Lookup (Pairs)
	FormatTime
	Encode64
	Decode64 (binary version)
	Decode64 (String version)
	NextCharInUtf8
	AppendUtf8
	DequoteToken
	QuoteToken
	TokenPresent
	RandomString
	ParseHttpVersion
	TokenizePortions
	MemPBrk
	MemCountByte
	FindBoundary
	IsLastBoundary

	Public Data
	mRoot
	mNetTimeFormat
	mPastTime
	mContentLength
	mContentType
	mLineTerm

	HttpdMD5 Reference
	Introduction
	Thread Safety
	Public Methods
	Update (Buffer version)
	Update (String version)
	Final
	Reset

	HttpdMimeParser Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdMimeParser
	Initialize
	ReadLine (socket version)
	ReadLine (HttpdReceiver version)
	ParseLine
	Finish
	Header
	Count
	Pair
	ParseHeaders

	HttpdTimeStamp Reference
	Introduction
	Thread Safety
	Public Methods
	Parse
	Convert
	Validate
	FindDayOfWeek
	Compare
	Set
	Format
	FormatAsISO8601
	TimeInGMT

	Public Data
	mDay
	mWeekDay
	mMonth
	mYear
	mHour
	mMinute
	mSecond

	HttpdWritable Reference
	Introduction
	Public Methods
	Write
	WriteString
	WriteStringAndFree
	NewLine
	Printf
	Indent

	Httpd Reference
	Introduction
	Public Methods
	Httpd
	Init
	ServerName
	Start
	Stop
	Install
	ServerHost
	Remove
	Port
	ListenSock
	ServerWideRequest

	Protected Methods
	Allowed
	ResponseHeader
	ResponseBody
	Respond

	HttpdRequest Reference
	Introduction
	Public Methods
	Server
	Method
	IsHeadRequest
	IsGetRequest
	IsPostRequest
	IsOptionsRequest
	PostIsMultipartMime
	ContentAvailable
	Protocol
	Path
	Query
	ClientAddr
	Socket
	Output
	Header
	Headers
	CompleteUri
	LastReq
	ResponseHeadersSent
	SetLastReq
	RequestedHostName
	ResponseHeader
	NeedHeaders
	ResponseBody
	Respond
	CustomResponse
	Redirect
	RedirectWithQuery
	NoCacheHeaders
	QueueHeader

	Public Data

	HttpdHandler Reference
	Introduction
	Protected Data
	mpPrefix

	Protected Methods
	IsMe
	IsMyPath

	Public Methods
	Prefix
	Handle

	HttpdResponseMsg Reference
	Introduction
	Thread Safety
	Public Methods
	Find (by response code)
	Find (by response code and protocol version)

	Public Data
	mStatus
	mpName
	mpDescription
	mVersion

	HttpdRedirector Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdRedirector

	Public Data
	mpNewUri
	mStatusCode

	HttpdFileHandler Reference
	Introduction
	Directory Processing
	Character sets & Encodings
	Public Methods
	HttpdFileHandler
	FileSystem (getter)

	Protected Methods
	CheckMethod
	ValidMethod
	TranslateUri
	ProcessUri
	DoOptions
	DoFileInfo
	DoFile
	Cleanup
	SendFile
	NeedToSendOut
	ResultHeader
	SendIndexFile
	DoDirectory
	SendContentType
	FullRange
	CheckByteRanges
	IsRangeASubset
	ValidRange
	InvalidValidRangeResponse
	CheckForRangeCondition

	HttpdRequestForwarder Reference
	Introduction
	Public Methods
	HttpdRequestForwarder

	HttpdUrl Reference
	Introduction
	Thread Safety
	Public Methods
	Parse
	Cleanup
	Path
	Host
	Scheme
	Transport
	Query
	Port
	StandardPort
	Url
	Authority
	IsRelative
	Relative
	IsSecure
	HostNameMatchesHeader
	SeparatePath
	FreePathList
	TrimLastEntry
	PathIsSubset

	HttpdCgiParameter Reference
	Introduction
	Thread Safety
	Public Methods
	ParseUriString
	ParsePostData
	ParseFormData
	ParseString
	FreeList
	Find
	FindNode
	Lookup
	CompareLists
	CopyList

	Public Data
	mPair
	mpNext

	HttpdCgiHash Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdCgiHash
	~HttpdCgiHash
	Append
	Find
	Remove

	HttpdMultipartCgiParser Reference
	Introduction
	Subclassing Using a Push Model
	Subclassing Using a Pull Model
	Thread Safety
	Public Methods
	HttpdMultipartCgiParser
	List
	TakeList
	OpenDestination
	CloseDestination
	HandlePart
	Parse

	HttpdCgiWriter Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdCgiWriter
	Write
	WriteNode
	WriteList
	Reset

	HttpdAttributeParser Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdAttributeParser
	NextAttribute

	Public Data
	mpKey
	mpValue
	mpFront

	HttpdCookies Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdCookies
	NextCookie
	Key
	Value
	SendCookie (Stream version)
	SendCookie (Dynamic version)

	HttpdAuthenticator Reference
	Introduction
	Public Methods
	Authenticate (Default version)
	Authenticate (Specific version)
	Create
	SecureStrEqu

	Protected Methods
	Realm
	GetPassword
	ValidatePassword
	DigestAuthHeader
	AuthorizeDigest
	BasicAuthHeader
	AuthorizeBasic
	NotAuthorized

	HttpdSessionManager Reference
	Introduction
	Thread Safety
	Public Methods
	Create
	CycleTime (setter)
	MaxSessionAge (setter)
	ScrubbingBatchSize (setter)
	CycleTime (getter)
	MaxSessionAge (getter)
	ScrubbingBatchSize (getter)
	Insert
	UnlockedInsert
	Find
	UnlockedReference
	Unlock
	Delete
	Mutex

	HttpdSessionObject Reference
	Introduction
	Public Methods
	SessionId
	Deleted

	HttpdDynamicOutput Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdDynamicOutput
	Header
	HeaderComplete
	Body
	Headers

	HttpdInboundTransfer Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdInboundTransfer
	Receiver

	HttpdOutboundTransfer Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdOutboundTransfer
	Receiver

	HttpdTracer Reference
	Introduction
	Using the Tracing Macros

	Chapter 3. Support Classes
	HttpdFileSystem Reference
	Introduction
	Thread Safety
	Public Methods
	FileInfo (From path)
	FileInfo (From parent & path tuple)
	OpenFile
	OpenDirectory
	Open
	LoadFile (ASCII)
	LoadFile (binary)
	Delete (Parent & path tuple)
	Delete (via HttpdFileInfo))
	MakeDirectory
	MakeFile
	CopyFrom
	MoveTo
	GetQuota

	SupportsQuota
	Protected Methods
	CommonFileInfo

	Public Data

	HttpdFileInfo Reference
	Introduction
	Thread Safety
	Public Methods
	IsDir
	FileSystem (getter)
	MimeType (getter)
	Size (getter)
	LastModificationTime
	CreationTime
	FileSystem (setter)
	ChangeLastModificationTime
	ChangeCreationTime
	Size (setter)
	IsDir (setter)
	MimeType (setter)
	Location (getter)
	Location (setter)
	ETag (setter)
	ETag (getter)
	ETagIsWeak
	Attributes (setter)
	Attributes (getter)

	Public Data

	HttpdFile Reference
	Introduction
	Thread Safety
	Public Methods
	Read
	ReadObject
	Write
	SetSize
	Seek
	Tell
	PushToSink
	PushFileSegment

	Public Data

	HttpdDirectory Reference
	Introduction
	Thread Safety
	Public Methods
	Name
	Next
	Close

	Public Data

	HttpdReadOnlyMemoryFile Reference
	Introduction
	Public Methods
	HttpdReadOnlyMemoryFile

	HttpdMemoryFile Reference
	Introduction
	Public Methods
	HttpdMemoryFile

	HttpdRedirectResponse Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdRedirectResponse
	Begin
	End

	HttpdSocket Reference
	Introduction
	Public Methods
	Initialize
	Write
	EnterReadMode
	ReadN
	Read
	Read (multiple wait version)
	LeaveReadMode
	Gets
	AbortGets
	Socket
	Close
	Listen
	Connect
	ConnectTo
	Shutdown
	Accept
	Cancel
	Socket
	GetLocalAddress
	ForceShutdown
	Transport

	Public Data
	mEmptySocketOptions

	HttpdSocketInterface Reference
	Introduction
	Public Methods
	Socket
	Socket
	Factory

	HttpdSocketFoundation Reference
	Introduction
	Public Methods
	CreateAddress
	AddressEqual
	CopyAddress
	FreeAddress
	CreateAddress (Portability Layer Support)
	HashAddress
	FormatAddress

	HttpdUdpServerSocket Reference
	Introduction
	Public Methods
	Socket
	Close
	ForceShutdown
	ReadPacket
	SendPacket

	HttpdIpAddressBase Reference
	HttpdMemoryAllocator Reference
	Introduction
	Public Methods
	Create
	Allocate
	Free
	Reallocate

	Public Data

	HttpdAllocatorCache Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdAllocatorCache
	Create
	Prune
	AllocateObject
	FreeObject
	PurgeAllCaches

	HttpdList and HttpdListNode Reference
	Introduction
	Public Methods (HttpdListNode)
	Owner (Getter)
	Owner (Setter)
	Next
	Prev
	InsertBefore
	InsertAfter
	Remove
	MakeCircular

	Public Methods (HttpdList)
	Initialize
	IsEmpty
	AddToHead
	AddToTail
	Head
	Tail
	CountChildren
	Concatenate
	MakeCircular

	Iterating over lists

	HttpdBitSet Reference
	Introduction
	Thread Safety
	Public Methods
	Size
	Elements
	RemoveLeadingSet
	Storage

	HttpdMacroProcessor Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdMacroProcessor
	Expand (sink version)
	Expand (string version)

	Protected Methods
	Command
	WriteString

	HttpdCgiMacroProcessor Reference
	Introduction
	Public Methods
	HttpdCgiMacroProcessor

	HttpdHtmlQuoter Reference
	Introduction

	HttpdDataSource Reference
	Introduction
	Public Methods
	ReadAt
	ReadValue (32-bit)
	ReadValue (16-bit)
	AddressOf
	ReleaseAddress

	HttpdMemoryDataSource Reference
	Introduction
	Thread Safety

	Public Methods
	HttpdMemoryDataSource

	HttpdFileDataSource Reference
	Introduction
	Thread Safety
	Caching
	Public Methods
	HttpdFileDataSource
	Create

	HttpdContentSink Reference
	Introduction
	Thread Safety
	Public Methods
	ContentLength
	SendData
	Purge

	HttpdBatchWriter Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdBatchWriter
	Flush

	HttpdNullSink Reference
	Introduction
	Thread Safety
	Public Methods
	Null

	HttpdStringSink Reference
	Introduction
	Thread Safety
	Public Methods
	String
	Buffer
	TakeBuffer
	Length
	Clear
	ClearAndRelease
	Prepare
	ReleaseBuffer

	HttpdBufferWriter Reference
	Introduction
	Thread Safety
	Public Methods
	Count
	Buffer

	HttpdFifo Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdFifo
	AvailableWriteBuffer
	TransferSize
	GetWriteBuffer
	Produce
	Used
	ReadData
	Consume
	Read
	ReleaseBuffer
	Finish
	ReadBody

	HttpdCountingSink Reference
	Introduction
	Thread Safety
	Public Methods
	WrittenSize (Getter)
	WrittenSize (Setter)

	HttpdChunkedSink Reference
	Introduction
	Thread Safety
	Public Methods
	HttpdChunkedSink
	Open
	Finalize

	HttpdRomFileSystem Reference
	Introduction
	Thread Safety
	Public Methods
	Mount

	HttpdReceiver Reference
	Introduction
	Public Methods
	HttpdReceiver
	ReadUntil
	Read
	Pump
	ReadN
	Gets
	More
	Pump

	HttpdBoundaryReader Reference
	Introduction
	Public Methods
	HttpdBoundaryReader
	Read (pull model)
	Read (push model)

	HttpdMuxFileSystem Reference
	Introduction
	Thread Safety
	Public Methods
	Mount

	Chapter 4. Portability Layer Reference
	Platform Specific Definitions
	HttpdOpSys Reference
	Introduction
	Public Methods
	Init
	Malloc
	Free
	Realloc
	SafeRealloc
	Fork
	TaskSleep
	Now
	DiffTime
	Randomize
	Entropy
	NativeFileSystem
	OpenSystemFile
	CloseSystemFile

	Public Data

	HttpdTcpSocket Reference
	Introduction

	HttpdSslSocket Reference
	Introduction

	HttpdMutex Reference
	Introduction
	Public Methods
	HttpdMutex
	~HttpdMutex
	Create
	Lock
	Unlock

	HttpdEventSemaphore Reference
	Introduction
	Public Methods
	HttpdEventSemaphore
	~HttpEventSemaphore
	Create
	Wait
	Wait (with timeout)
	Signal

	Chapter 5. Generating Dynamic Content with Templates
	Understanding the Template Engine
	Why Templates?
	Compiled Templates
	Template Syntax
	Programming Template Interfaces

	HttpdSymbolTable Reference
	Introduction
	Public Methods
	HandleEval
	HandleLoop
	HandleCond
	ReturnBool

	HttpdPrefixSymbolTable Reference
	Introduction
	Public Methods
	HttpdPrefixSymbolTable
	Prefix
	Command

	HttpdTemplateCommand Reference
	Introduction
	Public Methods
	Name
	Attribute
	Attributes
	Output
	Processor

	HttpdEvalCommand Reference
	Introduction
	Public Methods
	Format
	FormatInteger
	FormatFloat

	Common Formatting Attributes

	HttpdLoopCommand Reference
	Introduction
	Public Methods
	Iterate
	Counter

	HttpdConditionalCommand Reference
	Introduction
	Public Methods
	Test (String Version)
	Test (Integer version)
	Test (Unsigned version)
	Test (Floating-point version)

	HttpdTemplateScope Reference
	Introduction
	Public Methods
	HttpdTemplateScope

	HttpdTemplateProcessor Reference
	Introduction
	HttpdTemplateProcessor Internals
	Public Methods
	HttpdTemplateProcessor (Clone constructor)
	StartProcessing
	Top

	HttpdFSTemplateShell Reference
	Introduction
	Public Methods
	HttpdFSTemplateShell
	State
	TopState
	Execute

	HttpdFSTemplateRequest Reference
	Introduction
	Public Methods
	HttpdFSTemplateRequest
	Execute

	HttpdConstantSymbolTable Reference
	Introduction
	Public Methods
	HttpdConstantSymbolTable

	HttpdSymbolMap Reference
	Introduction
	Public Methods
	HttpdSymbolMap

	HttpdScopedSymbolMap Reference
	Introduction
	Public Methods
	HttpdScopedSymbolMap

	CGI-template Interfacing
	Introduction
	Public Methods
	HttpdCgiSymbols
	HttpdCgiListSymbols
	HttpdCgiHashSymbols

	Protected Methods
	Find

	HttpdLoopCounterSymbols Reference
	Introduction
	Public Methods
	HttpdLoopCounterSymbols

	Public Data

	Chapter 6. Processing XML
	“Streamy” Processing of XML
	HttpdXmlAttribute Reference
	Introduction
	Public Methods
	FreeList
	Find
	FindValue
	FindValue (Namespace version)
	CopyList

	Public Data
	mpNext
	mpName
	mpValue
	mpNamespace
	mpSelector

	HttpdXmlHost Reference
	Introduction

	HttpdXmlTokenizer Reference
	Introduction
	Public Methods
	HttpdXmlTokenizer
	Finish

	Protected Methods
	TranslateEntity
	StartText
	FinishText
	BeginDoctype
	EndDoctype
	ParameterEntity
	Token
	String
	TakeQuotedString
	Identifier
	Error

	HttpdXmlParser Reference
	Introduction
	Public Methods
	HttpdXmlParser
	Create
	Finish

	Protected Methods
	ProcessingInstruction
	RootBody
	CloseRootBody
	AllocateNode
	InnermostNode
	IsPath

	HttpdXmlNode Reference
	Introduction
	Public Methods
	HttpdXmlNode
	Tag
	Namespace
	Selector

	Protected Methods
	BodySink
	CloseBodySink
	Attribute (First Pass)
	AttributesComplete
	Close

	HttpdXmlDomBuilder Reference
	Introduction
	Public Methods
	HttpdXmlDomBuilder
	Create
	Root
	Lookup
	LookupNode
	Set

	HttpdXmlDomNode Reference
	Introduction
	Public Methods
	Children
	Parent
	Attributes
	Body
	BodySignificant
	CopyToHead
	CopyToTail
	Lookup
	LookupNode
	Set
	AddAttribute (namespace version)
	AddAttribute
	RemoveAttribute
	InsertLastChild
	InsertFirstChild
	InsertBefore
	InsertAfter

	HttpdXmlDomWriter Reference
	Introduction
	Public Methods
	HttpdXmlDomWriter
	WriteMarkup
	WriteChildren
	WriteDom

	Chapter 7. Processing JSON
	“Streamy” Processing of JSON
	HttpdJsonTokenizer Reference
	Introduction
	Public Methods
	HttpdJsonTokenizer
	Finish

	Protected Methods
	Keyword
	Identifier
	QuotedString
	Token
	Error

	HttpdJsonParser Reference
	Introduction
	Public Methods
	HttpdJsonParser
	Create
	Finish

	Protected Methods
	TrueValue
	FalseValue
	NullValue
	StringValue
	NumericValue
	Push
	Pop

	HttpdJsonBuilder Reference
	Introduction
	Public Methods
	HttpdJsonBuilder
	Create
	Finish
	Datum
	TakeDatum

	HttpdJsonDatum Reference
	Introduction
	Public Methods
	WriteQuotedString
	Destroy
	Type
	Serialize
	Get (by key)
	Get (by index)
	Copy
	IsUndefined
	IsNull
	IsTrue
	IsFalse
	IsString
	IsArray
	IsObject
	IsDouble
	IsLong
	IsNumber
	GetLong
	GetDouble
	GetString

	HttpdJsonUndefined Reference
	Introduction
	Public Methods
	Undefined

	HttpdJsonNull Reference
	Introduction
	Public Methods
	Null

	HttpdJsonTrue Reference
	Introduction
	Public Methods
	True

	HttpdJsonFalse Reference
	Introduction
	Public Methods
	False

	HttpdJsonString Reference
	Introduction
	Public Methods
	Create
	Wrap
	String
	Set

	HttpdJsonLong Reference
	Introduction
	Public Methods
	Create
	Long
	Set

	HttpdJsonDouble Reference
	Introduction
	Public Methods
	Create
	Double
	Set

	HttpdJsonArray Reference
	Introduction
	Public Methods
	Create
	Set
	Count
	Contents

	HttpdJsonObject Reference
	Introduction
	Public Methods
	Create
	Set
	Insert
	Count
	Remove
	GetTuple

	HttpdAbstractJson Reference
	Introduction
	Public Methods
	Copy
	DeleteAfterDestroy

	Chapter 8. WebDAV Extensions
	WebDAV
	HttpdWebDAVHandler Reference
	Introduction
	Public Methods
	HttpdWebDAVHandler
	Create
	LockSessions

	Protected Methods
	GetLockCredentials
	DestroyLockCredentials
	LockActionAllowed

	HttpdWebDAVConfiguration Reference
	Introduction
	Public Data
	mCapabilities
	mMaxInfiniteDepth
	mPutTimeout
	mMaxLocks
	mMaxLockLifetime

	Chapter 9. Error Logging and Reporting
	Introduction
	HttpdConsoleLog Reference
	Introduction
	Thread Safety
	Public Methods
	Create
	Log
	Dump

	Public Data

	HttpdConsoleHandler Reference
	Introduction
	Public Methods
	HttpdConsoleHandler

	Protected Methods
	Authorized

	Public Data

	Chapter 10. The Application Framework
	Introduction
	Overview
	HttpdStringProvider Reference
	Introduction
	Public Methods
	Read (static buffer version)
	Read (dynamic buffer version)
	Free

	HttpdStringBundle Reference
	Introduction
	Public Methods
	Open

	HttpdStringTable Reference
	Introduction
	Public Methods
	HttpdStringTable

	HttpdWidgetConfig Reference
	Introduction
	Public Methods
	Resource
	Release
	Strings

	Protected Methods
	HttpdWidgetConfig
	FindResource

	HttpdResourceMap Reference
	Introduction
	Public Types
	Public Methods
	HttpdResourceMap
	Load

	HttpdAppTemplateEnvironment Reference
	Introduction
	Template Directives
	Public Methods
	Widget
	Painter

	HttpdAppTemplateProcessor Reference
	Introduction
	Public Methods
	HttpdAppTemplateProcessor
	StartProcessing
	WriteResourceString
	GetPainter
	GetWidget

	HttpdAppStringConstants Reference
	Introduction
	Public Methods
	WriteConstant

	Public Data
	mpIndex
	mCount
	mppStrings

	HttpdWidget Reference
	Introduction
	Public Methods
	HttpdWidget
	Destroy
	LocalId
	Config (Getter)
	Config (Setter)
	Flags (Getter)
	Flags (Setter)
	GlobalId
	Parent
	Session
	Event
	ActionVa
	Action
	Paint
	Key
	Key

	Protected Methods
	PaintingResource
	ExecuteTemplate

	HttpdWidgetContainer Reference
	Introduction
	Template Directives
	Public Methods
	HttpdWidgetContainer
	DestroyAllChildren
	FindByLocalId
	Children

	Protected Methods
	RemovingChild

	HttpdAppEvent Reference
	Introduction
	Public Data Members
	mpPath
	mpEvent
	mpRequest
	mpTarget
	mpHandler
	mpSession
	mParameters
	mPerformPaint

	HttpdAppPainter Reference
	Introduction
	Public Data Members
	mpEvent
	mpOutput

	HttpdAppEventHandler Reference
	Introduction
	Public Methods
	HttpdAppEventHandler
	HandlerNode
	Release
	HandleEvent

	HttpdAppEventDispatcher Reference
	Introduction
	Public Methods
	List
	Insert
	Default
	HandleEvent

	HttpdAppSession Reference
	Introduction
	Public Methods
	HttpdAppSession
	Root
	Dispatcher
	Mutex
	Strings
	Create
	Attribute

	HttpdAppHandler Reference
	Introduction
	Protected Methods
	GetSession
	ReleaseSession
	ContentType

	HttpdSingleSessionApplication Reference
	Introduction
	Public Methods
	HttpdSingleSessionApplication

	Writing Single-Session Application Specifications

	HttpdSessionApplication Reference
	Introduction
	Public Methods
	HttpdSessionApplication
	Create
	Insert

	The Config Structure
	The Logon Procedure
	Writing Multi-Session Application Specifications

	Menus
	Introduction
	HttpdMenu Reference
	Public Methods
	HttpdMenu
	Create
	Dispatch
	Enabled
	Count
	FindItem

	HttpdMenuItem Reference
	Public Data Members
	mItem
	mpAction

	HttpdMenuSymbols Reference
	Template Directives
	Public Methods
	HttpdMenuSymbols

	Writing Menu Specifications

	HttpdWidgetDesktop Reference
	Introduction
	Template Directives
	Public Methods
	HttpdWidgetDesktop
	MenuHidden
	Menu
	Top
	Status
	Desktop
	CreateDesktop

	HttpdAppModal Reference
	Introduction
	Public Methods
	HttpdAppModal

	Dialogs
	Introduction
	Data Types
	HttpdDialogTemplate Public Data Members
	mpName
	mpLayout
	mpFields
	mFieldCount
	mpMenuItems
	mMenuCount
	mpInit
	mpValidate
	mpOnComplete
	mpOnCancel
	mCompletedMsg
	mCancelledMsg
	mFlags

	HttpdDialogField Public Data Members
	mpName
	mpTemplate
	mOffset
	mpManager
	mLabel
	mpConfig

	HttpdWidgetDialog Reference
	Public Methods
	HttpdWidgetDialog
	Template
	Data
	Modified
	ControlCount
	Control
	Field
	ValidateFields
	AreFieldsValid
	ValidateAll
	MoveValues
	Cancel
	Complete
	ManageField
	ManageField
	Create
	InitOptionalField
	ShowOptionalField

	HttpdWidgetField Reference
	Template Directives
	Public Methods
	HttpdWidgetField
	SetError (string version)
	SetError (localized version)
	ClearError
	HasError
	Manager

	HttpdWidgetScalar Reference
	Template Directives
	Public Methods
	HttpdWidgetScalar
	GetValue
	SetValue
	Manager

	HttpdWidgetOption Reference
	Template Directives
	Public Methods
	HttpdWidgetOption
	GetCurSelection
	SetCurSelection
	Manager

	HttpdWidgetBoolean Reference
	Template Directives
	Public Methods
	HttpdWidgetBoolean
	GetCurState
	SetCurState
	Manager

	HttpdWidgetMulti Reference
	Template Directives
	Public Methods
	HttpdWidgetMulti
	Index
	GetValue
	SetValue
	Manager

	HttpdFieldManagers Reference
	Public Methods
	StoreUnsigned
	StoreSigned
	FetchUnsigned
	FetchSigned
	EnumManager
	BoolManager

	Public Structures
	UnsignedInteger
	Data member mMinimum
	Data member mMaximum
	Data member mBelowMinimum
	Data member mAboveMaximum
	Data member mInvalid
	Data member mType
	Data member mBase

	SignedInteger
	Data member mMinimum
	Data member mMaximum
	Data member mBelowMinimum
	Data member mAboveMaximum
	Data member mInvalid
	Data member mType

	StaticStringBuffer
	Data member mBufferSize
	Data member mTooLong

	TimeDateStamp
	Data member mInvalid
	Data member mUseAmPm

	Ipv4Address
	Data member mInvalid
	Data member mpValidate

	Dialog Specifications

	Collections
	Introduction
	HttpdCollectionData Reference
	Public Methods
	Current
	First
	Next
	Prev
	IsFirst
	Event

	HttpdCollectionObjectRenderer Reference
	Public Methods
	SetObject

	HttpdCollectionWidget Reference
	Template Directives
	Public Methods
	HttpdCollectionWidget
	Menu
	HaveSelection
	Data
	Renderer
	Manager

	HttpdCollectionListAdaptor Reference
	Public Methods
	HttpdCollectionListAdaptor

	HttpdCollectionArrayAdaptor Reference
	Public Methods
	HttpdCollectionArrayAdaptor

	HttpdWidgetBackBlocker Reference
	Introduction
	Public Methods
	HttpdWidgetBackBlocker

	Chapter 11. Imaging Library
	What is the Imaging Library?
	Introduction
	Using the Imaging Library

	HttpdRect Reference
	Introduction
	Thread Safety
	Public Data
	mTop
	mLeft
	mBottom
	mRight

	Public Methods
	Width
	Height
	Intersection
	Union
	Encloses
	Overlaps
	Offset
	Inflate
	Deflate
	Subtract

	HttpdCanvas Reference
	Introduction
	Public Methods
	Color
	Brush
	Pen
	Size
	DefaultBrush
	Box
	FilledRect
	HPixelLine
	VPixelLine
	Line
	Circle
	RoundRect
	Grid
	LineGraph

	HttpdSquareBrush Reference
	Introduction
	Public Methods
	HttpdSquareBrush

	HttpdFont Reference
	Introduction
	Public Methods
	HttpdFont
	CharWidth
	StringWidth
	Draw

	HttpdGif87aRenderer Reference
	Introduction
	Thread Safety
	Public Methods
	Create
	Render

	Chapter 12. Web Sockets
	Introduction
	HttpdWebSocket Reference
	Introduction
	Public Methods
	IsRequest
	Connect
	Setup
	Close
	SetMaxRxSize
	Send
	Received
	Received (multiple wait version)
	Finish

	Protected Methods
	UnhandledFrame
	Fragment

	Chapter 13. Endpoint Discovery
	Introduction
	Endpoint Location
	The Discovery Server
	The Discovery Client

	The Java Discovery Client
	Compiling
	Instructional HTML
	Attributes
	Formatting Attributes
	Sorting Endpoints
	Endpoint Icons
	Class Filters
	Change Highlighting

	HttpdDiscoveryServer Reference
	Introduction
	Configuration Structures
	Public Methods
	HttpdDiscoveryServer
	Create
	Start
	Stop

	Protected Methods
	ShouldHandleRequest
	BuildResponse
	PrepareResponse
	SendBeacon

	Protected Data
	mRebuildResponse

	HttpdDiscoveryClient Reference
	Introduction
	Configuration Structures
	Public Methods
	HttpdDiscoveryClient
	Create
	Start
	Stop

	Protected Methods
	CreateEndpoint
	DeleteEndpoint
	PurgeEndpoint

	HttpdDiscoveredEndpoint Reference
	Introduction
	Protected Methods
	HttpdDiscoveredEndpoint
	Update
	Display
	~HttpdDiscoveredEndpoint

	Protected Data Members
	mpAttributes
	mpOwner
	mpUrl

	The Win32 Discovery Client
	Compiling
	Configuring the Client

	Chapter 14. The Other Direction: An HTTP Client
	The HTTP Client
	Introduction
	Performing HTTP Transactions

	HttpdClient Reference
	Introduction
	Public Methods
	Create
	SetSocketOptions
	SetCookieJarSize
	SetProxyServer
	NoProxyServer
	SetKeyRing
	Flush

	HttpdClientFetch Reference
	Introduction
	Public Methods
	HttpdClientFetch
	Fetch
	MaxRetries
	MaxRedirects
	MaxLoginAttempts
	RetryDelay
	BodySource
	BodyContentType
	RequestBodySink

	Protected Methods
	SendHeaders
	ProcessResponse
	ResponseOk

	HttpdClientRequestBodySource Reference
	Introduction
	Public Methods
	Traits
	TotalSize
	Generate

	HttpdClientBufferRequestBody Reference
	Introduction
	Public Methods
	HttpdClientBufferRequestBody

	HttpdClientKeyRing Reference
	Introduction
	Public Methods
	HttpdClientKeyRing
	Create

	Protected Methods
	GetAuthority
	GetKey
	IsScheme
	IsDefunct

	Chapter 15. Integrating Seminole With An Application
	Porting and Integrating Seminole
	Introduction
	Seminole compile-time parameters and options
	The Seminole Build System
	Overview
	Performing a Build
	Build System Internals
	Building Seminole using an alternative build environment
	Toolchain
	Using SSL
	Using MatrixSSL

	Operating Environment Abstraction Layers
	Introduction
	Adding New Abstraction Layers

	Extending Seminole
	Introduction
	Adding Handlers
	Basics
	Conventions
	CGI Processing

	Dynamic Memory Allocation
	Introduction
	Creating Objects

	Chapter 16. Host Tools
	Introduction
	Host Tool Input Format
	Using the SCPG Tool
	Introduction
	Usage
	Input Configuration File Format
	Filters
	Encoding Types
	Alignment
	Listing File Format
	Standalone Templates
	Content Preprocessing

	Using the bin2c Tool
	Introduction
	Usage

	Using the makecert Tool
	Introduction
	Usage

	Using the msgcmp Tool
	Introduction
	Usage
	Input File Format

	Using the specgen Tool
	Introduction
	Usage
	Input format
	General conventions
	Built-in directives

	Included Packages
	The templates package

	Appendix A. Obtaining Support
	Glossary

